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Abstract

Inspired by the work of Lorenzen on the theory of preordered groups

in the fifties, we define regular entailment relations and show a crucial

theorem for this structure. We also describe equivariant systems of ideals à

la Lorenzen and show that the remarkable regularisation process invented

by him yields a regular entailment relation. By providing constructive

objects and arguments, we pursue Lorenzen’s aim of “bringing to light the

basic, pure concepts in their simple and transparent clarity”.

Introduction

Paul Lorenzen carried out an analysis of multiplicative ideal theory in terms of
embeddings into an l-group in four articles. In Lorenzen 1939, he formulated
the problem in the language of semigroups instead of integral domains. The
endeavour of Lorenzen 1950 was to remove the condition of commutativity; the
unavailability of the Grothendieck group construction led him to discover the “reg-
ularity condition” and to propose a far-reaching reformulation of embeddability
into a product of linearly preordered groups in terms of “regularisation”. He also
arrived at the formulation of the concepts of equivariant system of ideals and
entailment relation. The article Lorenzen 1952 broadened to the more general
case of a monoid acting on a preordered set. Our research started as a study of
Lorenzen 1953, in which he proved a result that suggested Theorem 1.11 to us.
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If G is a preordered commutative group and we have a morphism f : G → L

with L an l-group, then we can define a relation A ⊢ B between nonempty finite
subsets of G by ∧f(A) 6 ∨f(B). This relation satisfies the following conditions.

(R1) A ⊢ B if A ⊇ A′ and B ⊇ B′ and A′ ⊢ B′.

(R2) A ⊢ B if A, x ⊢ B and A ⊢ B, x.

(R3) a ⊢ b if a 6 b in G.

(R4) A ⊢ B if A+ x ⊢ B + x.

(R5) a+ x, b+ y ⊢ a+ b, x+ y.

We are making the following abuses of notation for finite sets: we write a for the
singleton consisting of a, and A,A′ for the union of the sets A and A′; note that
our framework requires only a naive set theory. We call regular entailment relation

for a preordered group (G,6) any relation which satisfies these conditions. The
remarkable last condition is called the regularity condition.

Note that the converse of a regular entailment relation for (G,6) is a regular
entailment relation for (G,>) (the group with the converse preorder). When we
use this, we say that a result follows from another one “symmetrically”.

Any relation satisfying the three first conditions defines in a canonical way
a(n unbounded) distributive lattice L with a natural monotone map G → L:
see Lorenzen 1951, Satz 7; Cederquist and Coquand 2000, Theorem 1 (obtained
independently).

The goal of this note is essentially to show that this distributive lattice has
a (canonical) l-group structure, simplifying some arguments in Lorenzen 1953.
This is done in Theorem 1.11. In Section 2, we explain how to define a regular
entailment relation through a predicate on nonempty finite subsets of G. In
Section 3, we define “equivariant systems of ideals” à la Lorenzen and we show
how to express this notion through a predicate on nonempty finite subsets of
G. In Section 4, we explain how Lorenzen “regularises” an equivariant system of
ideals, which leads to the Lorenzen group of this system of ideals (Theorem 4.4).
In Section 5, we explain the link with a constructive version of the Lorenzen-
Clifford-Dieudonné theorem. In Section 6, we explain the link with the Prüfer
way of defining the Lorenzen group of a system of ideals. In Section 7, we
give a constructive version of a remarkable theorem of Lorenzen which uses the
regularity condition in the noncommutative case. Finally, in Section 8, we give
examples illustrating some constructions described in the paper.

The results of this research complement the ones of Coquand et al. (2019):
we introduce various equivalent presentations of regular entailment relations; we
also provide a noncommutative version and several examples.
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1 General properties of regular entailment rela-

tions

A first consequence of regularity is the following.

Proposition 1.1 We have a, b ⊢ a+x, b−x and a+x, b−x ⊢ a, b. In particular,
a ⊢ a+ x, a− x and a+ x, a− x ⊢ a.

Proof. By regularity, we have x+(a−x), (b−2x)+2x ⊢ x+(b−2x), (a−x)+2x,
which is a, b ⊢ a+ x, b − x. The other claim follows symmetrically.

Corollary 1.2 In the distributive lattice L defined by the (unbounded) entail-
ment relation ⊢, ∧A 6 (∧(A + x)) ∨ (∧(A − x)).

