
HAL Id: hal-02418356
https://hal.science/hal-02418356

Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Solving the Latin Square Completion Problem by
Memetic Graph Coloring

Yan Jin, Jin-Kao Hao

To cite this version:
Yan Jin, Jin-Kao Hao. Solving the Latin Square Completion Problem by Memetic Graph
Coloring. IEEE Transactions on Evolutionary Computation, 2019, 23 (6), pp.1015-1028.
�10.1109/TEVC.2019.2899053�. �hal-02418356�

https://hal.science/hal-02418356
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Solving the Latin Square Completion Problem

by Memetic Graph Coloring
Yan Jin and Jin-Kao Hao

Abstract—The Latin square completion (LSC) problem
involves completing a partially filled Latin square of order n

by assigning numbers from 1 to n to the empty grids such that
each number occurs exactly once in each row and each column.
LSC has numerous applications and is, however, NP-complete. In
this paper, we investigate an approach for solving LSC by con-
verting an LSC instance to a domain-constrained Latin square
graph and then solving the associated list coloring problem. To
be effective, we first employ a constraint propagation-based ker-
nelization technique to reduce the graph model and then call for
a dedicated memetic algorithm to find a legal list coloring. The
population-based memetic algorithm combines a problem-specific
crossover operator to generate meaningful offspring solutions, an
iterated tabu search procedure to improve the offspring solutions,
and a distance-quality-based pool updating strategy to main-
tain a healthy diversity of the population. Extensive experiments
on more than 1800 LSC benchmark instances in the literature
show that the proposed approach can successfully solve all the
instances, surpassing the state-of-the-art methods. To our knowl-
edge, this is the first approach achieving such a performance for
the considered problem. We also report computational results for
the related partial Latin square extension problem.

Index Terms—Graph coloring, Latin square completion (LSC),
list coloring, memetic search, tabu search (TS).

I. INTRODUCTION

A
LATIN square L of order n is composed of n × n grids

(or cells) such that each grid is filled with a number in

{1, . . . , n} (n ∈ N+) and each number occurs in each row

and each column exactly once. If some grids of L remain

unfilled (or empty), L is a partial Latin square. The Latin

square completion (LSC) problem of order n involves com-

pleting the empty grids of a partial Latin square with numbers

in {1, . . . , n} to obtain a legal Latin square.

LSC was first studied by Hall [19] and Ryser [37], and was

known to be NP-complete in the general case [1], [8], [11].

LSC can be considered as a special case of the partial Latin

Y. Jin is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: yanjin.china@hotmail.com).

J.-K. Hao is with the Department of Computer Science, LERIA, University
of Angers, 49045 Angers, France, and also with the Institut Universitaire de
France, 75231 Paris, France (e-mail: jin-hao.hao@univ-angers.fr).

square extension (PLSE) problem, which is to assign numbers

in {1, . . . , n} to as many empty grids as possible under the

condition that each number has to occur at most once in each

row and each column. Both LSC and PLSE arise naturally in

a variety of practical applications, such as scheduling, opti-

cal routing, error correcting codes as well as combinatorial

design [3], [9], [16], [26], [29].

Given their theoretical and practical importance, a number

of studies on LSC and PLSE have been reported in the liter-

ature. For instance, in 1999, Kumar et al. [26] proposed two

approximation algorithms for PLSE with nontrivial worst-case

performance guarantees. In 2002, Gomes and Shmoys [17]

studied three complete solution methods for solving LSC:

1) a constraint satisfaction-based approach (CSP); 2) a hybrid

0/1 linear programming/CSP-based strategy (LP/CSP); and

3) a Boolean satisfiability-based approach (SAT). In 2004,

Ansótegui et al. [2] focused on a systematic comparison of

SAT and CSP models for the Latin square (quasigroup) com-

pletion problem. In 2004, Gomes et al. [18] presented a natural

randomized rounding algorithm based on a packing linear pro-

gramming relaxation, which yields an e/(e−1)-approximation

algorithm. These algorithms are able to solve small LSC

instances within a reasonable time, but fail to solve most of

the large and hard instances. Recently in 2016, Haraguchi [21]

introduced several powerful iterated local search algorithms

with multiple neighborhoods to solve PLSE as well as LSC.

Assessed on a large set of 1800 instances of various sizes and

characteristics, these local search algorithms showed state-of-

the-art performances. In particular, the Trellis-neighborhood

search algorithm (Tr-ILS∗) proves to outperform other tested

ILS variants and two general optimization solvers (IBM-ILOG

CPLEX and LocalSolver). The instances and the associated

results presented in [21] will be used as the main references

for our computational studies.

Despite much research effort dedicated to LSC and the

resulting advances, there are still very few methods that

are able to solve the problem effectively. For instance, no

existing algorithm can find a solution for some traditional

instances tested in [17] and many new instances introduced

by Haraguchi [21]. It is thus quite useful and challenging to

devise a method able to solve large and difficult instances.

In this paper, we investigate for the first time a solution

method for solving LSC by converting the problem to a par-

ticular graph coloring problem (i.e., precoloring extension [5],

then list coloring [12], [28]). With reference to the partic-

ular features of the resulting coloring model, we propose a

memetic coloring algorithm (MMCOL) to solve it. Note that

1

as a heuristic, if MMCOL finds a legal coloring for a given

LSC instance, then the problem is solved. Otherwise, it says

nothing about whether the LSC instance is solvable or not.

We summarize the contributions of this paper as follows.

First, from a perspective of solution method, the proposed

approach considers the LSC problem as a particular graph

coloring problem. In this approach, we start by converting

an LSC instance to a domain-constrained Latin square graph

(Section II-A). Then, we reduce the graph model by apply-

ing a constraint propagation-based kernelization technique

(Section II-B), leading to an instance of the list coloring

problem. Finally, we seek a legal list coloring of the graph

by running a dedicated memetic algorithm (Section III). The

kernelization technique recursively uses constraint propaga-

tion to remove the vertices with a fixed color (corresponding

to filled grids). The memetic algorithm adapts ideas from

graph coloring algorithms to effectively solve the underlying

list coloring problem. In particular, the algorithm integrates

a problem-specific crossover to generate promising offspring

solutions, an effective iterated tabu search (ITS) procedure to

improve each offspring solution, and a distance-and-quality-

based pool updating strategy to ensure a healthy diversity of

the population.

Second, from a perspective of computational performance,

we provide experimental results on a large number of LSC

benchmark instances available in the literature (over 1800 in

total, including 19 traditional benchmark instances from [17]

and 1800 new instances from [21]) and show comparisons

with various state-of-the-art approaches, including four recent

iterated local search algorithms, general ILP and exact CP

solvers, and a general heuristic solver. While the reference

approaches can only solve a subset of the tested instances,

our approach is able to solve all the instances consistently.

Such a performance has never been reported in the literature,

demonstrating the high effectiveness of considering LSC as

a graph coloring problem and using the proposed population-

based memetic algorithm to color Latin square graphs. We also

adapt the method to the general PLSE problem and report

computational results on additional 1800 PLSE benchmark

instances from [21].

Third, and more generally, the proposed method can be

used to solve the list coloring and precoloring extension prob-

lems, which are relevant graph models both in theory and in

practice [28]. Indeed, for these two important coloring prob-

lems, although the literature offers many theoretical studies on

specific graphs, we are not aware of any dedicated and effec-

tive algorithm able to handle large graphs. This paper thus

fills in this gap. Moreover, since precoloring extension and

list coloring are useful models to formulate various applica-

tions, our method can be applied in these practical settings

as well.

