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New results on Pareto spectra

Jean-Bernard Baillon1 and Alberto Seeger2

Abstract. A Pareto eigenvalue of a matrix A of order n is a scalar λ ∈ R for which the
complementarity problem 0 ≼ x ⊥ (Ax − λx) ≽ 0 admits a nonzero solution x ∈ Rn. Pareto
eigenvalues are also known as complementarity eigenvalues. They have found applications in
graph theory, cone-constrained dynamical systems, and mathematical modelling in general. In
this paper we continue our study on theoretical properties of Pareto spectra. Special attention
is paid to classification of Pareto eigenvalues and cardinality issues.

Mathematics Subject Classification: 15A18, 15A39, 65H17.
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1 Introduction

The present paper is a continuation of our previous work [4] and therefore we use the same notation
and terminology. Let Mn be the linear space of real matrices of order n. The mathematical problem
under consideration is that of evaluating the Pareto capacity of Mn. Such expression was coined
in Pinto da Costa and Seeger [11] and refers to the number

cn := max
A∈Mn

card[Π(A)] . (1)

Here, Π(A) stands for the Pareto spectrum or set of Pareto eigenvalues of A. By definition, a
Pareto eigenvalue of A ∈ Mn is a scalar λ ∈ R for which the linear complementarity problem

x ≽ 0, Ax− λx ≽ 0, ⟨x,Ax− λx⟩ = 0

admits a nonzero solution x ∈ Rn. The notation ⟨·, ·⟩ refers to the usual inner product of Rn and
x ≽ 0 means that x is nonnegative componentwisely. The interpretation of (1) is clear: such term
corresponds to the maximal number of Pareto eigenvalues that can be found in a general matrix of
order n. A matrix of order n is of full Pareto capacity if it belongs to

Sn := {A ∈ Mn : card[Π(A)] = cn},

the solution set to the maximization problem (1). Matrices of full Pareto capacity are very difficult
to characterize. The reader is conveyed to Baillon and Seeger [4] for historical comments on Pareto
spectra and state -of -the -art knowledge on Pareto capacities. For applications of Pareto spectra in
various fields of mathematics, see for instance [8, 9, 10, 14]. It is known that c1 = 1, c2 = 3, and
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2Université d’Avignon, Departement de Mathématiques, 33 rue Louis Pasteur, 84000 Avignon, France
(alberto.seeger@univ-avignon.fr)

1

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0024379519305051
Manuscript_42856e413b0e2dd547c21be2ee343cf9

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0024379519305051
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0024379519305051


c3 = 9, but the exact value of cn is a mystery starting from n = 4. There are several reasons why
it is so hard to compute cn in general. Firstly, the objective function

A ∈ Mn 7→ f(A) := card[Π(A)] (2)

of the maximization problem (1) is highly unstable with respect to perturbations in its argument.
More precisely, the cardinality of Π(A) may increase or decrease abruptly if the entries of A are
subject to small perturbations. Topologically speaking, f is neither lower nor upper semicontinuous,
cf. Proposition 4. Secondly, standard optimization techniques involving ascent directions and line
search are hard to implement. This is because to identify an ascent direction for f at a current
point A is far from being a trivial matter. And, thirdly, the evaluation of f at a given A is in itself
a challenging numerical task. The organization of the paper is as follows.

• Section 2 classifies the Pareto eigenvalues of a matrix according to different criteria: simplicity,
strictness, regularity, etc. This section serves to set up the mathematical background of our
work and to fix some terminology.

• Section 3 focusses on regular Pareto eigenvalues and the associated concept of spectrally
regular matrix. We show that the number of regular Pareto eigenvalues does not decrease
if the matrix under consideration is subject to small perturbations. We also prove that
spectrally regular matrices are points of continuity of the set-valued map Π : Mn → 2R.

• Section 4 states the double -plus -one rule. This rule asserts that the existence of a matrix of
order n with r regular Pareto eigenvalues implies the existence of a matrix of order n+1 with
at least 2r + 1 regular Pareto eigenvalues. Such a result confirms that cn goes to infinity at
least as fast as a constant times 2n. The double -plus -one rule serves also to sharpen the best
lower bound for cn that is known insofar.

2 Classification of Pareto eigenvalues

Theorem1 serves to compute the Pareto spectrum of a matrix of moderate order. The symbol
Jn stands for the set of nonempty subsets of Nn := {1, . . . , n} and AJ := [ai,j ]i,j∈J stands for the
principal submatrix of A with entries indexed by J ∈ Jn. Our usual notation for the cardinality of
a general set S is card(S), but, for typographical convenience, the cardinality of an index set J is
indicated with the shorter notation |J |. The notation u ≻ 0 means that u is a positive vector, its
dimension being understood from the context.

Theorem 1 (Seeger, 1999). A scalar λ ∈ R is a Pareto eigenvalue of A ∈ Mn if and only if there
exist an index set J ∈ Jn and a vector u ∈ R|J | such that

AJu = λu, u ≻ 0,
∑
j∈J

ai,j uj ≥ 0 for all i /∈ J. (3)

In order to compute the Pareto spectrum of A ∈ Mn we must solve 2n − 1 classical eigenvalue
problems, one for each index set J . Of course, we must keep in mind the positivity condition u ≻ 0
and the slackness inequalities mentioned at the end of (3). Slackness inequalities are at the origin
of many mathematical troubles and they must be handled with care. We say that

ΠJ(A) := {λ ∈ R : there exists u ∈ R|J | satisfying (3)}

is the set of Pareto eigenvalues of A produced by J . The whole Pareto spectrum is obtained by
passing to the union: Π(A) = ∪J∈JnΠJ(A). Pareto eigenvalues can be classified according to many
different criteria: simplicity, strictness, regularity, etc.
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Definition 1. A Pareto eigenvalue λ of a matrix A ∈ Mn is called:

i) simple, if there exists an index set J such that (3) holds for some u ∈ R|J | and λ is algebraically
simple as eigenvalue of AJ .

ii) strict, if there exists an index set J and a vector u ∈ R|J | such that

AJu = λu, u ≻ 0,
∑
j∈J

ai,j uj > 0 for all i /∈ J. (4)

iii) regular, if there exists an index set J such that (4) holds for some u ∈ R|J | and λ is alge-
braically simple as eigenvalue of AJ .

iv) defective, if it is neither simple nor strict.

By combining Theorem1 and the Perron-Frobenius theorem, we see that if the off-diagonal
entries of A are positive, then the Pareto eigenvalues of A are all regular. Thus, the classification
scheme of Definition 1 is of interest mainly for matrices with at least one nonpositive off-diagonal
entry. The only difference between (3) and (4) is that in the later system the slackness inequali-
ties are strict. Nonstrict Pareto eigenvalues are problematic from a numerical point of view. As
explained in Adly and Seeger [1], nonstrict Pareto eigenvalues are hard to detect with an iterative
algorithm like the semismooth Newton’s method. Defective Pareto eigenvalues are even worse from
an algorithmic perspective. A sort of ideal situation occurs when the Pareto eigenvalues of the
matrix under consideration are all regular. Note that regularity is not a mere addition of simplicity
and strictness. Indeed, regularity requires simplicity and strictness relative to the same index set.