Proof. In L, we have (∧(A + x))∨(∧(A − x)) = (∧a∈A(a+ x))∨(∧b∈A(b− x)) =
∧a,b∈A((a+ x) ∨ (b− x)), so that this follows from Proposition 1.1.

Corollary 1.3 If we have A,A + x ⊢ B and A,A − x ⊢ B, then A ⊢ B. Sym-
metrically, if A ⊢ B,B + x and A ⊢ B,B − x then A ⊢ B.

Lemma 1.4 We have A,A+ x ⊢ B iff A ⊢ B,B − x.

Proof. We assume A,A + x ⊢ B and we prove A ⊢ B,B − x. By Corollary 1.3,
it is enough to show A,A− x ⊢ B,B − x, but this follows from A,A+ x ⊢ B by
translating by −x and then weakening. The other direction is symmetric.

Lemma 1.5 If 0 6 p 6 q, then a, a+ qx ⊢ a+ px.

Proof. We prove this by induction on q. It holds for q = 0. If it holds for q,
we note that we have a, a + (q + 1)x ⊢ a + x, a + qx by regularity, and since
a, a+ qx ⊢ a+x by induction, we get a, a+(q+1)x ⊢ a+x by cut. By induction
we have a, a+ qx ⊢ a+ px for p 6 q, and hence a+ x, a+(q+1)x ⊢ a+(p+1)x.
By cut with a, a+ (q + 1)x ⊢ a+ x we get a, a+ (q + 1)x ⊢ a+ (p+ 1)x.

Given a regular entailment relation ⊢ and an element x, we describe now the
regular entailment relation ⊢x for which we force 0 ⊢x x. This relation exists by
universal algebra.

Let us define that A ⊢x B holds iff there exists p such that A,A + px ⊢ B,
iff (by Lemma 1.4) there exists p such that A ⊢ B,B − px, and we are going to
show that this is the least regular entailment relation containing ⊢ and such that
0 ⊢x x. We have 0 ⊢x x since 0, x ⊢ x.

Note that, by using Lemma 1.5, if we have A,A + px ⊢ B, we also have
A,A+ qx ⊢ B for q > p.
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Proposition 1.6 The relation ⊢x is a regular entailment relation. It is the least
regular entailment relation containing ⊢ and such that 0 ⊢x x.

Proof. The only complex condition is the cut rule. We assume A,A+ px ⊢ B, u

and A,A+qx, u, u+qx ⊢ B, and we prove A ⊢x B. By Lemma 1.5, we can assume
p = q. We write y = px and we have A,A+ y ⊢ B, u and A,A+ y, u, u+ y ⊢ B.
We write C = A,A+ y,A+ 2y and we prove C ⊢ B.

We have by weakening C ⊢ B, u and C, u, u+ y ⊢ B and C ⊢ B+ y, u+ y. By
cut, we get C, u ⊢ B,B+y. By Lemma 1.4, this is equivalent to C, u, C−y, u−y ⊢

B. We also have C, u, C + y, u+ y ⊢ B by weakening C, u, u + y ⊢ B. Hence by
Lemma 1.3 we get C, u ⊢ B. Since we also have C ⊢ B, u, we get C ⊢ B by cut.

By Lemma 1.5 we have A,A+ 2y ⊢ B, which shows A ⊢x B.

Proposition 1.7 If A ⊢x B and A ⊢−x B then A ⊢ B.

Proof. We have A,A + px ⊢ B and A,A − qx ⊢ B. Using Lemma 1.5 we can
assume p = q and then conclude by Corollary 1.3.

Proposition 1.7 implies that in order to prove an entailment involving some
elements, we can always assume that all elements occurring in the proof are
linearly preordered for the relation a ⊢ b. This corresponds to the informal
covering principle by quotients for l-groups (Lombardi and Quitté 2015, Principle
XI-2.10). Here are two direct applications.

Proposition 1.8 We have A ⊢ b1, . . . , bm iff A− b1, . . . , A− bm ⊢ 0.

Thus A ⊢ B iff A − B ⊢ 0 iff 0 ⊢ B − A. The first equivalence is exactly
Proposition 1.8, and the second equivalence follows symmetrically.

Proposition 1.9 If A+ b1, . . . , A+ bm ⊢ bj for j = 1, . . . ,m, then A ⊢ 0.