The rest of this paper is organized as follows. Section II

describes the converted graph coloring model. Section III

presents the proposed MMCOL algorithm. Section IV reports

computational results obtained with the proposed method

and provides comparisons with state-of-the-art algorithms.

Section V shows an analysis of two key components of the

method, followed by concluding comments in the last section.

The Appendix reports computational results of the proposed

method on the related PLSE problem.

II. LATIN SQUARE COMPLETION AND GRAPH COLORING

A. Partial Latin Square and Latin Square Graph

Let P be a partial Latin square with n × n grids, an asso-

ciated graph G = (V, E), called Latin square graph, can be

conveniently defined with the vertex set V = {{1, . . . , n} ×

{1, . . . , n}} (|V| = n2) representing the grids and edge set E

(|E| = n2(n − 1)) where {u, v} ∈ E if and only if u and v rep-

resent two grids of the same row or column [6]. Then the LSC

problem is equivalent to find a legal n-coloring of the associ-

ated Latin square graph G by using the colors {1, . . . , n} as

follows. Let D(v) denote the color domain of vertex v of the

graph. Obviously, if v corresponds to a grid already filled with

number k (k ∈ {1, . . . , n}), D(v) is a singleton domain {k}; oth-

erwise, D(v) is initially set to {1, . . . , n}. The above coloring

problem is the so-called precoloring extension problem [5],

where some vertices have a fixed color and the remaining

vertices are to be assigned a color in {1, . . . , n}.

Note that a legal n-coloring of G can also be defined as

a partition of V into n color classes V1, . . . , Vn such that

∀u, v ∈ Vi (i = 1, . . . , n), {u, v} /∈ E holds. Basically, in order

to legally complete a partial Latin square, each color class

must contain exactly n vertices when all the grids are filled.

Let |Vi| be the cardinality of color class Vi (i = 1, . . . , n), we

use |Ri| = n − |Vi| to denote the residual capacity of color

class Vi.

Fig. 1 shows a partial Latin square of order 3, with two

filled grids and seven empty grids [Fig. 1(a)] and the corre-

sponding domain-constrained graph G with nine vertices and

18 edges [Fig. 1(b)]. Let Lxy represent the grid with xth row

and yth column, then the connection between Lxy and its cor-

responding vertex vi is given by i = (x − 1) × n + y. The

objective is to find a legal three-coloring of the associated

G by using the colors {1, 2, 3}. The vertices with the blue

and red colors (indicated by colors 1 and 2, respectively) rep-

resent the filled grids in Fig. 1(a) while the black vertices

represent the empty grids. In this example, D(v3) = {1} and

D(v6) = {2} while the color domain of each uncolored vertex

is D(vi) = {1, 2, 3} (i = 1, 2, 4, 5, 7, 8, 9). The residual capac-

ities of V1–V3 are 2, 2, and 3, respectively (|R1| = 2, |R2| = 2,

and |R3| = 3). Now, completing the partial Latin square is

equivalent to finding a legal coloring of the graph by assigning

a color in {1, 2, 3} to each uncolored vertex of G.

One notices that unlike the general graph coloring problem,

the precoloring extension problem associated to a Latin square

graph has a specific feature. That is, if a vertex v of the

graph represents a grid already filled with k ∈ {1, . . . , n},

v has a singleton color domain D(v) = {k} and thus receives

definitively the unique color k. Moreover, this color is forbid-

den for any vertex u adjacent to v and should be excluded

from the color domain D(u). From a perspective of graph

coloring, we can beneficially use this property to perform

a preprocessing of the graph to obtain a reduced graph and

then color the reduced graph instead of the initial Latin square

graph.

2

(a) (b)

Fig. 1. Illustrative example of converting a (a) partial Latin square to a (b) domain-constrained Latin square graph.

Algorithm 1 Preprocessing Procedure for Graph Reduction

Require: A Latin square graph G = (V, E) with some vertices

already colored, each vertex v’s color domain D(v) (v ∈ V)

Ensure: A reduced graph

1: while ∃ a vertex v ∈ V with singleton color domain

D(v) = {k} do

2: Pick such a vertex v ∈ V with D(v) = {k} // v is colored

by k

3: V ← V \ {v} // Remove this colored vertex v from the

graph

4: E ← E \ {{u, v} ∈ E} // Remove the edges linked to v

5: for each uncolored u ∈ V adjacent to v do

6: D(u) ← D(u) \ {k} // Remove color k from the color

domain D(u)

7: end for

8: end while

9: return G = (V, E)

B. Preprocessing to Simplify the Latin Square Graph

The preprocessing procedure (Algorithm 1) aims to reduce

the given Latin square graph by using the colored vertices

(i.e., those with a singleton color domain). For this purpose,

we apply a kernelization technique based on constraint propa-

gation [36] as follows. We first remove the precolored vertices

(corresponding to the filled grids) as well as the edges con-

nected to a colored vertex. Moreover, considering the coloring

constraint stating that two adjacent vertices cannot receive the

same color, once a vertex v receives color k, k is forbidden

for any adjacent vertex u and can be safely removed from its

color domain D(u). If the color domain of a vertex u becomes

a singleton, vertex u definitively receives the unique color.

Since vertex u is now a colored vertex, it can be used to fur-

ther reduce the graph. This process is repeated until no color

domain can be reduced. Notice that if the color domain of a

vertex is reduced to the empty set during the preprocessing

procedure, then the given LSC instance has no solution, i.e.,

it cannot be fully completed.

Consider again the example of Fig. 1. After applying the

preprocessing to the Latin square graph in Fig. 2(a), we obtain

the reduced graph shown in Fig. 2(b). In this particular case,

since v9 is connected to the two colored vertices v3 and v6,

the colors 1 and 2 are removed from the color domain of

v9, causing D(v9) to become a singleton {3}. As a result,

v9 receives the unique color 3. The color domains of other

vertices adjacent to v3, v6, or v9 are also reduced, leading to

the graph of Fig. 2(b) with D(v1) = D(v2) = {2, 3}, D(v4) =

D(v5) = {1, 3}, and D(v7) = D(v8) = {1, 2}.

In terms of graph coloring, a reduced Latin square graph

like Fig. 2(b) is a domain-constrained graph because the per-

missible colors of a vertex are limited to a list of colors

in {1, . . . , n} [instead of the whole set {1, . . . , n}]. In fact,

the underlying coloring problem is the so-called list color-

ing problem [12], [28], which, like the classic vertex coloring

problem, is NP-complete in the general case. Our literature

review on list coloring indicates that no practical algorithm is

currently able to color large graphs. Meanwhile, it is known

that the list coloring problem can be transformed to the ver-

tex coloring problem [28]. However, this transformation needs

to create an auxiliary graph which is larger than the input

graph by adding k ≥ n vertices and
(

k
2

)

edges. Note that

in the case of LSC, the Latin square graphs include already

2500–4900 vertices for n = 50, 60, 70 for the main benchmark

instances tested in this paper. To our knowledge, few vertex

coloring algorithms are able to effectively color graphs of these

sizes given that the benchmark graphs from the well-known

DIMACS Challenge (https://mat.gsia.cmu.edu/COLOR) are

limited to 1000 vertices. For these reasons, we introduce below

a dedicated algorithm specifically designed to solve the list

coloring problem of Latin square graphs.