Example 1. Consider a small order matrix with three Pareto eigenvalues: 0 0 2
0 0 4
2 −6 3

 .
The Pareto eigenvalue λ1 = 0 is produced by two index sets: with J = {1, 2} we see that λ1 is strict
and with J = {1} we see that λ1 is simple. Note that λ1 is not regular, despite the fact that it is
simple and strict. On the other hand, the index sets J = {3} and J = {1, 3} produce the regular
Pareto eigenvalues λ2 = 3 and λ3 = 4, respectively.

Regular Pareto eigenvalues arises frequently in practice and defective Pareto eigenvalues are
rare. For instance, a matrix of order 3 may have 9 regular Pareto eigenvalues, but it cannot have
more than 2 defective eigenvalues.

Proposition 1. A matrix of order 3 has at most 2 defective Pareto eigenvalues and this upper
bound is attained.

Proof. A defective Pareto eigenvalue of a matrix of order 3 can be produced only by an index set
of cardinality two. Hence, more than 3 defective Pareto eigenvalues is impossible. Suppose that
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there exists a matrix A ∈ M3 with 3 defective Pareto eigenvalues. In such a case, the system[
a2,2 a2,3
a3,2 a3,3

] [
1
v1

]
= λ1

[
1
v1

]
(5)[

a1,1 a1,3
a3,1 a3,3

] [
1
v2

]
= λ2

[
1
v2

]
(6)[

a1,1 a1,2
a2,1 a2,2

] [
1
v3

]
= λ3

[
1
v3

]
(7)

a1,2 + a1,3v1 = 0 (8)

a2,1 + a2,3v2 = 0 (9)

a3,1 + a3,2v3 = 0 (10)

is solvable with respect to the unknown variables λ1, λ2, λ3 ∈ R and v1, v2, v3 > 0. Since the λi’s
have algebraic multiplicity two as classical eigenvalues, we have

2λ1 = a2,2 + a3,3 , 2λ2 = a1,1 + a3,3 , 2λ3 = a1,1 + a2,2 (11)

and 
(a2,2 − a3,3)

2 + 4 a3,2 a2,3 = 0

(a1,1 − a3,3)
2 + 4 a3,1 a1,3 = 0

(a1,1 − a2,2)
2 + 4 a2,1 a1,2 = 0.

(12)

By substituting (11) into (5)-(7) we get in particular
a3,3 − a2,2 = 2 a2,3v1

a3,3 − a1,1 = 2 a1,3v2

a2,2 − a1,1 = 2 a1,2v3.

(13)

We distinguish two cases. The first case occurs when the off-diagonal entries of A are all nonzero.
Hence, a1,2a1,3 < 0, a2,1a2,3 < 0, a3,1a3,2 < 0, a3,2a2,3 < 0, a3,1a1,3 < 0, a2,1a1,2 < 0, and A has one
of the following sign pattern: ∗ − +

+ ∗ −
− + ∗

 ,
∗ + −
− ∗ +
+ − ∗

 .
In view of (13), the first sign pattern leads to a3,3 < a2,2 < a1,1 < a3,3 , which is a contradiction,
and the second sign pattern leads to a2,2 < a3,3 < a1,1 < a2,2, which is again a contradiction. We
now consider the case in which A has a zero off-diagonal entry. By way of example we analyze
the subcase a1,2 = 0, the other subcases can be treated in a similar way. Due to (8), we have also
a1,3 = 0. The last two equations in (12) yield a1,1 = a3,3 and a1,1 = a2,2 , respectively. Hence,
λ1 = λ2 = λ3, contradicting the fact that the λi’s are distinct. We have proven in this way that
a matrix of order 3 has at most 2 defective Pareto eigenvalues. To see that this upper bound is
attained, consider for instance the matrix 3 −1 2

4 −1 −4
−2 1 7


whose Pareto eigenvalues are λ1 = 1 (defective, produced by J = {1, 2}), λ2 = 3 (regular, produced
by J = {1, 2, 3}), and λ3 = 5 (defective, produced by J = {1, 3}).
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This section ends with a characterization of strict Pareto eigenvalues in a similar spirit as in
Adly and Seeger [1, Definition 5], i.e., without mentioning index sets or principal submatrices.

Proposition 2. A real λ is a strict Pareto eigenvalue of A ∈ Mn if and only if there exists a pair
(x, y) ∈ Rn × Rn such that

Ax− λx− y = 0, (14)

0 ≼ x ⊥ y ≽ 0, (15)

x+ y ≻ 0. (16)

Proof. Let J ∈ Jn and u ∈ R|J | be in (4). Consider the nonzero vector x ∈ Rn given by

xi :=

{
ui if i ∈ J

0 if i /∈ J

and define y := Ax− λx. Then (x, y) clearly satisfies (14)-(16). Conversely, let (x, y) be a pair as
in (14)-(16). Then x ̸= 0. If we take J := {i ∈ Nn : xi > 0} and define u ∈ R|J | as the vector
formed with the positive components of x, then (4) holds true.

Recall that two vectors x and y are complementary if they satisfy (15) and strictly complemen-
tary if they satisfy (15)-(16). Strictly complementary vectors are known to play a fundamental role
in the theory of complementarity problems, so we do not need to further justify the introduction
of condition (16).

3 On regular Pareto eigenvalues

What makes regular Pareto eigenvalues so special is a certain property called lower stability: the
number of regular Pareto eigenvalues does not decrease if the matrix under consideration is subject
to a small perturbation. This theme is developed next. Let Πreg(A) denote the regular Pareto
spectrum or set of regular Pareto eigenvalues of A. Of course, the inclusion Πreg(A) ⊆ Π(A) holds
for all A ∈ Mn. The matrices in the set

SR(n) := {A ∈ Mn : Πreg(A) = Π(A)}

are called spectrally regular. The meaning of the acronym SR is clear. In plain English, a matrix
is spectrally regular if all its Pareto eigenvalues are regular. It is not difficult to prove that SR(n)
is a dense set in Mn. By analogy with expression (1) we say that

cregn := max
A∈Mn

card[Πreg(A)] (17)

is the regular Pareto capacity of the space Mn. The inequality cregn ≤ cn is obvious, but it is not
clear whether these two integers are different after all. We know for a fact that cregn = cn when
n ∈ {1, 2, 3}, but starting from n = 4 we are in terra incognita: we barely know that{

23 ≤ creg4 ≤ c4 ≤ 26,

57 ≤ creg5 ≤ c5 ≤ 71,
(18)

and so on for larger values of n. The upper bound c4 ≤ 26 is announced in [4, p. 8] and it is obtained
by combining [13, Lemma5.1] and [4, Corollary 1]. The upper bound c5 ≤ 71 is announced in [11,
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Table 5] and it is obtained by combining [13, Theorem4.1] and a tedious case-by-case analysis of
the sign pattern of an arbitrary matrix of order five. As justification of the lower bounds in (18)
we mention that the particular matrices


100 103 −11 −80
91 150 −13 −97
1 4 29 −2
21 30 1 2

 ,


612 780 256 −156 −191
548 538 190 −112 −143
456 548 92 −110 −119
292 374 14 −2 −28
304 402 66 −38 −122


have 23 and 57 Pareto eigenvalues, respectively, all of them regular. Alternative matrices in the
same vein are proposed in Chen and Qi [6], but these authors do not mention the regularity of the
obtained Pareto eigenvalues.