It follows from Proposition 1.9 that if we consider the monoid of formal ele-
ments ∧A with the operation ∧A + ∧B = ∧(A + B), preordered by the relation
∧A 6 ∧B iff A ⊢ b for all b in B, we get a cancellative monoid.

The Grothendieck l-group of a meet-monoid (M,+, 0,∧) is the l-group that
it freely generates. Its group structure is given by the Grothendieck group of the
monoid (M,+, 0).

Corollary 1.10 The distributive lattice defined by the Grothendieck l-group of
the previously defined cancellative monoid coincides with the distributive lattice
defined by the relation ⊢.

We have realised in this way our goal.
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Theorem 1.11 The distributive lattice V generated by a regular entailment re-
lation has a canonical l-group structure for which the natural preorder morphism
ϕ : G → V is a group morphism.

Note that we may have a ⊢ b without a ≤ b, so ϕ is not necessarily injective.
Here is another consequence of the fact that we can always assume that ele-

ments are linearly preordered for the relation a ⊢ b.

Corollary 1.12 If a1 + · · ·+ an = 0 then a1, . . . , an ⊢ 0.

Corollary 1.13 If a1 + · · ·+ an = b1 + · · ·+ bn then a1, . . . , an ⊢ b1, . . . , bn.

Proof. We have Σi,jai − bj = 0 and we can apply the previous result and Propo-
sition 1.8.

2 Another presentation of regular entailment re-

lations

It follows from Proposition 1.8 that the relation ⊢ is completely determined by
the predicate A ⊢ 0 on nonempty finite subsets of the group. Let us analyse the
properties satisfied by this predicate R(A) = A ⊢ 0. Firstly, it satisfies

(P3) R(a) if a 6 0 in G.

Secondly, it is monotone:

(P1) R(A) if R(A′) and A′ ⊆ A.

The cut rule can be stated as R(A−B) if R(A−B, x−B) and R(A−B,A−x),
so we get the following property (since we can assume x = 0 by translating and
replace B by −B):

(P2) R(A+B) if R(A+B,A) and R(A+B,B).

Finally, the regularity condition gives R(a−b, b−a, x−y, y−x) which simplifies
using (P1) into

(P5) R(x,−x).

We get in this way another presentation of a regular entailment relation as
a predicate satisfying the conditions (P1), (P2), (P3), (P5): if R satisfies these
properties and A ⊢ B is defined by R(A − B), then we get a regular entailment
relation (we have one axiom less since the translation property “A ⊢ B if A+x ⊢

B + x” is automatically satisfied).
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3 Equivariant systems of ideals

Let us make the same analysis for the notion of equivariant system of ideals. A
system of ideals for a preordered set G can be defined à la Lorenzen as a single-
conclusion entailment relation, i.e. a relation A ⊲ x between nonempty finite
subsets of G and elements x in G satisfying the following conditions.

(S1) A⊲ x if A ⊇ A′ and A′ ⊲ x.

(S2) A⊲ x if A, y ⊲ x and A⊲ y.

(S3) a⊲ x if a 6 x in G.

A system of ideals for a preordered group G is said to be equivariant when it
satisfies the condition

(S4) A⊲ x if A+ y ⊲ x+ y.

When we have an equivariant system of ideals, let us consider the predicate
S(A) = A⊲ 0. This predicate satisfies the following conditions.

(P1) S(A) if A ⊇ A′ and S(A′).

(P ′

2) S(A) if S(A, u) and S(A− u).

(P3) S(a) if a 6 0 in G.

Conversely, if S satisfies (P1), (P ′

2) and (P3) and if we define A⊲x by S(A−x),
then ⊲ is an equivariant system of ideals, so that S is just another presentation
for it.

To an equivariant system of ideals S we can clearly associate the relation
A 6S B given by “A⊲ b for all b in B ”, and we define thus a preordered monoid
with A+ B as monoid operation and A ∧ B = A,B as meet operation. We call
the corresponding preordered monoid the meet-monoid generated by S on G.

Conversely, consider for a preordered group (G,6) any preorder ≤ on the
monoid of finite nonempty subsets with a 6 b ⇒ a ≤ b, the meet operation A∧B

defined as A,B and the monoid operation A + B. Then we get the equivariant
system of ideals A⊲ b = A ≤ b.

4 Regularisation of an equivariant system of ide-

als

Note that both notions, reformulations of regular entailment relation and of equiv-
ariant system of ideals, are now predicates on nonempty finite subsets of G. We
say that an equivariant system of ideals is regular if it satisfies (P2) and (P5).
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The following proposition follows from Proposition 1.9.