III. MEMETIC ALGORITHM FOR COLORING

LATIN SQUARE GRAPHS

We describe in this section the population-based memetic

algorithm for coloring domain-constrained Latin square

graphs, i.e., solving the associated list coloring problem where

each vertex v can only take a color from its given color

domain D(v).

A. General Procedure

The proposed algorithm (called MMCOL, shown in

Algorithm 2) follows the general memetic framework which

3

(a) (b)

Fig. 2. Latin square graph of Fig. 1(b) and the residual Latin square graph obtained by the preprocessing procedure.

Algorithm 2 Graph Coloring Algorithm for LSC (MMCOL)

Require: A reduced Latin square graph G = (V, E), the num-

ber of colors n, population size p, color domain D(v) of

each vertex v ∈ V

Ensure: The best n-coloring c∗ and f ∗ found so far

1: Population_Initialization(P,p); // Generate p initial solu-

tions of G, Sect. III-C

2: c∗ ← c; // c∗ records the best coloring found so far

3: f ∗ ← f (c∗); // f ∗records the smallest number of conflict-

ing edges

4: repeat

5: (P1, P2) ← Selection(P) // Select two parents at random

for crossover

6: o ← MAGX(P1, P2) // Crossover to get an offspring

coloring, Sect. III-D

7: o ← ITS(o) // Improve o with an iterated local search

procedure based on Tabucol and a relaxation-based

perturbation, Sect. III-E

8: if f (o) < f ∗ then

9: c∗ ← o; f ∗ ← f (o);

10: end if

11: Population_Updating(P, o) // Use the improved off-

spring o to update the population, Sect. III-F

12: until a stopping condition is met

13: return f ∗, c∗

combines population-based evolutionary search and local

optimization [7], [13], [31], [32]. One notices that memetic

approaches have proved to be highly successful to solve graph

coloring and partition problems [4], [14], [24], [27], [30], [33].

The algorithm takes a reduced Latin square graph G as

its input and tries to find a legal list coloring in the search

space defined in Section III-B. For this purpose, the algo-

rithm starts with an initial population [line 1 (Section III-C)

in Algorithm 2]. Then, to find a legal n-coloring, MMCOL

repeats a number of generations to improve the population

until a stopping condition (limited to maxGenerations) is

met. At each generation, MMCOL randomly selects two par-

ent colorings from the population [line 5 (Section III-C)

in Algorithm 2] and recombines them to generate an off-

spring coloring by a dedicated crossover operator [line 6

(Section III-D) in Algorithm 2]. This offspring coloring is

then improved by an ITS procedure [line 7 (Section III-E)

in Algorithm 2]. Finally, the improved offspring is used to

update the population according to an updating strategy based

on a distance-quality criterion [line 11 (Section III-F) in

Algorithm 2]. During the memetic search process, if a legal

coloring is found, MMCOL stops and returns the legal coloring

found.

B. Search Space and Evaluation Function

Let G = (V, E) be a Latin square graph with L ver-

tices {v1, . . . , vL} and color domains D(vi) ⊆ {1, . . . , n}

(i = 1, . . . , L). Our MMCOL algorithm explores the following

space C of candidate list colorings:

C = {c : V → {1, . . . , n} : c(vi) ∈ D(vi), i = 1, . . . , L}.

Given a candidate coloring c in C, if c(u) = c(v) and {u, v} ∈

E (i.e., two adjacent vertices u and v receive the same color),

then {u, v} is a conflicting edge in c while u and v are called

conflicting vertices. To assess the quality of the coloring c, we

use the evaluation or fitness function f given in Equation (1),

which counts the number of conflicting edges in c

f (c) =
∑

{i,j}∈E

max
{

0, 1 − |c(vi) − c
(

vj

)

|
}

. (1)

Consequently, if f (c) = 0, c is conflict-free and identifies

a legal list coloring. Otherwise (f (c) > 0), c is an illegal

coloring with conflicting edges. For two candidate solutions

c1 and c2, c1 is considered to be better than c2 if f (c1) < f (c2)

(c1 contains fewer conflicting edges).

Given the above evaluation function, the objective of our

memetic algorithm is to find a legal (conflict-free) list coloring

in the search space C by minimizing f .

C. Population Initialization

The MMCOL algorithm applies a randomized coloring

strategy to create the initial population P that is composed

of p colorings sampled in C (p is the population size and

4

set to 20 in this paper). Let G = (V, E) be the given graph

with V = {v1, . . . , vL} and D(vi) ⊆ {1, . . . , n} (i = 1, . . . , L).

To build an initial coloring of G, we iteratively select an

uncolored vertex v at random and then assign it a random

color k from its color domain D(v). Such an initial solu-

tion can be obtained very quickly in O(L), but may involve

a high number of conflicting edges. To obtain an initial col-

oring of reasonable quality, we improve this solution by the

local optimization procedure (see Section III-E) and then

insert the improved solution into the population if the solu-

tion does not exist in P. Otherwise, the solution is discarded

and a new solution is generated. This initialization process

is repeated until the population is filled up with p different

colorings.

D. Crossover Operator

Recombination is an important component of our MMCOL

algorithm that aims to transmit meaningful features from par-

ents to offspring solutions [20]. For the conventional graph

coloring problem, the greedy partition crossover (GPX) [14]

is known to be highly effective. However, given that list col-

oring graphs have restricted color domains (instead of the set

{1, . . . , n}), GPX cannot be applied directly in the context of

the list coloring problem. On the other hand, the key idea of

GPX, i.e., inheriting large color classes, is of interest even in

the case of list coloring. As a result, we propose an adap-

tation of GPX by taking into account the constrained color

domains of our graphs. This leads to our maximum approxi-

mate group-based crossover (MAGX) for Latin square graph

coloring.

The proposed MAGX crossover operator generates one

offspring solution from two randomly selected parent solu-

tions (see Algorithm 3). Let P1 = {V1
1 , . . . , V1

n } and P2 =

{V2
1 , . . . , V2

n } be the parent solutions, MAGX generates, in

three phases, the offspring solution o = {Vo
1 , . . . , Vo

n }, where

each Vo
i (i = 1, . . . , n) is initially set to empty.

First, MAGX builds a number of color classes of o by inher-

iting color classes from the parent solutions. To build a new

color class, MAGX selects, among the color classes of both P1

and P2, one largest class (call it Vb
i) such that its cardinality

does not exceed the residual capacity Ri of the corresponding

color class (line 3 in Algorithm 3). MAGX then uses Vb
i to

form the new color class Vo
i and removes the vertices of Vb

i

from both parent solutions (lines 4–6 in Algorithm 3). One

notices that the color class whose cardinality is larger than

its residual capacity must contain conflicting vertices. So, a

color class whose cardinality is equal to (or slightly smaller

than) the residual capacity is preferred in order to obtain a

offspring class without conflicts. Moreover, unlike the general

coloring problem where the colors are interchangeable during

the recombination operation (like GPX of [14] does), for our

list coloring problem of Latin square graphs, each color class

of the offspring must inherit the color of the selected parent

due to the constrained color domains of the vertices.

Second, for each color j such that Vo
j = ∅ in o, if V1

j and

V2
j share common vertices, these vertices are used to form the

color class Vo
j of the offspring.