The next proposition shows that the maximization problem (17) enjoys some favorable stability
properties. We write first a perturbation lemma for eigenvalues and eigenvectors. We present a
version that focusses on continuity and leaves differentiability issues aside.

Lemma 1. Let λ ∈ R be an algebraically simple eigenvalue of B∗ ∈ Mk with associated eigenvector
u ∈ Rk. Then there are continuous functions g : N → R and ξ : N → Rk on some open
neighborhood of B∗ such that

g(B∗) = λ, ξ(B∗) = u, (19)

Bξ(B) = g(B)ξ(B) for all B ∈ N . (20)

Furthermore, g(B) is an algebraically simple eigenvalue of B.

Proof. This result is part of the folklore. We give a short proof that is adapted from a note available
on the web: A.Alexanderian, Dependence of Simple Eigenpairs to Differentiable Perturbations,
November 2013. Let ϕ : Mk × R → R be given by ϕ(B, t) := det(tIk − B) and let ∂tϕ be the
partial derivative of ϕ with respect to t. Since λ is an algebraically simple eigenvalue of B∗ we have
ϕ(B∗, λ) = 0 and ∂tϕ(B∗, λ) ̸= 0. The implicit function theorem ensures the existence of an open
neighborhood N of B∗ and a continuously differentiable functions g : N → R such that g(B∗) = λ
and ϕ(B, g(B)) = 0 for all B ∈ N . This proves (20) and the first equality in (19). By a continuity
argument we have ∂tϕ(B, g(B)) ̸= 0. Hence, g(B) is an algebraically simple eigenvalue of B and
the eigenspace Ker[g(B)Ik −B] is a line. There is no loss of generality in assuming that u has unit
length. Except for a sign, the eigenvector ξ(B) associated to g(B) is unique up to normalization.
We select it so as to get the second equality in (19) and continuous dependence with respect to B.
Of the two normalized eigenvectors associated to g(B), we choose in fact the one whose angle with
respect to u is smallest.

Lemma1 can also be proven by using Theorem2.1 in Andrew et al. [2]. The next result concerns
some topological properties of the maximization problem defining the regular Pareto capacity.

Proposition 3. The maximization problem (17) has an objective function

A ∈ Mn 7→ f reg(A) := card[Πreg(A)]

that is lower semicontinuous and a solution set

Sreg
n := {A ∈ Mn : card[Πreg(A)] = cregn }

that is open.
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Proof. A main ingredient of the proof is the set-valued map Πreg
J : Mn → 2R, where Πreg

J (A) is
the set of regular Pareto eigenvalues of A produced by J . We consider J ∈ Jn as an arbitrary
but fixed index set. For notational convenience we write k := |J | and introduce the linear map
LJ : Mn → Mk given by LJ(A) := AJ . We divide the proof into three steps.

Step 1: lower stability of Πreg
J . We claim the following stability result:

Let A ∈ Mn and λ ∈ Πreg
J (A). Then there is a continuous

function ψ : O → R on some open neighborhood of A

such that ψ(A) = λ and ψ(C) ∈ Πreg
J (C) for all C ∈ O.

(21)

Let A and λ be as in (21). Then the system (4) holds for some u ∈ Rk. Since λ is algebraically
simple as eigenvalue of AJ , Lemma1 ensures the existence of an open neighborhood N of AJ

and continuous functions g : N → R and ξ : N → Rk satisfying g(AJ) = λ, ξ(AJ) = u, and
condition (20). Note that O := {C ∈ Mn : LJ(C) ∈ N} is an open neighborhood of A and
CJξ(CJ) = g(CJ)ξ(CJ) for all C ∈ O. Over the set O we consider the functions ψ := g ◦ LJ and
η := ξ ◦ LJ . Since u = ξ(AJ) = η(A) satisfies (4), we have in particular

η(A) ≻ 0,
∑
j∈J

ai,j ηj(A) > 0 for all i /∈ J. (22)

By applying a continuity argument and reducing the size of O if necessary, we see that (22) is
true not just for the reference matrix A but also for all C ∈ O. On the other hand, we saw that
λ = g(AJ) = ψ(A). By a continuity argument again, ψ(C) = g(CJ) is an algebraically simple
eigenvalue of CJ . The above discussion shows that ψ(C) ∈ Πreg

J (C) for all C ∈ O and completes
the proof of (21).

Step 2: lower semicontinuity of f reg. In fact, f reg satisfies a property that is stronger than lower
semicontinuity, namely, any matrix in Mn is a local minimizer of f reg. For proving this fact, we
pick A ∈ Mn, write r := f reg(A), and arrange the elements of Πreg(A) in increasing order, say
λ1 < . . . < λr. For each i ∈ Nr, we identify an index set Ji that produces λi and apply the
lower stability result (21) with λ = λi and J = Ji. We get an open neighborhood Oi of A and
a continuous function ψi : Oi → R such that ψi(A) = λi and ψi(C) ∈ Πreg

Ji
(C) ⊆ Πreg(C) for all

C ∈ Oi. By considering O := ∩r
i=1Oi and reducing this neighborhood of A even further if necessary,

we get ψ1(C) < . . . < ψr(C) and {ψ1(C), . . . , ψr(C)} ⊆ Πreg(C) for all C ∈ O. Hence, f reg(C) ≥ r
for all C ∈ O.

Step 3: openness of Sreg
n . Let A ∈ Sreg

n . Since A is a local minimizer of f reg, there is a neighborhood
O of A such that cregn = f reg(A) ≤ f reg(C) ≤ cregn for all C ∈ O. Hence, O ⊆ Sreg

n and A belongs
to the interior of Sreg

n .

Corollary 1. The regular Pareto capacity of the space Mn admits the characterization

cregn = max
A∈SR(n)

card[Π(A)] . (23)

Formula (23) follows from the fact that Sreg
n is open and SR(n) is dense. In contrast with the

case of Sreg
n , it is not clear whether Sn is open for n ≥ 3. What is clear however is that Sn is

not closed. Indeed, as mentioned in [11, Proposition 2], we have Π(tA) = tΠ(A) for all A ∈ Mn

and all nonnegative t ∈ R. As a consequence of this fact, we see that the zero matrix of order n
belongs to topological closure of Sn, but not to Sn itself. The next result prevents us from being
too optimistic concerning the topological properties of f and f reg.
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Proposition 4. Let n ≥ 2. Then f reg is not upper semicontinuous and, on the other hand, the
function f introduced in (2) is neither lower nor upper semicontinuous.