Proposition 4.1 Let S be an equivariant system of ideals for a preordered group
G. Then the meet-monoid generated by S on G is cancellative if, and only if, S
is regular.

Proof. If S is regular, then 6S is cancellative by Proposition 1.9. Conversely, if
6S is cancellative, then the meet-monoid it defines embeds into its Grothendieck
l-group, which is a distributive lattice.

We always have the least equivariant system of ideals for a preordered group G:
SM(A) = A ⊲M 0 iff A contains an element 6 0 in G. It clearly satisfies (P1)
and (P3), and it satisfies (P ′

2): if A, u⊲M 0 then either A⊲M 0 or u⊲M 0, and if
u⊲M 0 then A⊲M u implies A⊲M 0.

Note also that equivariant systems of ideals are closed by arbitrary intersec-
tions and directed unions.

Let S be an equivariant system of ideals. We define Tx(S) to be the least
equivariant system of ideals Q containing S and such that Q(x). We have TxTy =
TyTx and Tx(S ∩ S′) = Tx(S) ∩ Tx(S

′) directly from this definition. Lorenzen
(1950, page 516) found an elegant direct description of Tx(S).

Proposition 4.2 Tx(S)(A) iff there exists k > 0 such that S(A,A− x, . . . , A−

kx).

Proof. If we have A,A−x, . . . , A−kx 6S u and A,A−x, . . . , A− lx, u, u− x, . . . ,

u− lx 6S v, then we have by l cuts A,A− x, . . . , A− (k + l)x 6S v.

Note that in contradistinction with Lemma 1.5, we cannot simplify this con-
dition to S(A,A− kx) in general: see Examples 8.1 and 8.2.

We next define Ux(S) = Tx(S) ∩ T−x(S). We have UxUy = UyUx.

Lemma 4.3 If S is an equivariant system of ideals such that Ux(S) = S for
all x, then S is regular.

Proof. We show that conditions (P5) and (P2) hold.

We have S(x,−x) since we have both Tx(S)(x,−x) and T−x(S)(x,−x). This
shows (P5).

Let us show (P2). We assume ∧(A+B)∧∧B 6S 0 and ∧(A+B)∧∧A 6S 0,
and we show ∧(A+ B) 6S 0.

Note that we have Ta(S)(A+B) for any a in A by monotonicity: if we force
a 6S 0, then ∧(A+B) 6Ta(S) ∧B, and so ∧(A + B) 6Ta(S) 0 follows from
∧(A+B) ∧ ∧B 6Ta(S) 0.
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Let T be the composition of all the T−a with a in A: we force 0 6S a

for all a in A. We have ∧B 6T (S) ∧(A + B), and so ∧B 6T (S) 0 follows from
∧(A+B)∧∧B 6T (S) 0. This implies ∧(A+B) 6T (S) ∧A, and so ∧(A+B) 6T (S) 0
follows from ∧(A+B) ∧ ∧A 6T (S) 0.

We have ∧(A + B) 6Ta(S) 0 and ∧(A + B) 6T
−a(S) 0 for all a in A. Since

Ua(S) = S, we get ∧(A+B) 6S 0 as desired.

Let us define L(S) as the (directed) union of the Ux1
· · ·Uxn

(S), as Lorenzen
(1953, §2 and p. 23) did. We get the following theorem.

Theorem 4.4 L(S) is the least regular system containing S, in other words it is
the regularisation of S. The l-group granted by Theorem 1.11 for L(S) is called
the Lorenzen l-group associated to the equivariant system of ideals S.

5 Constructive version of the Lorenzen-Clifford-

Dieudonné Theorem

In particular, we can start from the least equivariant system of ideals for a given
preordered group G. In this case, we have L(SM)(A) iff there exist x1, . . . , xn

such that for any choice ǫ1, . . . , ǫn of signs ±1 we can find k1, . . . , kn > 0 and a

in A such that a + ǫ1k1x1 + · · · + ǫnknxn 6 0. We clearly have by elimination:
if L(SM)(a), then na 6 0 for some n > 0. We can then deduce from this a
constructive version of the Lorenzen-Clifford-Dieudonné Theorem.