Algorithm 3 Pseudo-Code of the MAGX Crossover Operator

Require: Parent solutions P1 = {V1
1 , . . . , V1

n }, P2 =

{V2
1 , . . . , V2

n }, and color domain D(v) of each vertex v ∈ V

Ensure: An offspring solution o = {Vo
1 , . . . , Vo

n }

1: g ← 0 // Count the number of color classes already built

in o

2: while g < n do

3: Identify from parents (P1 and P2) the largest color class

Vb
i (b = 1 or 2) satisfying |Vb

i | ≤ |Ri| and color class

Vo
i is empty

4: Vo
i ←Vb

i // Color class Vb
i is transmitted to the offspring

5: Remove the vertices of Vb
i from P1 and P2

6: g ← g + 1

7: end while

8: for each empty color class Vo
i in o do

9: Vo
i ← V1

i

⋂

V2
i // For the residual vertices, transmit the

vertices that share the same color in both parents

10: end for

11: for each uncolored v ∈ V in o do

12: v is randomly assigned a color from its color domain

D(v)

13: end for

14: return o

Third, for each vertex v missing in o, v is assigned a random

color class in its color domain D(v).

At this stage, a complete offspring solution o is obtained. In

case that the offspring is the same as one of the parent solu-

tions (this rarely happens), MAGX applies a slightly different

strategy for the first phase such that the largest color class

is selected by considering alternatively P1 and P2 (instead of

considering simultaneously P1 and P2). Since the three phases

have a time complexity of O(n2), O(n), and O(n2), respec-

tively, the time complexity of the MAGX crossover is bounded

by O(n2).

Fig. 3 shows an illustration example of the MAGX

crossover. This example involves a Latin square graph of order

3 (n = 3) with nine vertices a, b, c, d, e, f , g, h, and i to be

assigned to three color classes V1–V3. Suppose that the color

domains D(a) = D(c) = D(g) = {1, 3}, D(h) = {1, 2}, and

D(x) = {1, 2, 3} for x ∈ {b, d, e, f , i}. At the beginning, no

color class exists in o, so |Ri| = 3 (i = 1, 2, 3). In the

first step, V2 = {d, e, f } of P1 is identified as the largest

color class whose |V2| ≤ |R2| and V2 of the offspring o is

empty. Thus, this color class {d, e, f } becomes the color class

V2 of the offspring and the vertices d, e, and f are removed

from both P1 and P2. Notice that due to the fact that ver-

tices may have different color domains, the vertices of the

inherited color class {d, e, f } of o receives the same color

as the donor parent (here color 2). Similarly, V3 = {b, c, i}

and V1 = {a, g} of P2 are inherited as color classes V3 and

V1 of o. After these operations, vertex h is still missing in

o. Since this vertex belongs to different classes in P1 and

P2, h is assigned a random color class from its color domain

D(h) = {1, 2}.

5

Fig. 3. Illustration of the first phase of the MAGX crossover operator (lines 2–7 in Algorithm 3).

E. Iterated Tabu Search Procedure

The ITS procedure (Algorithm 4) takes an offspring solu-

tion c generated by the MAGX crossover operator as its input

and tries to improve its quality in terms of fitness func-

tion f (Equation (1), Section III-B). For this purpose, ITS

iterates between a tabu search (TS) procedure followed by a

relaxation-based perturbation procedure to try to attain a legal

coloring by resolving the conflicts (lines 3–13 in Algorithm 4).

TS iteratively improves c by recoloring conflicting vertices

(see Section III-B). At the end of each TS run, if the conflicts

are resolved, then a legal list coloring c∗ is found, and the

whole search terminates immediately. If conflicts remain in

the solution, ITS triggers a perturbation procedure to modify

the solution and then uses the modified solution as its start-

ing solution for the next TS run (line 9 in Algorithm 4). ITS

repeats the above process until a prefixed maximum number of

iterations maxLSIters is reached or a legal coloring is obtained.

1) Tabu Search-Based Coloring Procedure: As its key

optimization procedure, ITS uses the TS method [15] to

improve a given illegal list coloring. Specifically, the TS pro-

cedure used in this paper is based on the implementations

presented in [10] and [14] of the popular TabuCol algorithm

for the conventional graph coloring problem [22]. Suppose that

the solution c is composed of L vertices {v1, v2, . . . , vL} and

each vertex vi receives a permissible color in its constrained

color domain D(vi) (i ∈ {1, 2, . . . , L}). The TS procedure

6

Algorithm 4 Pseudo-Code of ITS

Require: A n-coloring c, depth of tabu search α, color domain

D(v) of each vertex v ∈ V

Ensure: A legal coloring c∗

1: c∗ ← c; // c∗ records the best solution found so far

2: f ∗ ← f (c∗); // f ∗ records the smallest number of

conflicting edges

3: repeat

4: (c, f) ← TS(c, α); // Apply the tabu search procedure

with search depth α to improve the input coloring c,

see Sect. III-E1

5: if f < f ∗ then

6: c∗ ← c; f ∗ ← f (c);

7: end if

// c is not legal coloring, trigger perturbation

8: if f > 0 then

9: (c, f) ← Perturbation_Procedure(c); // Apply the

perturbation procedure to locate at a promising

region, see Sect. III-E2

10: else

11: return the legal coloring c∗;

12: end if

13: until maxLSIters is reached

explores the space C composed of all possible colorings (see

Section III-B) to seek a legal list coloring.

To improve the solution, TS iteratively makes transitions

from the current solution c to one neighboring solution. To

obtain a neighboring solution c′ from solution c, TS displaces

a conflicting vertex v from its current color class Vi to another

eligible color class Vj such that j ∈ D(v) [i.e., the current color

i of vertex v is changed to a new permissible color j in v’s

color domain D(v)]. Thus, c and c′ differ only by the color of

a conflicting vertex v. Since the color domains are bounded

by n, the size of this neighborhood is bounded by O(nc × n),

where nc is the number of conflicting vertices in coloring c.

At each iteration, TS selects among the eligible neighboring

solutions the best neighbor c′
b according to the evaluation func-

tion f (Equation (1), Section III-B) and uses c′
b to replace c. A

neighboring solution is eligible if it is not forbidden by the tabu

list (see the explanation below) or if it is better than the best

recorded solution. Suppose that the selected neighboring solu-

tion is obtained by changing the color i of conflicting vertex v,

(v, i) is recorded in the tabu list, indicating that vertex v is for-

bidden to receive the color i again for the next β consecutive

iterations (β is called the tabu tenure). Following [10] and [14],

β is dynamically tuned by β = 0.6∗ f (c)+random (10), where

random (10) is a random number in {1, . . . , 10}. The TS pro-

cedure stops when its iteration counter reaches the given limit

α (α is called the TS depth). The best solution c and the num-

ber of conflicting edges in c recorded during the search are

returned as its output when the procedure terminates.

2) Relaxation-Based Perturbation: It is possible that no

legal list coloring is found at the end of a TS run (see line 8

in Algorithm 4). In this case, the search is considered to be

trapped in a local optimum and we trigger a relaxation-based

perturbation procedure to escape from the trap.

Fig. 4. Relaxation-based perturbation.

The overall procedure of the relaxation-based perturbation is

illustrated in Fig. 4. Let X ⊂ V be the set of conflicting vertices

(i.e., each vertex of X is involved in at least one conflicting

edge in c). The perturbation procedure is performed in three

steps.

1) Extract a subgraph G′ by randomly removing ⌈|X|/2⌉

conflicting vertices along with the incident edges.

2) Improve the coloring on G′ using TS.

3) Construct a new coloring on G by getting it back to G.