Proof. Consider the matrix of order n defined by A(t, s) := tD + s (1n1
⊤
n − In), where 1n is the

n-dimensional vector of ones, In is the identity matrix of order n, and D := Diag(d1, . . . , dn) with
0 < d1 < . . . < dn < 1. Since the di’s are distinct, we have f(A(1, 0)) = n. By [13, Lemma5.1] we
can also write f(A(1, s)) = 1 for all s < 0. This proves that f is not lower semicontinuous. The
lack of upper semicontinuity in f reg and f can be treated in tandem. Since A(0, 1) = 1n1

⊤
n − In is

the adjacency matrix of the complete graph on n vertices, Example 1 in Seeger [14] shows that

Π(A(0, 1)) = Πreg(A(0, 1)) = {0, 1, . . . , n− 1}.

In particular, f(A(0, 1)) = f reg(A(0, 1)) = n. On the other hand, we claim that

f(A(t, 1)) ≥ f reg(A(t, 1)) ≥ 2n− 1 (24)

for all t ∈ ]0, 1[ small enough. It suffices to check the second inequality in (24). The matrix

A(t, 1) =


td1 1 · · · 1

1 td2
. . .

...
...

. . .
. . . 1

1 · · · 1 tdn


is positive entrywisely. Hence, td1, . . . , tdn are regular Pareto eigenvalues of this matrix. Now, for
k ∈ {2, . . . , n}, let ρk be the spectral radius of the principal submatrix of order k on the upper-left
corner of A(t, 1). By the Perron-Frobenius theorem, ρk is a regular Pareto eigenvalue of A(t, 1).
We have td1 < . . . < tdn < ρ2 < . . . ρn because, when t is small, ρk is slightly bigger than k − 1.
Hence, A(t, 1) has at least 2n− 1 regular Pareto eigenvalues.

Remark 1. David Sossa (Universidad de O’Higgins, Chile) carried out for us some numerical ex-
periments with a random diagonal matrix D whose diagonal entries follow a uniform distribution
on [0, 1]. For each value of n up to 12, he generated a sample of 100 random diagonal matrices of
order n and in all instances he got f reg(D + 1n1

⊤
n − In) = 2n − 1. The lower estimate in (24) is

fairly conservative, but sufficient for proving the lack of upper semicontinuity in f reg and f .

The next theorem gives a sufficient condition for a matrix to be a point of continuity of the
Pareto spectral map Π. The lower and upper envelopes of a set-valued map Φ : Mn → 2R are
defined in the usual Painlevé -Kuratoswki sense, i.e.,

lim inf
C→A

Φ(C) :=

{
λ ∈ R : lim

C→A
dist[λ,Φ(C)] = 0

}
,

lim sup
C→A

Φ(C) :=

{
λ ∈ R : lim inf

C→A
dist[λ,Φ(C)] = 0

}
.

For general material on Painlevé -Kuratoswki limits, see the books of Aubin and Frankowska [3] or
Rockafellar and Wets [12].

Theorem 2. Suppose that A ∈ Mn is spectrally regular. Then A is a point of continuity of
Π : Mn → 2R in the sense that lim infC→AΠ(C) = lim supC→AΠ(C). In particular, the points of
continuity of Π form a dense set in Mn.
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Proof. The stability result (21) was used in Proposition 3 to prove that f reg is a lower semicontinu-
ous function. The same stability result serves to show that Πreg : Mn → 2R is a lower semicontinuous
set-valued map in the sense that

Πreg(A) ⊆ lim inf
C→A

Πreg(C) (25)

for all A ∈ Mn. On the other hand, Seeger and Torki [16, Proposition 1.2] proved that

gr(Π) := {(A, λ) ∈ Mn × R : λ ∈ Π(A)}

is a closed set in the product space Mn × R. Since Π has a closed graph, it follows that

lim sup
C→A

Π(C) ⊆ Π(A) (26)

for all A ∈ Mn. Now, the combination of (25) and (26) yields

Πreg(A) ⊆ lim inf
C→A

Πreg(C) ⊆ lim inf
C→A

Π(C) ⊆ lim sup
C→A

Π(C) ⊆ Π(A)

for all A ∈ Mn. If we assume that A is spectrally regular, then the above chain of inclusions
becomes of course a chain of equalities.

3.1 Regularization of irregular Pareto eigenvalues

As said before, the number of regular Pareto eigenvalues does not decrease if the matrix under
consideration is subject to an arbitrary perturbation of small size. From a perturbational point
of view, irregular Pareto eigenvalues are not as stable as regular Pareto eigenvalues. The proof of
Proposition 5 shows however that an irregular Pareto eigenvalue can be converted into a regular
Pareto eigenvalue by means of a carefully chosen perturbation. For the reader’s convenience, we
recall a rank-one perturbation lemma pertaining to the realm of classical spectral analysis, cf. Ding
and Zhou [7, Theorem2.1].

Lemma 2. Let λ1, λ2, . . . , λk be the (possibly complex) eigenvalues of B ∈ Mk, counting algebraic
multiplicity. Consider the perturbed matrix B̃ := B + up⊤, where u ∈ Rk is an eigenvector of B
associated to the eigenvalue λ1 and p ∈ Rk is an arbitrary nonzero vector. Then the eigenvalues of
B̃ are λ1 + ⟨p, u⟩, λ2, . . . , λk, counting algebraic multiplicity.

Proposition 5. Suppose that A ∈ Mn admits an irregular Pareto eigenvalue. Then any neighbor-
hood of A contains a matrix with at least f reg(A) + 1 regular Pareto eigenvalues.

Proof. Let O be an open neighbourhood of A. Let r := f reg(A) and Πreg(A) = {µ1, . . . , µr}. Let
λ1 be an irregular Pareto eigenvalue of A. We must find a matrix in O that has r+1 regular Pareto
eigenvalues. To fix the ideas, suppose that λ1 is produced by the index set J . For the sake of
convenience we write k := |J | and B := AJ . By applying a permutation similarity transformation
on A if necessary, we can assume that

A =

[
B G
F H

]
,

i.e., the principal submatrix B can be placed on the upper-left corner of A. In such a case,

Bu = λ1u , u ≻ 0, Fu ≽ 0

9



for some u ∈ Rk. For a pedagogical reason, we distinguish three cases.

Case 1 : non-strictness but simplicity, i.e., at least one component of Fu is equal to 0, but λ1 is
algebraically simple as eigenvalue of B. We pick a small positive ε and form a new matrix F̃ by
adding ε to each nonnegative entry of F . Since F̃ is near F , the perturbed matrix

Ã :=

[
B G

F̃ H

]
remains in O. In addition to Bu = λ1u and u ≻ 0, we have F̃ u ≻ 0. Hence, λ1 is a regular Pareto
eigenvalue of Ã.