Theorem 5.1 For any commutative preordered group G, we can build an l-
group L and a map f : G → L such that f(a) > 0 iff there exists n > 0 such
that na > 0. More generally, we have f(a1) ∨ · · · ∨ f(ak) > 0 iff there exist
n1, . . . , nk > 0 such that n1a1 + · · ·+ nkak > 0 and n1 + · · ·+ nk > 0.

Note that this l-group L is the l-group freely generated by the preordered
group G.

6 Prüfer’s definition of the regularisation

Prüfer (1932) found the following direct definition of the regularisation, which
follows directly from Proposition 4.1.

Theorem 6.1 The regularisation R of an equivariant system of ideals S can be
defined by R(A) holding iff there exists B such that A+B 6S B.
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This gives another proof that if we have L(SM)(a) then na 6 0 for some
n > 0: if we have B such that a + B 6SM

B then we have a cycle a + b2 6 b1,
. . . , a+ b1 6 bn, and then na 6 0.

7 Noncommutative version

If G is a not necessarily commutative preordered group, we use a multiplicative
notation and we define a regular entailment relation by the following conditions.

(R1) A ⊢ B if A ⊇ A′ and B ⊇ B′ and A′ ⊢ B′.

(R2) A ⊢ B if A, x ⊢ B and A ⊢ B, x.

(R3) a ⊢ b if a 6 b in G.

(R4) A ⊢ B if xAy ⊢ xBy.

(R5) xa, by ⊢ xb, ay.

Note that (R5) is satisfied in linearly preordered groups: if a 6 b, then xa ∧

by 6 xa 6 xb 6 xb ∨ ay, and if b 6 a, then xa ∧ by 6 by 6 ay 6 xb ∨ ay.
If ⊢ is a regular entailment relation and (V,6) is the corresponding distributive

lattice, then (R4) shows that we have a left and right action of G on 6.
We define 6a,b to be the lattice preorder with left and right action of G on it

obtained from 6 by forcing b 6a,b a.
We define u 6a,b v by “xa ∧ uy 6 xb ∨ vy for all x and y in G ”.

Lemma 7.1 We have xa∧ by 6 xb∨ay for all a and b in V and all x and y in G.

Proof. This holds for a and b in G. Then, if we have xa1 ∧ by 6 xb ∨ a1y and
xa2∧by 6 xb∨a2y, we get xa∧by 6 xb∨ay for a = a1∧a2 and for a = a1∨a2.

Proposition 7.2 (see Lorenzen 1952, Satz 3) 6a,b defines a lattice quotient of
V with left and right action of G on it such that b 6a,b a if a and b are in G.

Proof. We have b 6a,b a since xa ∧ by 6 xb ∨ ay for all x and y by the previous
Lemma.

If we have u 6a,b v and v 6a,b w then xa∧uy 6 xb∨vy and xa∧vy 6 xb∨wy

for all x and y. By cut, we get xa∧uy 6 xb∨wy for all x and y, that is u 6a,b w.
This shows that the relation 6a,b is transitive. This relation is also reflexive since
xa ∧ uy 6 uy 6 xb ∨ uy for all x and y in G.

Finally, if we have u 6a,b v, that is xa ∧ uy 6 xb ∨ vy for all x and y in G,
then we also have zut 6a,b zvt, that is xa ∧ zuty 6 xb ∨ zvty for all x and y in
G, since we have z−1xa ∧ uty 6 z−1xb ∨ vty for all x and y in G.

9



By definition u 6a,b v implies u 6a,b v since 6a,b is the least invariant preorder
relation forcing a 6a,b b.

Also by definition, note that we have u 6a,b v iff a 6u,v b since xa∧uy 6 xb∨vy

is equivalent to x−1u ∧ ay−1 6 x−1v ∨ by−1.

Proposition 7.3 u 6a,b v and u 6b,a v imply u 6 v.

Proof. In fact, u 6a,b v implies u 6a,b v which implies a 6u,v b. But u 6b,a v

implies that u is less than or equal to v in any lattice quotient in which a is less
than or equal to b: therefore u 6u,v v. So xu ∧ uy 6 xv ∨ vy for all x, y. In
particular for x = y = 1 we have u 6 v.

It follows from this that V admits a group structure which extends the one
on G. In fact, Proposition 7.3 reduces the verification of the required equations
to the case where G is linearly preordered by x ⊢ y, for which V = G. This is
the noncommutative analogue of Theorem 1.11.