The perturbation procedure is based on the consideration

that the conflicting vertices of the local optimum are critical

vertices for obtaining a legal list coloring. Meanwhile, these

are also difficult vertices for conflict resolution. By ignoring

some of these difficult vertices, TS has a higher chance to

resolve the conflicts of the relaxed subproblem, thus provid-

ing new search opportunity when the improved solution of

the relaxed subproblem is added back to the ignored partial

solution. Notice that, in case that the improved c∗
p is not a

legal coloring after the second step of the perturbation pro-

cedure, c∗
p is still a high quality partial coloring which could

be close to a complete solution. Using c∗
p as its starting point

to be extended, TS will explore a new search trajectory and

hopefully encounters a legal coloring.

F. Population Updating

In order to avoid premature convergence of our MMCOL

algorithm, we apply a population updating strategy similar to

those used in [24], [27], [33], and [38]. The adopted strategy

simultaneously considers solution quality and diversity when

using an offspring solution to update the population.

Given two list colorings ci and cj, we use the so-called

set-theoretic partition or transfer distance Di,j [34], [35] to

measure the dissimilarity of ci and cj, which is defined as

the minimum number of vertices that need to be moved

between color classes of ci to transform ci to cj. The diver-

sity between one solution and the entire population P is given

by Di,P = minj �=i{Dij}. Furthermore, we define the goodness

score of one n-colorings ci of P in terms of both solution qual-

ity and diversity by s(ci) = f (ci) + e0.08n2/Di,P ,∀ci ∈ P where

f (ci) is the number of conflicting edges of ci [27]. A small

(large) s(ci) value indicates a good (bad) solution with respect

to the individuals of P. Given offspring o, the population P is

updated with o according to the following procedure.

Step 1: Insert the offspring solution o into P and compute

the score s(ci) of each individual ci of P.

Step 2: Identify the worst individual cw (i.e., with the

largest value of the scoring function s) and second

7

worst individual csw (with the second largest

s value).

Step 3: If cw is different from o, remove cw from P.

Step 4: If cw is o, remove cw with probability 0.8 and

remove csw with probability 0.2.

This updating strategy ensures that the individuals of the

population are not only of high quality, but also sufficiently

distanced. This property provides a basis for the random

strategy used in our algorithm to select the parents for the

crossover.

IV. EXPERIMENTAL RESULTS

In this section, we assess the proposed approach by report-

ing computational results on the LSC problem and showing

comparisons with state-of-the-art methods. We show in the

Appendix additional results on the related PLSE problem.

A. Benchmark Instances and Experimental Protocol

To evaluate the performance of the proposed approach for

solving LSC, we carry out extensive experiments on the set of

1800 random LSC benchmark instances recently introduced

in [21].1 These LSC benchmark instances (named as LSC-

n-r) are evenly divided into 18 types (n ∈ {50, 60, 70} and

r ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}), where n is the order of the

partial Latin square and r (r ∈ [0, 1]) denotes the ratio of filled

grids over the n×n grids. So each type (n, r) has 100 instances.

These instances were generated by randomly removing (1 −

r)n2 grids from an arbitrary legal Latin square. As a result,

these LSC instances always admit a complete Latin square.

By converting these instances to Latin square graphs (see

Section II-A), we obtain graphs with 2500–4900 vertices

and 122 500–338 100 edges.2 To solve each instance, we first

apply the preprocessing procedure of Section II-B to obtain a

reduced list coloring graph which is then colored with the

MMCOL algorithm. The preprocessing step takes typically

from several seconds to dozens of seconds.

In addition to these 1800 random instances, we also

assess our approach on the set of 19 traditional benchmark

instances from the COLOR03 competition3 that were tested,

for instance, [17] and [21].

MMCOL was coded in C++4 and compiled using g++

with the “−O3” option on a computer running Linux equipped

with 2.83 GHz and 8-GB RAM. When running the DIMACS

machine benchmark procedure “dfmax.c”5 on our machine,

we obtain the following results: 0.20, 1.23, and 4.68 s for

graphs r300.5, r400.5, and r500.5, respectively. The computa-

tional results reported in this section were obtained with the

parameter setting shown in Table I.

In the following sections, we first show the results on the 19

traditional instances, and then present a comparative analysis

of our computational results on the large set of 1800 bench-

mark instances with respect to the state-of-the-art results in

1Available at http://puzzle.haraguchi-s.otaru-uc.ac.jp/PLSE/.
2Available at https://github.com/YanJINFR/Latin-Square-Completion.git.
3Available at http://mat.gsia.cmu.edu/COLOR03/.
4Available at http://www.info.univ-angers.fr/hao/lsc.html.
5Available at ftp://dimacs.rutgers.edu/pub/dsj/clique/.

TABLE I
PARAMETER SETTING

TABLE II
COMPUTATIONAL RESULTS ON THE SET OF 19 TRADITIONAL

BENCHMARK INSTANCES

the literature. Given the stochastic nature of MMCOL, each

instance was independently solved 30 times with different

random seeds.

B. Results on 19 Traditional Benchmark Instances

The computational results of MMCOL on the 19 traditional

Latin square graphs are summarized in Table II. Columns 1–3

of Table II indicate the characteristics of each instance: the

name, the Latin square order n, and the ratio r. Columns 4

and 5 present the success rate over 30 trials (SR) and the

computation time over the successful runs t(s) in seconds

(a successful run means that a legal Latin square is attained

for this run). From Table II, one observes that MMCOL can

complete the partial Latin square for all the 19 instances.

Besides, our MMCOL requires a very short computation time

even for the large instances with n ≥ 50. Moreover, the

last five instances are critically constrained and fully “bal-

anced,” where the number of empty grids is approximately

the same over rows and columns. These instances are known

to be particularly difficult [25] and only the two smallest

ones of these five instances (qwhdec.order33.holes381.bal.1

and qwhdec.order50.holes825.bal.1) can be solved by very

few approaches presented in [17] including CSP, hybrid strat-

egy mixing LP/CSP, and SAT-based method. The difficulty of

these instances are further confirmed by the most recent study

reported in [21], where even the best performing heuristic Tr-

ILS* [21] cannot solve any of these balanced instances. We

also ran the source code of Tr-ILS* on our computer for a

8

TABLE III
COMPARATIVE RESULTS OF MMCOL WITH BEST-PERFORMING ALGORITHMS ON THE SET OF 1800 LSC BENCHMARK INSTANCES

long computation time of 3600 s and still failed to solve any

of these five balanced instances. It is thus remarkable that our

MMCOL approach solves these instances consistently, even

though MMCOL has a low success rate for two instances.

We conclude that MMCOL performs very competitively with

respect to all of the existing approaches for solving these

traditional instances.

C. Comparative Results on the Set of 1800 Benchmark

Instances

Table III summarizes the computational statistics of our

MMCOL algorithm on the set of 1800 benchmark instances,

together with the results of seven most recent methods in

the literature reported in [21]. The reference methods include

CPX-IP, CPX-CP, LSSOL, 1-ILS*, 2-ILS, 3-ILS, and Tr-ILS*,

where CPX-IP and CPX-CP are integer programming (IP)

and constraint programming (CP) solvers from IBM/ILOG

CPLEX, LSSOL denotes the LocalSolver,6 and 1-ILS*, 2-ILS,

3-ILS, and Tr-ILS* are four iterated local search algorithms

with (1,∞)-neighborhood, (2,∞)-neighborhood, (3,∞)-

neighborhood, and Trellis-neighborhood search, respectively.

All the reference algorithms are performed on an Intel core

i7-4770 processor with 3.90 GHz and 8-GB RAM (which is

faster than our computer), with a time limit of 30 s for CPX-IP,

CPX-CP, and LSSOL, and 10 s for 1-ILS*, 2-ILS, 3-ILS, and

Tr-ILS*. Table IV additionally presents the detailed results of

our approach on a subset of 600 difficult benchmark instances.