Case 2 : strictness but not simplicity. In this case, Bu = λ1u, u ≻ 0, Fu ≻ 0, and λ1 has algebraic
multiplicity d ∈ {2, . . . , k} as eigenvalue of B. Of course, if k = n, then B = A and the condition
Fu ≻ 0 must be dropped. The eigenvalues of B are

λ1 = λ2 = . . . = λd, λd+1, . . . , λk ,

where repetitions and/or complex numbers are possible within the group {λd+1, . . . , λk}. We pick
a small positive ε and write λ̃1 := λ1 + ε. By applying Lemma2 with p := ε∥u∥−2u, we see that
the eigenvalues of B̃ := B + ε∥u∥−2 uu⊤ are

λ̃1, λ2 = . . . = λd, λd+1, . . . , λk.

Since B̃ is near B, the perturbed matrix

Ã :=

[
B̃ G
F H

]
remains in O. We view Ã as a perturbed version of A, but it is important to underline that only
the upper-left block of A is affected by a perturbation. Note that B̃u = λ̃1u, u ≻ 0, Fu ≻ 0, and
that λ̃1 algebraically simple as eigenvalue of B̃. Hence, λ̃1 is a regular Pareto eigenvalue of Ã.

Case 3 : defectiveness. We simultaneously perturb F as in Case 1 and B as in Case 2. In this way,
we produce a perturbed matrix

Ã :=

[
B̃ G

F̃ H

]
that remains in O and satisfies B̃u = λ̃1u, u ≻ 0, F̃ u ≻ 0, with λ̃1 algebraically simple. Hence, λ̃1
is a regular Pareto eigenvalue of Ã.

Now, let Ã be as in any of the three cases considered above. From the proof of Proposition 3,
we see that Ã has at least r additional regular Pareto eigenvalues, say µ̃1, . . . , µ̃r, which are near
µ1, . . . , µr, respectively. Thus, Ã has at least r + 1 regular Pareto eigenvalues.

Remark 2. Proposition 5 generalizes to the case in which A ∈ Mn has s irregular Pareto eigenvalues.
These Pareto eigenvalues must be produced however by corresponding index sets that are mutually
disjoint. Under such hypothesis, the conclusion is that any neighborhood of A contains a matrix
with at least f reg(A) + s regular Pareto eigenvalues.

This section end with an interesting application of Proposition 5. The next result not only yields
Corollary 1 as a by-product, but it says something stronger.

Proposition 6. Any solution to the maximization problem (17) is spectrally regular.

Proof. Reasoning by absurd, suppose that A ∈ Mn is a solution to (17) and has at least one
irregular Pareto eigenvalue. As we saw in the proof of Proposition 5, it is possible to construct a
nearby matrix Ã ∈ Mn such that f reg(Ã) ≥ f reg(A) + 1, contradicting the optimality of A.

10



4 Double -plus -one rule

The purpose of this section is to prove a certain relationship between two consecutive regular Pareto
capacities. As we shall see in a moment, the term cregn can be used to derive a lower bound for the
next term cregn+1. To be more precise, Theorem3 asserts that cregn+1 is bigger than twice the value of
cregn . Theorem3 is a by-product of the following proposition that has an interest by its own.

Proposition 7. Let A ∈ Mn be a matrix with r regular Pareto eigenvalues. Then there exist a real
w and positive vectors p, q ∈ Rn such that the extended matrix

M :=

[
A q
p⊤ w

]
(27)

has at least 2r + 1 Pareto eigenvalues.

Proof. Let λ1, . . . , λr be the regular Pareto eigenvalues of A. The number of regular Pareto eigen-
values does not change if we multiply A by a positive scalar. Hence, we can assume that the λi’s
are well-spaced, say |λi − λj | ≥ 1 for i ̸= j. Since p ≻ 0 and q ≻ 0, we have

{w, λ1, . . . , λr} ⊆ Πreg(M). (28)

For avoiding repetitions on the right-hand side of (28), we suppose that w is not a regular Pareto
eigenvalue of A. So, M has at least r + 1 regular Pareto eigenvalues. We now explain how
to select the triplet (w, p, q) so as to get at least r additional Pareto eigenvalues in M . These
new Pareto eigenvalues, say {λ̃1, . . . , λ̃r}, will be constructed so as to avoid repetitions in the set
{w, λ1, . . . , λr, λ̃1, . . . , λ̃r}. We now enter into details. We focus on a particular element of Πreg(A),
say λ1. Suppose that λ1 is produced by the index set J . For notational convenience we write
k := |J | and B := AJ . By applying a permutation similarity transformation on A if necessary, we
can assume that

A =

[
B G
F H

]
.

In such a case, there exists u ∈ Rk such that

Bu = λ1u, u ≻ 0, Fu ≻ 0. (29)

The vector u is unique up to normalization and the slackness condition Fu ≻ 0 is strict. Of course,
if k = n, then B = A and the condition Fu ≻ 0 must be dropped. For constructing λ̃1 we use the
information provided by (29) and examine with attention the solvability of the extended system[

B a
c⊤ w

] [
v
1

]
= λ

[
v
1

]
, (30)

v ≻ 0, (31)

Fv + b ≽ 0, (32)

where a ≻ 0 is formed with the first k components of q, the vector b ≻ 0 is formed with the last
n− k components of q, and c ≻ 0 is formed with the first k components of p. Note that the matrix
on the right-hand side of (30) is a principal submatrix of M . The classical eigenvalue problem (30)
decomposes into

Bv + a = λv, (33)

⟨c, v⟩+ w = λ. (34)

11



If λ is not an eigenvalue of B, then equation (33) is equivalent to

v = RB
λ a , (35)

where t 7→ RB
t := (tIk −B)−1 is the resolvant of B. Substituting (35) into (34) yields

λ = w +
⟨
c,RB

λ a
⟩
, (36)

which is a rational equation in the variable λ. We distinguish two cases.

Case k = 1. In this case B is order one and has λ1 as unique entry, u = 1, and F is a positive
column vector. Furthermore, (35) and (36) become

v =
a1

λ− λ1
, (37)

λ = w +
c1a1
λ− λ1

, (38)

respectively. The solutions to (38) are equal to the eigenvalues of the matrix[
λ1 a1
c1 w

]
, (39)

i.e., they are given by

λ± :=
1

2
(λ1 + w) ± 1

2

[
(λ1 − w)2 + 4c1a1

]1/2
.

If w is negative and large enough in absolute value, then λ+ is slightly bigger than λ1. So, if we are
given in advance a positive ε, then we can adjust the parameter w so that (38) admits a solution
λ̃1 satisfying 0 < λ̃1 − λ1 < ε. By setting λ = λ̃1 in (37), we obtain v > 0 and Fv + b ≻ Fv ≻ 0.
Hence, λ̃1 is a strict Pareto eigenvalue of M because the slackness condition (32) holds strictly. In
fact, λ̃1 is a regular Pareto eigenvalue of M because both eigenvalues of (39) are distinct.