The difference between the noncommutative case and the commutative one
is the following. In the commutative case, we give an explicit description of
the relation ⊢x; then we use Proposition 1.7 to show that we can reason by
case distinction, forcing 0 6 x or x 6 0. In the noncommutative case, we use
Proposition 7.3 to show that we can reason by case distinction, forcing a 6 b or
b 6 a, without recourse to an explicit description of the relation 6a,b. The proof
is shorter and very smart, but gives less information than in the commutative
case.

8 Examples

Example 8.1 We illustrate here the remark made after Proposition 4.2.
Let us consider the group Z = (Z, 0,+,−) preordered by the relation x � y

defined as y ∈ x + 60N. We consider the meet-monoid (M, 0,+,−,≤) freely
generated by (Z,�). The elements of M are formal finite meets of elements of
Z. E.g. we have in M

a = 10 ∧ 24 ≤ b = 130 ∧ 84

since 10 � 130 and 24 � 84.
Now let us consider the equivariant system of ideals ≤7 for M that we get by

forcing 0 ≤7 7, i.e. −7 ≤7 0 (see Proposition 4.2).
We have 3 ≤7 b since

3 ∧ (3 + 7) ∧ (3 + 21) = 3 ∧ a ≤ a ≤ b.

But 3 ∧ (3 + 21) 6≤ b.
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On the other hand we see easily that −1 ≤−1 0 and −1 ≤1 0, so that in the
regularisation of M we have 0 6 1, which shows that the regularisation is the
integer ring Z with the usual preorder.

Example 8.2 The following similar example is from algebraic number theory.
We consider the ring Z[x] with x an algebraic integer solution of x3−x2+x+

7 = 0. We denote by a1, . . . , ak⊲d b the Dedekind equivariant system of ideals for
the divisibility group G of Z[x], defined as b ∈ (a1, . . . , ak)Z[x] for b and the ai’s in
the fraction field Q[x]. In fact, the finitely generated fractional ideals form a meet-
monoid (M,≤) extending the divisibility group G. The corresponding preorder
is given by a1 ∧ · · · ∧ ak ≤ b1 ∧ · · · ∧ bh iff each bi belongs to (a1, . . . , ak)Z[x].

The ring Z[x] is not integrally closed. The element y = 1
2 (x

2 + 1) of Q[x]
is integral over Z and a fortiori over Z[x]: y3 = y2 − 4y + 4, or equivalently
1 = z − 4z2 + 4z3 with z = y−1.

Let us denote by ⊢ the regularisation of ≤. Now let us consider, for u ∈ M ,
the equivariant system of ideals ≤u that we get by forcing 1 ≤u u, i.e. u−1 ≤u 1.
We see that 1 ⊢ y, i.e. z ⊢ 1, by showing z ≤y 1 (which holds by definition)
and z ≤z 1, which is certified (using Proposition 4.2) by z, z2, z3 ≤ 1, since the
fractional ideal zZ[x] + z2Z[x] + z3Z[x] contains 1.

Moreover we remark that zZ[x] + z3Z[x] does not contain 1.

Example 8.3 Let us consider the group Z = (Z, 0,+,−) preordered by the rela-
tion x = y. We compute the corresponding Lorenzen l-group.

We denote by Z the group Z with the usual preorder 6, and by sup and inf the
associated supremum and infimum. We denote by Z

◦ the conversely preordered
group.

We consider the meet-monoid (M, 0,+,−,≤) freely generated by (Z,=). The
elements of M are formal finite meets of elements of Z. We have ∧A ≤ b iff b ∈ A,
and ∧A ≤ ∧B iff B ⊆ A.

We denote by ≤n the equivariant system of ideals that we get by forcing
0 ≤n n. Note that 0 ≤1 n for n > 0. Using Proposition 4.2, we find that A ≤−1 b

iff b 6 sup(A) and A ≤1 b iff b > inf(A). We deduce that the regularisation of
(M,≤) can be described as the set of intervals Jm.. nK inside Z with the order
by inclusion. Equivalently, it is identified as the set of pairs (m,n) ∈ Z×Z

◦ such
that m 6 n. Now it is easy to see that the corresponding Grothendieck l-group
is Z × Z

◦, where the opposite of (m,n) can be identified with (−m,−n). The
canonical morphism (Z,=) → Z× Z

◦ is m 7→ (m,m).
Note that since (Z,=) is the free abelian group on a singleton, we recover in

this rather complicated way Z× Z
◦ as the free l-group on a singleton.
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