Columns 1–3 of Table III show the characteristics of

the tested instances: the order n of each Latin square, the

ratio r, and the number of instances Inst# for each type

(n, r). Following [21], columns 4–10 present the results of

the seven reference algorithms (CPX-IP, CPX-CP, LSSOL,

1-ILS*, 2-ILS, Tr-ILS*, and 3-ILS), “Suc#” shows for each

6http://www.localsolver.com/

type of 100 instances the number of instances for which

an algorithm can obtain a legal solution. Columns 11 and

12 give the results of our MMCOL algorithm in terms of

“Suc#” and the average time tavg(s) in seconds is defined by

tavg(s) = [(
∑i=100

i=1 ti(s))/100], where ti(s) is the average time

over the successful runs for the ith instance. The last row (per-

fect success times) shows the number of instance types with

Suc# = 100, i.e., the number of instance types among the 18

types (n, r) for which all the 100 instances are solved by an

algorithm.

From Table III, one observes that both exact methods CPX-

IP and CPX-CP solve all 100 instances for only three out

of the 18 types. The five ILS heuristics (LSSOL, 1-ILS*,

2-ILS, 3-ILS, and Tr-ILS*) solve all 100 instances for 1, 4,

5, 1, and 6 of 18 types (in bold), respectively. In contrast,

our MMCOL algorithm can solve all the instances for all 18

types. The average time to find a solution is less than 11 s

except for the 300 instances with r = 0.7 for which MMCOL

needs less than 300 s to attain a solution while all refer-

ence algorithms fail to solve any of these instances. Besides,

we observe that the seven reference algorithms have a worse

performance for the types (n ∈ {50, 60, 70}, r ∈ {0.6, 0.7})

which are known to be more difficult [21]. On the other

hand, MMCOL has no particular difficulty to solve these

hard instances. In order to verify if the ILS algorithms can

solve more instances by using more computation time, we

ran the source code of the best performing algorithm Tr-ILS*

under a much relaxed time limit of 3600 s on the instances

of types (n ∈ {50, 60, 70}, r ∈ {0.6, 0.7}). One observes

that the 100 instances of LSC-50-60 (n = 50, r = 0.6)

can be fully completed, 98 and 95 instances of LSC-60-60

(n = 60, r = 0.6) and LSC-70-60 (n = 70, r = 0.6) can be

fully completed, respectively. Nevertheless, no instance of the

types (n ∈ {50, 60, 70}, r = 0.7) can be fully completed even

if these instances have more filled grids for the LSC.

9

TABLE IV
DETAILED COMPUTATIONAL RESULTS OF MMCOL ON A SUBSET OF 600 INSTANCES

Furthermore, we show in Table IV the detailed results of

MMCOL on the 600 difficult instances (n ∈ {50, 60, 70}, r ∈

{0.6, 0.7}) for which most reference algorithms perform badly.

For each instance, we present the success rate over 30 trials SR

and the average computation time over the successful runs t(s)

in seconds. From Table IV, we observe that MMCOL achieves

the perfect success rate 30/30 on three types (n ∈ {50, 60, 70},

r = 0.6). MMCOL has a lower success rate only for 28

10

Fig. 5. Comparison of MMCOL, MMCOL’, and ITS on 600 difficult instances.

instances of the type LSC-50-70 (n = 50, r = 0.7), three

instances of the type LSC-60-70 (n = 60, r = 0.7), and three

instances of the type LSC-70-70 (n = 70, r = 0.7) (in italic).

In summary, MMCOL competes very favorably with seven

most recent methods in the literature and proves to be highly

effective in solving the set of 1800 benchmark instances with

no exception.

V. ANALYSIS OF TWO KEY COMPONENTS

In this section, we present an analysis of two key compo-

nents of the proposed method: 1) the constraint propagation-

based kernelization and 2) the role of the MAGX crossover

operator.

A. Impact of Constraint Propagation-Based Kernelization

The constraint propagation-based kernelization of

Section II-B is used to preprocess an initial Latin square

graph and thus reduces the search space of the subsequent

list coloring task. In order to investigate the impact of this

kernelization technique, we evaluate the reduced vertices and

the color domains for the 1800 benchmark instances.

Table V summarizes the statistics of the reduced graphs

for each type of instances. Columns 1–3 recall the instance

characteristics: the order n, the ratio r, and the number of

instances Inst#. For each type (n, r) of 100 instances, column 4

“#Vavg” indicates the average number of the precolored ver-

tices (i.e., the filled grids) in the initial Latin square graph.

Since the color domain of some vertices becomes a sin-

gleton during the kernelization process, the graph can be

further reduced. Hence, column 5 “#V ′
avg” shows the aver-

age number of further reduced vertices. Column 6 “#Davg”

presents for each type of 100 instances the average cardi-

nality of the color domains after kernelization, i.e., #Davg =

[(
∑j=Inst#

j=1 (
∑i=n×n

i=1 |D(vi)|))/Inst#]. And column 7 “Solved#”

gives the number of instances that are solved during the ker-

nelization process (i.e., all color domains are reduced to a

singleton).

From Table V, one observes that the vertices of the con-

verted graphs are dramatically reduced by the kernelization

TABLE V
STATISTICS OF THE REDUCED LATIN SQUARE GRAPHS AFTER

KERNELIZATION

technique. For the types of instances [n ∈ {50, 60, 70}, r =

0.3, 0.4, 0.5 and (n = 60, r = 0.6)], only the precolored ver-

tices (the filled grids) are removed from the graphs, meaning

that removing the precolored vertices does not lead to any

new singleton domain. However, for the types of instances

(n ∈ {50, 60, 70}, r = 0.8), many vertices can be further

removed by the kernelization technique. Furthermore, the color

domains of the uncolored vertices are obviously reduced from

their initial sizes n. In particular, for 32 instances of the

type (n = 50, r = 0.8) and nine instances of the type

(n = 60, r = 0.8), a solution is found during kernelization

(i.e., all color domains are reduced to a singleton), without

needing to run the subsequent coloring algorithm. We con-

clude that the kernelization technique plays an important role

in reducing the initial Latin square graphs and helps to ease

the subsequent list coloring task.

11

TABLE VI
COMPARATIVE RESULTS ON 22 DIFFICULT CASES OF LSC-50-70

B. Impact of the MAGX Crossover Operator

Within the proposed memetic algorithm, the MAGX

crossover described in Section III-D is another key component.

To assess its impact, we present an experiment to compare

MMCOL (with the crossover MAGX), MMCOL’ (with an uni-

form assignment crossover), and ITS (without MAGX). The

uniform assignment crossover builds an offspring solution by

inheriting, for each vertex, the color either from parent P1

or P2 with an equal probability of 0.5. For a fair comparison,

we use the same parameter setting for MMCOL and MMCOL’

and set maxLSIters = 104 for each ITS run, which corresponds

roughly to the same search effort of MMCOL/MMCOL’ with

100 generations (see Table I). The initial solutions of all the

algorithms are generated by the initialization procedure given

in Section III-C. We ran MMCOL, MMCOL’, and ITS 30

times to solve each of the 600 difficult benchmark instances

(n ∈ {50, 60, 70}, r ∈ {0.6, 0.7}) listed in Table IV. The com-

parative results are shown in Fig. 5 where we indicate for each

type of 100 instances, the number of instances for which an

algorithm can find a solution with a perfect success rate 30/30

(i.e., each of its 30 trials finds a legal list coloring).