Case k ≥ 2. Since λ1 is algebraically simple as eigenvalue of B, there exists an invertible matrix
S ∈ Mk such that

SBS−1 = Λ :=

[
λ1 0
0 D

]
,

where D ∈ Mk−1 does not admit λ1 as eigenvalue. In the parlance of matrix theory, we have used
a similarity transformation to bring B to a block diagonal form. The block D captures all the
eigenvalues of B, except λ1 which is intentionally left aside. In principle, the eigenvalues of D
could be complex or have algebraic multiplicity greater than one. A direct computation shows that

RB
t = S−1

[ 1
t−λ1

0

0 RD
t

]
S,

where RD
t is the resolvent of D. Hence, the rational equation (36) can be written as

λ− w − ⟨γ̂ , RD
λ α̂ ⟩ =

γ1α1

λ− λ1
, (40)

where (α1, α̂)
⊤ := Sa and (γ1, γ̂)

⊤ := S−⊤c. We claim that the parameters of equation (40) can
be adjusted so as to get a solution arbitrarily close but distinct from λ1. For proving this claim we

12



rely on three facts. Firstly, since λ1 is not an eigenvalue of D, the matrix λ1Ik−1 −D is invertible
and

lim
λ→λ1

RD
λ α̂ = RD

λ1
α̂

is well defined. In particular, RD
λ α̂ remains bounded as λ goes to λ1. Secondly, the coefficient γ1

is positive. Let {e1, . . . , ek} be the canonical basis of Rk. Since u is the eigenvector associated λ1,
the matrix S can be chosen so as to satisfy the additional requirement Su = e1. We see that

γ1 = ⟨S−⊤c, e1⟩ = ⟨c, S−1e1⟩ = ⟨c, u⟩

is positive because c and u are positive vectors. And, thirdly, we can assume that α1 is nonzero,
otherwise we slightly perturb the first k components of q and this produces a slight perturbation
in α1. Again, we take w negative and large enough in absolute value. In such a case, (40) has
a solution, say λ̃1, that is arbitrarily close but distinct from λ1. Whether λ̃1 is slightly bigger or
slightly smaller than λ1 depends on the sign of α1. Indeed, sign(λ̃1 −λ1) = sign(α1). Let ṽ1 be the
vector obtained by taking λ = λ̃1 in (35). We know already that the eigenpair (λ̃1, ṽ

1) is a solution
to the eigenvalue problem (30). We must check that ṽ1 is a positive vector. As said before, by
increasing enough the absolute value of w we can render z := λ̃1 − λ1 as close to 0 as desired. The
substitution of λ = λ̃1 into (35) yields after simplification

ṽ1 = S−1

(
α1

z
e1 +

[
0

RD
z+λ1

])
=

α1

z
u + S−1

[
0

RD
z+λ1

]
. (41)

If z is sufficiently close to 0, then RD
z+λ1

is near RD
λ1
. Recall that α1 and z have the same sign.

We have shown in this way that ṽ1 ≻ 0 because u ≻ 0, the factor α1/z is a huge positive real,
and the last vector in (41) remains bounded as z moves around 0. The strict slackness inequality
F ṽ1 + b ≻ 0 can be proven along the same lines: we write

F ṽ1 =
α1

z
Fu + FS−1

[
0

RD
z+λ1

]
and recall that Fu ≻ 0. Summarizing, whether k = 1 or k ≥ 2, in both cases λ̃1 is a strict Pareto
eigenvalue of M . The construction of λ̃2, . . . , λ̃r is similar. In conclusion, M has at least r + 1
regular Pareto eigenvalues plus an additional group of at least r strict Pareto eigenvalues.

As we saw in the proof of Proposition 7, the terms {λ̃1, . . . , λ̃r} are strict Pareto eigenvalues
of the matrix (27). These Pareto eigenvalues can be rendered regular by slightly perturbating the
matrix under consideration so as to avoid algebraic multiplicity in the principal submatrices. For
economy of language we say that a matrix M is amenable if each principal submatrix of M is free
of algebraically multiple real eigenvalues. Amenable matrices of order k form a dense set in Mk.
We now are ready to prove the double-plus-one rule for regular Pareto capacities.

Theorem 3. Regular Pareto capacities obey to the double-plus-one rule

2cregn + 1 ≤ cregn+1 (42)

for all n ≥ 1.

Proof. Both sides in (42) are equal to 3 when n = 1. Let n ≥ 2 and pick any A∗ ∈ Mn such that
f reg(A∗) = r := cregn . We select w ∈ R, positive vectors p, q ∈ Rn, and a matrix A near A∗, so that

M :=

[
A q
p⊤ w

]
13



is amenable. Since Sreg
n is an open set, cf. Proposition 3, we may suppose that A has still r regular

Pareto eigenvalues. We are then in the context of the proof of Proposition 7 with the additional
assumption that M is amenable. Hence, there exists a matrix M of order n+1 with at least 2r+1
regular Pareto eigenvalues. This proves (42).

The recursive relation (42) initialized at creg1 = 1 yields the lower estimate

2n − 1 ≤ cregn . (43)

Constructing a matrix of order n with 2n − 1 regular Pareto eigenvalues is not difficult: we may
consider for instance a matrix of the form D + 1n1

⊤
n − In, where D is a random diagonal matrix

whose diagonal entries follow a uniform distribution on the unit interval [0, 1]. Alternatively, we may
consider Amara’s example mentioned in the proof of [11, Proposition 3] or the example proposed
in Brás et al. [5, Section 6]. By combining (42) and (43) we readily get

cregn+1 − cregn ≥ 2n, (44)

cregn+2 − 2cregn+1 + cregn ≥ 2n, (45)

for all n ≥ 1. Inequalities (44) and (45) assert that the derivative and second derivative of the se-
quence {cregn }n≥1 go both to infinity at least as fast as 2n. Another easy and interesting consequence
of Theorem3 reads as follows.

Corollary 2. The quotient cregn /2n is increasing as function of n. In particular, the limit

lim
n→∞

cregn

2n
= sup

n≥1

cregn

2n
(46)

exists in [1,∞].

The first statement of the corollary is an equivalent formulation of the double-plus-one rule
(42). From (43) we see that the limit in (46) is greater than or equal to 1. A priori, we should not
rule out the possibility of getting infinity on each side of (46). Checking whether the limit (46) is
finite or infinite turns out to be a difficult question. The next proposition does not settle this issue
but gives at least an alternative characterization of the limit (46).

Proposition 8. Consider the sequence {δn}n≥1 whose general term

δn := cregn+1 − (2cregn + 1) (47)

corresponds to the gap between both sides of the double-plus-one rule (42). Then

cregn = 2n − 1 +
n−1∑
k=1

2n−1−k δk

for all n ≥ 2. In particular,

lim
n→∞

cregn

2n
= 1 +

1

2

∞∑
k=1

δk
2k
. (48)

The proof of Proposition 8 is easy and, therefore, omitted. Formula (48) shows that the limit
(46) is finite if and only if the series

S :=
∞∑
k=1

δk
2k

(49)
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is finite. The series (49) is impossible to compute in practice because the evaluation of the gap
term (47) is in itself a difficult numerical task. However, if S∗ and S∗ are computable lower and
upper bounds of (49), then 1+ (1/2)S∗ and 1+(1/2)S∗ serve as lower and upper estimates of (46).

