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Abstract 
The dispersion of water inside a flow of oil is investigated in a microfluidic device, producing a water-in-oil 
emulsion. The liquid–liquid flow mainly differs from those presented in existing literature through its high capillary 
number (between 3 and 14), and in the head-on collision between water and oil streams. By comparing with 
experimental data, numerical simulations can provide more information about the topology of the flow. A coupled 
Volume of Fluid and Level Set method (CLSVOF) is used to treat the interface between both phases and 
incompressible Navier-Stokes equations are solved. Three set of parameters, close to those in the experimental 
setup, are investigated to compare experimental and numerical results. The comparison between experiments 
and simulation provides a precise knowledge of the liquid-liquid dispersion process and the overall flow pattern 
within the microfluidic device. 
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Introduction 
Liquid-liquid dispersion within microfluidic devices has become an important issue over the last decade [1]. An 
emulsion is defined as the temporarily stable dispersion of a liquid into another one that is not miscible [2]. When 
the scale of the liquid-liquid flow is smaller than its capillary length [3], interfacial tension dominates over shear 
stress and gravity [4], making the dispersion highly reproducible in slow conditions [5]. These slow conditions 
ensure a highly monodisperse emulsion [6], that is usually appropriate for targeted applications like microreaction 
synthesis [7]. However, other application like high flow-rate biofuel production [8] benefit from the considerably 
increased surface-to-volume ratio [9,10] of microfluidic liquid-liquid dispersion. 
In order to better understand the physics of microfluidic in high flow-rate liquid-liquid dispersion, experimental 
results of the obtained mean diameter and liquid-liquid flow photographies [8] are compared to numerical results. 
At the present stage, a quantitative validation of the model is not obtained, but we present a qualitative 
comparison of the liquid-liquid flow pattern. In a first part, experimental material and methods are presented, then 
numerical methods used to investigate such flows are briefly detailed. Finally, first comparisons are discussed. 

Material and methods 
The experimental facility is designed to produce high flow-rate water-in-oil flow within a microfluidic device. The 
capillary number Ca (Eq. 1) represents the ratio between shear stress (µV/L) and interfacial tension σwo/L. µ and 
V are the viscosity and the superficial velocity of the continuous phase, e.g. filtered sunflower oil in thiscase. It 
reaches values between 2 and 14, which is three orders of magnitude higher than most of the situations 
investigated in scientific literature [11]. 

Ca = µV/σwo (1) 

The microfluidic device shown Fig. 1 enables a finely dispersed emulsion due to three main reasons. First, 
streams of oil and water are faced in a head-on collision. This maximizes the energy available to fractionate the 
water stream, since kinetic energies are added in the collision. Secondly, the viscosity µ is very high (up to 52.2 
mPa.s) to maximize shear stress from the continuous phase. Thirdly, the water inlet is smaller than the oil inlet to 
produce a swirling flow downstream the impinging zone. Such a swirling flow enhances curvature of streamlines, 
and in turn shear-induced break-up. The oil inlet and the emulsion outlets are squared cross-sections, with 600 
µm per side. The water inlet is also squared, with 300 µm per side. All connections between pumps and mini-
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channel are made using Fluoropolymer (FEP) tubing with an internal diameter of 1.55 mm. The outlets are at the 
atmospheric pressure. 
 
The microchannel is made of two PMMA slabs screwed together to avoid leakage at high injection pressure up to 
7 bar. The hydrophobic PMMA material [12] is widely used in the field of two-phase microfluidics, to avoid 
destruction of the flow structure due to wettability effects on the walls [1]. The average surface roughness on the 
etched surface at the bottom of the channel is 460nm, measured by means of an ALICONA optical profilometer. 
This roughness is very small, when compared with the size of the channels (between 200 and 600µm), and 
cannot significantly disturb the flow. The interfacial tension was measured using a KRÜSS tensiometer K-12, 
since σwo is a crucial property to investigate the physics of shear induced breakup [11]. The temperature of oil and 
water is maintained at 25°C in a LAUDA thermostated bath, and measured by a thermocouple in the beakers and 
in the microfluidic device.The size of dispersed water droplets is measured in a sample of emulsion coming out 
from the microfluidic device using a ZEISS optical microscope. The sufficient size of the sample is determined to 
calculate the mean diameter of water droplets. 
Two piston pumps (ARMENAPF-100-25-1) are used for supplying water and filtered sunflower oil at a high 
pressure (up to 5 bars). Flow rate measurements are performed using weighing scales (Sartorius-MSE 2203, 1Hz 
sampling) connected to a computer. The weighing scales have a measurement accuracy of 10-3 g, which results 
in an uncertainty of 5% of the flow rate.The flow pattern is observed with a fast CCD camera LAVision HighSpeed 
Star 6 equipped with the macro objective, necessary to resolve the millimeter scale. The focus was made in the 
channel depth. The light source consists of a 50 W halogen spot located in the line of sight, beyond the 
transparent microfluidic device. 
All the details about conception of the microchannel and the experimental set-up, including measurement 
uncertainties can be found in [8]. 
 
 

 
 

Figure 1.Microfluidic device : water and oil streams are faced in a head-on collision within the impinging zone. 
 