From Fig. 5, one notices that both MMCOL, MMCOL’, and

ITS have a perfect success rate 30/30 on the 300 instances

of types (n ∈ {50, 60, 70}, r = 0.6). On the other hand, for

the other 300 instances of types (n ∈ {50, 60, 70}, r = 0.7),

MMCOL achieves a perfect success rate 30/30 on 72, 97, and

97 instances, respectively, against 48, 83, and 90 instances for

ITS and 71, 72, and 28 instances for MMCOL’.

Additionally, Table VI presents the detailed results on the 22

most difficult instances of LSC-50-70 where we show for each

instance and each algorithm (MMCOL, MMCOL’, and ITS),

the success rate SR over 30 trials and the average computa-

tion time t(s) in seconds over the successful runs. This table

indicates that MMCOL obtains a higher success rate SR than

MMCOL’ and ITS for 17 and 22 instances, respectively (in

bold), with shorter computation times t(s) except for two cases.

This experiment confirms that the population-based evolution-

ary framework implemented in our memetic algorithm and its

crossover operator contribute positively to the performance of

the proposed algorithm.

VI. CONCLUSION

We have proposed an approach to solve the LSC problem

by converting LSC to a domain-constrained graph coloring

problem. By taking advantage of the particular features

of Latin square graphs, we have developed a constraint

propagation-based kernelization technique to preprocess the

given Latin square graph to obtain a reduced graph, for which

an associated list coloring problem is defined. To effectively

solve the list coloring problem, we have devised a dedi-

cated memetic algorithm MMCOL which integrates a tailored

crossover operator to generate new solutions, an ITS procedure

to improve each offspring solution and a distance-quality-

based pool updating strategy to ensure a healthy diversity of

the population.

Extensive evaluations on a large number of benchmark

instances in the literature (19 traditional instances and 1800

random instances) have shown that the proposed approach per-

forms very well with respect to the state-of-the-art methods

including those introduced very recently in 2016. In particular,

our approach is able to find a solution for all the benchmark

instances consistently and effectively, a performance never

attained by any existing approach. We have also used a slightly

modified version of the method to solve the general PLSE

problem and reported computational results on the set of 2018

PLSE instances in the Appendix.

Given that LSC and PLSE have a number of applications,

the proposed approach can help to solve these applications.

More generally, the method proposed in this paper can be

used to approximate the important list coloring and precoloring

extension problems, for which few practical algorithms exist

in the literature. The method will be particularly useful if large

problem instances are considered.

For future work, it would be interesting to identify addi-

tional features of Latin square graphs and use them to design

effective search strategies and operators. Approaches based on

vertex coloring algorithms are also worthy of investigation.

APPENDIX

RESULTS ON THE PARTIAL LATIN SQUARE

EXTENSION PROBLEM

We now show that the method presented in this paper can

be used to solve the related and more general PLSE problem.

Recall that PLSE is to assign numbers {1, . . . , n} to as many

empty grids as possible under the condition that each number

occurs at most once in each row and each column. To apply

the proposed method to solve PLSE, we make the following

two adjustments.

12

First, unlike LSC, the color domains of some vertices in

the case of PLSE may become empty during the constraint

propagation-based kernalization process, implying that the cor-

responding grids cannot be legally filled by any given number.

In terms of graph coloring, if the color domain of a vertex

v becomes empty when applying the preprocessing proce-

dure, any color for vertex v is definitively conflicting with

at least one of its adjacent vertices. If this happens, we ran-

domly assign a color {1, . . . , n} to vertex v and keep this color

unchanged during the search process.

Second, at the end of the MMCOL algorithm, there are

two possibilities. If the returned final coloring c∗ is conflict-

free [i.e., f (c∗) = 0], the given partial Latin square is fully

completed and an optimal solution is found. Otherwise, some

vertices are assigned conflicting colors in c∗ [i.e., f (c∗) > 0].

In this case, we obtain a legal partial solution by dropping from

c∗ some conflicting vertices. The dropped vertices correspond

to the grids that cannot be legally filled while the remaining

vertices in the legal partial coloring define a solution for the

given PLSE instance. To remove conflicting vertices, we first

drop any vertex v with empty color domain caused by the pre-

processing procedure. Then, if conflicts remain, we repetitively

remove the vertex u which is conflicting with the largest num-

ber of other vertices in the coloring until we obtain a partial

conflict-free coloring.

Table VII summarizes the results of our MMCOL algo-

rithm and seven reference methods on the set of 1800

PLSE benchmark instances introduced in [21]. Like the

LSC instances of Section IV-A, these 1800 PLSE instances

are evenly divided into 18 types (n ∈ {50, 60, 70}, r ∈

{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}) [so 100 instances per type (n, r)].

For these instances, n2 is a trivial upper bound of their optimal

solutions. In this experiment, we used the same experimental

condition as for solving LSC (Section IV-C). Like [21], we

solved each instance once. Columns 1–3 indicate the char-

acteristics of the instances with the same information as in

Table III. Columns 4–17 present, for each reference algorithm

and for each type (n, r) of 100 instances, the number of fully

completed Latin squares “suc#,” and the average completed

grids over 100 instances “Avg.” Columns 18–20 show the

results of our MMCOL algorithm in terms of suc#, Avg, and

the average computation time “tavg(s)” in seconds. Notice that

if a partial Latin square is fully completed, the optimum is

attained (so 1186 instances out of 1800 are solved to optimal-

ity). Otherwise, the reported result in terms of the filled grids

gives a lower bound of the given PLSE instance.

Table VII shows that MMCOL obtains improved or equal

average results for 15 out of 18 types (in bold) except the

types (n ∈ {50, 60, 70}, r = 0.8). In particular, for the 1000

instances of types (n ∈ {50, 60, 70}, r ∈ {0.3, 0.4, 0.5}),

(n = 70, r = 0.6), and 186 instances of types (n ∈

{50, 60}, r = 0.6), (n = 70, r = 0.7), MMCOL attains

an optimal solution. Meanwhile, for the instances of types

(n ∈ {50, 60, 70}, r = 0.8), MMCOL performs worse than the

reference algorithms. We mention that since the instances of

types (n ∈ {50, 60, 70}, r = 0.8) are strongly constrained,

the color domains of some uncolored vertices are reduced

to the empty set during the constraint propagation-based

T
A

B
L

E
V

II
C

O
M

P
A

R
A

T
IV

E
R

E
S

U
L

T
S

O
F

M
M

C
O

L
O

N
T

H
E

S
E

T
O

F
1

8
0

0
P

L
S

E
B

E
N

C
H

M
A

R
K

IN
S

T
A

N
C

E
S

13

preprocessing of Section II-B, indicating that these instances

cannot be fully completed. Let α > 0 be the number of vertices

with an empty color domain identified during the preprocess-

ing, n2−α defines an upper bound of the given instance, which

is strictly tighter than the trivial n2 bound.

ACKNOWLEDGMENT

The authors would like to thank Dr. K. Haraguchi for

making the benchmark instances tested in [21] available

and sharing the codes of his ILS algorithm with them and

Dr. U. Benlic for her comments on this paper.

REFERENCES

[1] L. Anderson, “Completing partial latin squares,” Mathematisk Fysiske

Meddelelser, vol. 41, no. 2, pp. 23–69, 1985.