Example 2. As said before, we know that creg1 = 1, creg2 = 3, creg3 = 9, as well as 23 ≤ creg4 ≤ 26
and creg5 ≥ 57. With this preliminary information we get δ1 = 0, δ2 = 2, and

δ3
23

+
δ4
24

≥ 9

8
.

Hence,

lim
n→∞

cregn

2n
≥ 1 +

1

2

[
δ1
2

+
δ2
22

+
δ3
23

+
δ4
24

]
≥ 29

16
. (50)

We could sharpen this lower bound by bringing additional gap terms into the picture, say δ5 and
δ6. However, it is not clear to us which is the general growth pattern of the δk’s.

The next theorem is a generalization of the double-plus-one rule. The formulation of Theorem4
is certainly more involved and obscure than that of Theorem3, but the proof follows similar steps.
By a slight abuse of language, we refer to inequality (51) as the max-convolution rule. The term
on the left-hand side of (51) would be a genuine max-convolution if we drop the factor 2d. Note
that (51) can be viewed as a strong form of super-additivity for the sequence {cregn }n≥1.

Theorem 4. For all n ≥ 2, we have

max
ℓ+d=n
ℓ, d≥1

{2dcregℓ + cregd } ≤ cregn . (51)

Proof. We give only a sketch of the proof, because writing down all the details would take several
pages. Let ℓ, d be positive integers. We must prove that

2dcregℓ + cregd ≤ cregℓ+d . (52)

The case d = 1 corresponds to (42) and the case ℓ = 1 corresponds to (44). So, we may suppose
that ℓ, d ≥ 2. Let r := cregℓ and s := cregd . We pick A ∈ Sreg

ℓ and W ∈ Sreg
d and form the matrix

M :=

[
A Q
P W

]
,

where P,Q are rectangular matrices whose entries are all positive. Note that M is a generalization
of (27). Recall that Sreg

ℓ and Sreg
d are open sets, cf. Proposition 3. So, by proceeding to a small

perturbation if necessary, we may assume that M is amenable. Since

Πreg(W + tId)] = Πreg(W ) + {t}

for all t ∈ R, any shift of W remains in Sreg
d . So, we may suppose that Πreg(A)∩Πreg(W ) = ∅ and

that the diagonal entries of W are negative and large in absolute value. By following similar steps
as in the proof of Proposition 7, we can show that Πreg(M) contains the following elements:

the s regular Pareto eigenvalues of W,

the r regular Pareto eigenvalues of A, say {λ1, . . . , λr},
for each L ∈ Jd, a new group {λL1 , . . . , λLr } of distinct reals.

(53)
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In order to get the element λL1 for instance, we start by writing Bu = λ1u, u ≻ 0, Fu ≻ 0, as in
the proof of Proposition 7, and then we solve an extended system of the form[

B Q1

P1 WL

] [
v
z

]
= λ

[
v
z

]
, (54)

v, z ≻ 0, (55)

Fv +Q2z ≻ 0, (56)

whereWL is the principal submatrix ofW induced by the index set L. The matrices P1, Q1, Q2 are
defined in an obvious way. The idea is that the matrix on the left-hand side of (54) is a principal
submatrix ofM . In particular, P1 is a submatrix of P and Q1, Q2 are submatrices of Q. By slightly
perturbing M if necessary, we may suppose that the elements listed in (53) are all distinct. Hence,
M is of order ℓ+ d and has at least s+ r+ (2d − 1)r = 2dcregℓ + cregd regular Pareto eigenvalues.

Corollary 3. For all positive integers ℓ, k, d, we have

cregkℓ ≥ 2kℓ − 1

2ℓ − 1
cregℓ , (57)

cregkℓ+d ≥ cregd +
2kℓ − 1

2ℓ − 1
2d cregℓ . (58)

Proof. The proof is based on the max-convolution inequality (52). For proving (57) we fix ℓ and
use mathematical induction on k. The details are omitted. Inequality (58) is obtained afterward
by combining (52) and (57).

4.1 Lower bounds for Pareto capacities

It is possible to construct a matrix of order n with more than 2n − 1 Pareto eigenvalues, but this
is rather tricky. The best lower bound for cn that is known insofar is

ϱn := (3/2)2n − 3.

The inequality ϱn ≤ cn was obtained in Seeger and Vicente-Pérez [17, Theorem2.2] by examining
the Pareto spectrum of a matrix 

s2 s3 s4 · · ·
−s3 s4 s5 · · ·
−s4 s5 s6 · · ·
...

...
...

. . .

 (59)

that depends on a positive parameter s. Under the assumption that s is transcendental and bigger
than 1 +

√
2 , these authors proved (by using five full pages !) that (59) has exactly ϱn Pareto

eigenvalues. Since the Pareto eigenvalues of (59) are all regular, ϱn serves also as lower bound for
cregn . The next proposition goes a step further and shows that a matrix of order n could have more
than ϱn regular Pareto eigenvalues.

Proposition 9. Suppose that there exists a matrix of order m with at least r regular Pareto
eigenvalues. Then (

r + 1

2m

)
2n − 1 ≤ cregn (60)

for all n ≥ m.
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Proof. The proof is by induction on n. Inequality (60) is obvious for n = m. We suppose that
(60) is true for a given n and examine the case n+ 1. By using the double -plus -one rule and the
induction hypothesis we get

cregn+1 ≥ 2 cregn + 1 ≥ 2

[(
r + 1

2m

)
2n − 1

]
+ 1 =

(
r + 1

2m

)
2n+1 − 1.

Hence, inequality (60) holds true also for n+ 1.

The statement of Proposition 9 amounts to saying that

2k (cregn + 1)− 1 ≤ cregn+k (61)

for all positive integers n and k. The double-plus-one rule (42) is recovered from (61) by taking
k = 1. Recall that in Section 3 we gave a particular example of matrix of order 5 with 57 Pareto
regular eigenvalues. The next corollary is obtained by applying Proposition 9 with (m, r) = (5, 57).

Corollary 4. For all n ≥ 5 we have

(29/16) 2n − 1 ≤ cregn . (62)

Note that (62) is consistent with (50). The factor 29/16 is bigger than the old factor 3/2
suggested by Seeger and Vicente-Pérez [17]. The improvement is not so considerable, but it is an
improvement after all, cf. Table 1. By using (62) we see for instance that a matrix of order 20 could
have more than 1.9 million regular Pareto eigenvalues ! Proposition 9 leaves open the possibility of
getting something even better than (62). A natural strategy would be to search for an admissible
pair (m, r) such that (r+1)/2m is as large as possible. That (m, r) is admissible means that there
exists a matrix of order m with at least r regular Pareto eigenvalues.