 

The used fluids are tap water and oil with additives to decrease viscosity µ and interfacial tension σwo: Butanol, 
and surfactant SPAN 83. Tab. 1 shows the three cases chosen for the present study : A, B and C with physical 
properties at 25°C, as it was maintained in the experimental set-up. The capillary length Lc is also mentioned : it is 
always larger than the channel side so that interfacial tension dominates [4]. The obtained mean diameter Dd 
shown in Tab. 1 is similar (between 20 and 21 µm) for cases (A) and (B), it is more than 50% larger (32.48 µm) in 
case (C). The effect of a lower viscosity of the continuous phase is a decreased shear stress exerted on the water 
phase, resulting in a larger mean diameter of water droplets. 
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Table 1.Characteristics of the three cases chosen for study. 

Cases A B C 

Continuous phase 
at 25°C 

Pure oil 
Oil + 0.3% wt. 

SPAN 83 
Oil + 5% wt. Butanol 

Qo [mL.min-1] 72.55 62.84 76.23 

Qw [mL.min-1] 6.94 9.06 13.85 

µ [mPa.s] 52.2 52.2 40.4 

σwo[mN.m-1] 27.6 11.7 12.8 

Dd [µm] 20.78 20.46 32.48 

Lc [mm] 4.6 2.99 3.13 

 

 
 
Numerical methods 
To simulate such flow, we use an in-house code generally applied for the study of liquid jet atomization [13]. The 
following incompressible Navier-Stokes equations are solved thanks to a projection method and coupled with 
interface transport equation performed by a CLSVOF method [14,13]: 

���

��
+ �. ����	 = −�� + �. �2��	 + ����� 

Surface tension force is treated as a jump condition for the pressure through a Ghost Fluid method [15]. The 
convective term is computed in a mass/momentum conserving framework [16,17], where one part comes from 
mass fluxes deduced by the VOF advection and the second part comes from a WENO5 interpolation. The 
diffusive term is computed thanks to the method developed by Sussman [18] and physical properties are 
expressed by the VOF or Level Set functions. 

The main idea of the CLSVOF method is to benefit of both geometrical computations (normal and curvature of 
interface) from Level Set, and mass conservation from the VOF. The transport of the VOF is ensured by the 
method developed by Weymouth [19]. 

Due to the symmetry of the flow, only half of microchannel is computed and symmetric boundary condition is 
imposed to mimic the other part. Then, inlet boundary conditions for the water and oil are prescribed using a 
velocity profile of square channel and flow rates of experimental setup are imposed. Finally, no specific treatment 
is dedicated for the dynamic of triple line on wall boundary condition. Numerical domain is presented on the figure 
2. This equivalent size is (1800x1800x600)µm3, that means water and oil inlet channel have a length of 600 µm, 
and the equivalent mesh size is (384x384x128). 
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Figure 2.Computational domain. 

 

 

 
Results and discussion 
Fig. 3 shows the images from the CCD camera, within the impinging zone. In cases (A) and (B), where viscosity 
of the continuous phase is high (µ = 52.2 mPa.s), the water stream is limited in space. Whereas in case (C), 
which has lower viscosity (µ = 40.4 mPa.s), the water phase invades nearly all the available space of the channel. 
In all cases, a symmetry of the liquid-liquid flow can be noticed downstream the impinging zone. A swirling flow 
can be seen, enhanced by the higher position of the water inlet. 
On the Fig. 4 are reported numerical results of cases A, B and C compared to experimental images. We can 
observe that computations present thin structures at the exit of inlet water microchannel. The arc shape of these 
sheets seems to be similar to what is observed experimentally (case A and B). 
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Figure 3.Image of the CCD camera in the impinging zone : Case A (top), B (middle) and C (bottom) - channel width : 600 µm. 

 
 

 

Figure 4.Experimental view of numerical results. (Top to bottom : cases A, B and C) 

 

A 

B 

C 
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Figure 5 reproduces some slices of case A to show the structure of the flow in the impact zone and its 
consequences in the rest of the microchannel. We can see that the vortex formed by the impact of water/oil flow, 
subsist on the microchannel and then rolls up the interface. This behaviour, present in all cases, is responsible for 
the formation of very thin structures which are not well captured as shown by the formation of some holes in liquid 
sheets. These structures will probably influence the drop size distribution observed in the experiment at the end of 
the microchannel.   
 

 

 

Figure 5.Structure of the flow (case A) on the impact zone and at different heights of the micro-channel 
coloured by velocity, from blue (slowest), to red (fastest).  
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Conclusions 
The comparison between experimental water-in-oil dispersion within a microchannel and numerical simulation are 
carried out qualitatively at this stage. Despite the observed differences, these results show the capabilities of 
numerical computation to capture and reproduce the main structure of the flow. They should easily be improved 
with a finest mesh. The triple line and contact angle dynamics is probably another parameter which can influence 
the numerical results. 
Finally, to investigate the droplet size distribution, a longer computation domain has to be simulated. 
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Nomenclature 
Dd mean water diameter [µm] 
Lc capillary length [mm] 
Qw water flow rate [mL.min-1] 
Qo oil flow rate [mL.min-1] 
µ oil viscosity [mPa.s] 
σwo interfacial tension [N.m-1] 
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