[2] C. Ansótegui, A. del Val, I. Dotú, C. Fernández, and F. Manyà,
“Modeling choices in quasigroup completion: SAT vs. CSP,” in Proc.

AAAI, San Jose, CA, USA, 2004, pp. 137–142.

[3] R. A. Barry and P. A. Humblet, “Latin routers, design and implementa-
tion,” J. Lightw. Technol., vol. 11, no. 56, pp. 891–899, May/Jun. 1993.

[4] U. Benlic and J.-K. Hao, “A multilevel memetic approach for improv-
ing graph k-partitions,” IEEE Trans. Evol. Comput., vol. 15, no. 5,
pp. 624–642, Oct. 2011.

[5] M. Biró, M. Hujter, and Z. Tuza, “Precoloring extension. I. Interval
graphs,” Discr. Math., vol. 100, nos. 1–3, pp. 267–279, 1992.

[6] R. C. Bose, “Strongly regular graphs, partial geometries and partially
balanced designs,” Pac. J. Math., vol. 13, no. 2, pp. 389–419, 1963.

[7] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet survey
on memetic computation,” IEEE Trans. Evol. Comput., vol. 15, no. 5,
pp. 591–607, Oct. 2011.

[8] C. J. Colbourn, “The complexity of completing partial latin squares,”
Discr. Appl. Math., vol. 8, no. 1, pp. 25–30, 1984.

[9] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs,
2nd ed. Boca Raton, FL, USA: CRC Press, 2006.

[10] R. Dorne and J.-K. Hao, “Tabu search for graph coloring, T-colorings
and set T-colorings,” in Meta-Heuristics: Advances and Trends in Local

Search Paradigms for Optimization, S. Voss, S. Martello, I. H. Osman,
and C. Roucairol, Eds. London, U.K.: Kluwer, 1998, ch. 6, pp. 77–92.

[11] T. Easton and R. G. Parker, “On completing latin squares,” Discr. Appl.

Math., vol. 113, no. 2, pp. 167–181, 2001.

[12] P. Erdös, A. L. Rubin, and H. Taylor, “Choosability in graphs,” in Proc.

West Coast Conf. Comb. Graph Theory Comput. Congr. Numerantium

XXVI, 1979, pp. 125–157.

[13] L. Feng, Y. S. Ong, M. H. Lim, and I. W. Tsang, “Memetic search with
inter domain learning: A realization between CVPR and CARP,” IEEE

Trans. Evol. Comput., vol. 19, no. 5, pp. 644–658, Oct. 2015.

[14] P. Galinier and J. K. Hao, “Hybrid evolutionary algorithms for graph
coloring,” J. Comb. Optim., vol. 3, no. 4, pp. 379–397, 1999.

[15] F. Glover and M. Laguna, “Tabu search,” in Handbook of Combinatorial

Optimization. Boston, MA, USA: Springer, 1998, pp. 2093–2229.

[16] V. Gogate and R. Dechter, “SampleSearch: Importance sampling in
presence of determinism,” Artif. Intell., vol. 175, no. 2, pp. 694–729,
2011.

[17] C. Gomes and D. Shmoys, “Completing quasigroups or latin squares:
A structured graph coloring problem,” in Proc. Comput. Symp. Graph

Color. Generalization, 2002, pp. 22–39.

[18] C. Gomes, R. G. Regis, and D. B. Shmoys, “An improved approximation
algorithm for the partial latin square extension problem,” Oper. Res.

Lett., vol. 32, no. 5, pp. 479–484, 2004.

[19] M. Hall, Jr., “Distinct representatives of subsets,” Bull. Amer. Math. Soc.,
vol. 54, no. 10, pp. 922–926, 1948.

[20] J.-K. Hao, “Memetic algorithms in discrete optimization,” in Handbook

of Memetic Algorithms (Studies in Computational Intelligence), vol. 379.
Berlin, Germany: Springer-Verlag, 2012, ch. 6, pp. 73–94.

[21] K. Haraguchi, “Iterated local search with trellis-neighborhood for the
partial latin square extension problem,” J. Heuristics, vol. 22, no. 5,
pp. 727–757, 2016.

[22] A. Hertz and D. de Werra, “Using tabu search techniques for graph
coloring,” Computing, vol. 39, no. 4, pp. 345–351, 1987.

[23] T. R. Jensen and B. Toft, Graph Coloring Problems. New York, NY,
USA: Wiley, 1995.

[24] Y. Jin and J. K. Hao, “Hybrid evolutionary search for the minimum
sum coloring problem of graphs,” Inf. Sci., vols. 352–353, pp. 15–34,
Jul. 2016.

[25] H. A. Kautz, Y. Ruan, D. Achlioptas, C. P. Gomes, and B. Selman,
“Balance and filtering in structured satisfiable problems,” in Proc. 17th

Int. Joint Conf. Artif. Intell. (IJCAI), Seattle, WA, USA, 2001,
pp. 351–358.

[26] S. R. Kumar, A. Russell, and R. Sundaram, “Approximating latin square
extensions,” Algorithmica, vol. 24, no. 2, pp. 128–138, 1999.

[27] Z. Lü and J.-K. Hao, “A memetic algorithm for graph coloring,” Eur. J.

Oper. Res., vol. 203, no. 1, pp. 241–250, 2010.
[28] R. M. R. Lewis, A Guide to Graph Colouring—Algorithms and

Applications. Cham, Switzerland: Springer Int., 2016.
[29] C. F. Laywine and G. L. Mullen, “Discrete mathematics using Latin

squares,” in Series in Discrete Mathematics and Optimization, 1st ed.
New York, NY, USA: Wiley, 1998.

[30] L. Moalic and A. Gondran, “Variations on memetic algorithms for graph
coloring problems,” J. Heuristics, vol. 24, no. 1, pp. 1–24, 2018.

[31] P. Moscato and C. Cotta, “A gentle introduction to memetic algorithms,”
in Handbook of Metaheuristics, F. Glover and G. Kochenberger, Eds.
Norwell, MA, USA: Kluwer, 2003, pp. 105–144.

[32] F. Neri, C. Cotta, and P. Moscato, Eds., “Handbook of memetic algo-
rithms,” in Studies in Computational Intelligence, vol. 379. Berlin,
Germany: Springer-Verlag, 2012.

[33] D. C. Porumbel, J.-K. Hao, and P. Kuntz, “An evolutionary approach
with diversity guarantee and well-informed grouping recombination for
graph coloring,” Comput. Oper. Res., vol. 37, no. 10, pp. 1822–1832,
2010.

[34] D. C. Porumbel, J. K. Hao, and P. Kuntz, “An efficient algorithm for
computing the distance between close partitions,” Discr. Appl. Math.,
vol. 159, no. 1, pp. 53–59, 2011.

[35] S. Régnier, “Sur quelques aspects mathématiques des problèmes de
classification automatique,” Mathématiques et Sci. Humaines, vol. 82,
no. 20, pp. 175–191, 1983.

[36] F. Rossi, P. Van Beek, and T. Walsh, Handbook of Constraint

Programming. Amsterdam, The Netherlands: Elsevier, 2006.
[37] H. J. Ryser, “A combinatorial theorem with an application to latin

rectangles,” Proc. Amer. Math. Soc., vol. 2, no. 4, pp. 550–552, 1951.
[38] Y. Zhou, J.-K. Hao, and B. Duval, “Opposition-based memetic search for

the maximum diversity problem,” IEEE Trans. Evol. Comput., vol. 21,
no. 5, pp. 731–745, Oct. 2017.

14