Corollary 5. Inequality (62) can be successively sharpened as follows:

(233/128) 2n − 1 ≤ cregn for all n ≥ 8, (63)

(117/64) 2n − 1 ≤ cregn for all n ≥ 9, (64)

(941/512) 2n − 1 ≤ cregn for all n ≥ 10. (65)

Proof. We have not found yet a matrix of order 6 with more than 115 regular Pareto eigenvalues. In
principle, the existence of such a matrix should not be discarded. Similarly, we have not found yet
a matrix of order 7 with more than 231 regular Pareto eigenvalues. However, we found matrices of
order 8, 9, and 10, with 465, 935, and 1881, regular Pareto eigenvalues, respectively. For instance,

712 780 256 −156 −191 1 1 1
548 638 190 −112 −143 1 1 1
456 548 192 −110 −119 1 1 1
292 374 14 98 −28 1 1 1
304 402 66 −38 −22 1 1 1
1 1 1 1 1 16 −2 8
1 1 1 1 1 6 8 1
1 1 1 1 1 4 −1 12


is a matrix of order 8 with 465 regular Pareto eigenvalues. By applying Proposition 9 to the
admissible pairs (8, 465), (9, 935), and (10, 1881), we get (63), (64), and (65), respectively.
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Ref. [17] Corollary 4 Corollary 5 Corollary 5 Corollary 5
n (3/2) 2n − 3 (29/16) 2n − 1 (233/128) 2n − 1 (117/64) 2n − 1 (941/512) 2n − 1
5 45 57 − − −
6 93 115 − − −
7 189 231 − − −
8 381 463 465 − −
9 765 927 931 935 −
10 1533 1855 1863 1871 1881
11 3069 3711 3727 3743 3763
12 6141 7423 7455 7487 7527
20 1572861 1900543 1908735 1916927 1927167

Table 1: Lower bounds for cregn . Best results are in bold.

Further sharpenings are still possible but this requires finding admissible pairs that perform
better than (10, 1881). This can be done with the help of costly numerical experimentation or by
exploiting the max-convolution rule. The cost of numerical experimentation is prohibitive if n is
not of moderate size, so we explain next how to take advantage of the max-convolution rule.

Example 3. By way of example, suppose that we need a lower bound for creg22 . By using (65) we get
creg22 ≥ 7708671. It is possible to get a sharper lower bound by using iteratively the max-convolution
inequality (52). For instance, starting from creg5 ≥ 57, we get successively

creg10 ≥ 25creg5 + creg5 ≥ 1881

creg20 ≥ 210creg10 + creg10 ≥ 1928025

creg22 ≥ 22 creg20 + creg2 ≥ 7712103.

Since 22 = 4× 5 + 2, the lower bound creg22 ≥ 7712103 can be obtained also by applying inequality
(58) with (k, ℓ, d) = (4, 5, 2).

Table 2 and Table 3 display the lower bounds for cregℓ+d obtained with the help of the max-
convolution inequality (52) and the best known lower bounds for cregℓ and cregd . We rely on the
following available information: creg1 = 1, creg2 = 3, creg3 = 9, creg4 ≥ 23, creg5 ≥ 57.

ℓ d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d=8 d=9
4 47 95 193 391 793 1587 3175 6353 12711
5 115 231 465 935 1881 3763 7527 15057 30119
6 231 463 929 1863 3737 7475 14951 29905 59815
7 463 927 1857 3719 7449 14899 29799 59601 119207
8 931 1863 3729 7463 14937 29875 59751 119505 239015
9 1871 3743 7489 14983 29977 59955 119911 239825 479655
10 3763 7527 15057 30119 60249 120499 240999 482001 964007
11 7527 15055 30113 60231 120473 240947 481895 963793 1927591
12 15055 30111 60225 120455 240921 481843 963687 1927377 3854759

Table 2: Lower bounds for cregℓ+d obtained by using (52). Best results are in bold.

In Table 2, the best lower bounds are indicated in bold. As we can see, the best result are
obtained with ℓ = 5 and ℓ = 10. This explains why in Table 3 we are taking ℓ as a multiple of 5.
Note that the factor

61696857 + 1

225
=

30848429

16777216
= 1.838709652 (66)
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ℓ d = 1 d = 2 d = 3 d = 4 d = 5
15 120499 240999 482001 964007 1928025
20 3856051 7712103 15424209 30848423 61696857

Table 3: Continuation of Table 2.

is bigger than the factor
1881 + 1

210
=

941

512
= 1.837890625

used in Corollary 5, but the improvement is marginal. We mention in passing that (66) is almost
equal to 57/31 = 1.838709677, a term that seems to be somewhat special. Indeed, by writing (57)
with ℓ = 5, we readily get

lim
n→∞

cregn

2n
= lim

k→∞

creg5k

25k
≥ lim

k→∞

(
1

25k
25k − 1

25 − 1
creg5

)
=

creg5

25 − 1
≥ 57

31
.

In fact, from Corollary 2 and the above discussion we see that

lim
n→∞

cregn

2n
= sup

ℓ≥1

cregℓ

2ℓ − 1
. (67)

In conclusion, we have derived three alternative characterizations for the limit of the quotient
cregn /2n as n goes to infinity, namely, (46), (48), and (67). We have not been able insofar to take
advantage of these characterizations for obtaining the precise numerical value of this limit. This
being said, the path has been paved to young researchers who would like to contribute to this area.
There are many open questions that deserve attention, among which we would like to mention the
following items:

• As said already, the equality cregn = cn holds at least for n ∈ {1, 2, 3}. It remains unclear
whether cregn and cn could be different for some n ≥ 4. Thanks to Corollary 1, the equality
cregn = cn is true for a given n if and only if Sn contains a spectrally regular matrix. This
observation may shed some light on the present question.

• If cregn and cn were not equal in general, then it would be useful to know whether these terms
have at least the same asymptotic behavior. A somewhat related question is that of knowing
whether the Pareto capacity cn obeys to the double-plus-one rule.

• The starting point of this work was the study of the term cn. Equally interesting is the
analysis of the Pareto capacity of some special subsets of Mn. For instance, if Gn is the set
of connected undirected graphs of order n and An := {AG : G ∈ Gn} is the set of associated
adjacency matrices, then

an := max
A∈An

card[Π(A)] = max
G∈Cn

card[Π(AG)]

is a number that plays a certain role in graph theory. It has been shown in Fernandes et
al. [8] that an grows faster than any polynomial in n, that is to say, limn→∞ an/n

p = ∞ for
all positive integer p. There are good reasons to believe that an grows at exponential rate in
n, but this is something that remains conjectural, cf. Seeger and Sossa [15, Conjecture 1].

In this paper and in our previous work [4] we have accomplished a number of advances concerning
the analysis of Pareto capacities, but the debate is far from being closed.
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