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We consider a Poissonian SDE for the lack of fitness of a population subject to a continuous change of its environment, and an accumulation of advantageous mutations. We neglect the time of fixation of new mutations, so that the population is monomorphic at all times. We consider the asymptotic of small and frequent mutations. In that limit, we establish a law of large numbers and a central limit theorem. For small enough mutations, the original process is Harris recurrent and ergodic. We show in which sense the limits as t → ∞ of the law of large and number and central limit theorem give a good approximation of the invariant probability measure of the original process.

Introduction

The present work is motivated by the moving optimum model in theoretical biology, which aims at evaluating the possibility for mutations to rescue a given population undergoing a linear change in its environment which deteriorates its survival conditions. We refer the reader to [START_REF] Kopp | Hermisson The genetic basis of phenotypic adaptation II: The distribution of adaptive substitutions in the moving optimum model[END_REF] and [START_REF] Matuszewski | Fisher's geometric model with a moving-optimum[END_REF] for the presentation of this 1 model. The authors have set in [START_REF] Nassar | On the long time behavior of an SDE driven by a Poisson point process[END_REF] a rigorous mathematical study of the moving optimum model by introducing a stochastic differential equation driven by a Poisson point process describing the evolution of a quantitative one-dimensional phenotypic trait in accordance with the biological description of this evolutionary rescue model. They studied the large time behavior of its solution, which is Harris recurrent when the speed of the environment v is smaller than the mean effect of the beneficial mutations m per unit time, transient if v > m. In the case of equality between the two parameters, the solution of the stochastic differential equation can either be transient or Harris recurrent depending upon additional technical conditions.

One is mainly interested in the positive recurrent case. However, the limitation of the ability to draw biological conclusions from these result is due to the difficulty to compute explicitly any quantity related to the invariant probability measure. This led us to study the small jumps limit, which is obtained by multiplying the jumps' sizes by ε, dividing the rates by ε 2 , and then letting ε → 0. In this paper, we study the limit as ε → 0 in the such rescaled multidimensional version of the SDE from [START_REF] Nassar | On the long time behavior of an SDE driven by a Poisson point process[END_REF]. More precisely, we consider the SDE in R d

X ε t = X ε 0 -vt + t 0 R d 1 0 εαΓ(X ε s -, εα, ξ)N ε (ds, dα, dξ),
where N ε is a Poisson random measure on R + × R d × [0, 1], with the intensity 1 ε 2 ds × ν(dα) × dξ.

Our first main result is Theorem 1. If X ε 0 → x 0 in probability as ε → 0, then X ε t --→ ε→0 xt in probability, locally uniformly in t, where, with a given d × d matrix L,

dx t dt = -v + Lx t , x0 = x 0 .
The above limiting ODE can be interpreted as the canonical equation of adaptive dynamics in the context of a changing environment, see [START_REF] Dieckmann | The dynamical theorey of coevolution: a derivation from stochastic ecological processes[END_REF] and [START_REF] Champagnat | Polymorphic evolution sequence and evolutionary branching[END_REF]. This is discussed in greater detail in [START_REF] Kopp | Phenotypic lag and population extinction in the moving-optimum model : insights from a small-jumps submitted[END_REF]. The next step is to establish a Central Limit Theorem. Indeed, we define U ε t = ε -1/2 (X ε t -xt ), and show Theorem 2. Assume that X ε 0 = x0 . Then U ε ⇒ U , where U is an Ornstein-Uhlenbeck process:

dU t = LU t dt + Λ 1 2 (x t )dB t , U 0 = 0,
with B being a d-dimensional standard Brownian motion. In other words,

U t = t 0 e L(t-s) Λ 1 2 (x s )dB s .
Moreover it is not hard to show that as t → ∞, both xt → x∞ and the law of U t converges to a Gaussian law N (0, S2 ).

Both x∞ and S2 can be easily computed with high accuracy, given the parameters of the model. On the other hand, we show that there exists ε 0 > 0 such that, for any 0 < ε ≤ ε 0 , the process X ε t is Harris recurrent and possesses a unique invariant probability measure µ ε . Since our motivation for studying the small jumps limit is to get informations about µ ε , it is desirable to show that the pair (x ∞ , S2 ) gives a precise approximation of the invariant measure µ ε , for small ε. This is a delicate question, since it amounts in a sense to invert the two limits ε → 0 and t → ∞.

We first show that the collection of probability measures {µ ε , ε ≤ ε 0 } is tight. It is then not too difficult to deduce that µ ε ⇒ δ x∞ , as ε → 0. We want to prove more, namely that µ ε is close to ν ε , which is the law of x∞ + √ εξ, if ξ N (0, S2 ). This is done by analysing the probability measure

µ ε t (A) = 1 t t 0 1 A (X ε s )ds
for large t and small ε.

We believe that those results are original, and have an interest, not only for the specific model which we study, but could also be useful in different frameworks, where a process converges in law to a limiting process, and one wants to compare large time behaviors. In our case, numerical simulations tend to indicate that the approximation is valid even for not very small values of ε, see [START_REF] Kopp | Phenotypic lag and population extinction in the moving-optimum model : insights from a small-jumps submitted[END_REF].

The proofs of the first two theorems follow the following scheme : prove tightness, and the identify the unique possible limit point. Harris recurrence for small enough ε is proved using a criterion due to Meyn and Tweedie [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF].

The paper is organized as follows: After giving some useful notations, section 1 gives a detailed presentation of the model, from the biological literature. Furthermore we present the stochastic differential equation that describes the evolution of the vector phenotypic lag between the population and its environment, explaining the fixation mechanism of mutations.

In section 2, we prove Theorem 1 and Theorem 2.

Section 3 is dedicated to the study of the large time behavior of X ε t which will turn out to be positive Harris recurrent for ε sufficiently small, admitting thus a unique invariant probability measure. Then we proceed to prove that the sequence of invariant measures is tight and converges in law. We finally give a precise statement which describes in which sense the invariant measure is well approximated by a combination of the limit as t → ∞ of the LLN and the CLT limits. This involves a sort of interchange of limits as ε → 0 and as t → ∞, which seems to be new.

Notation

We will deal with processes X t with "càdlàg" paths, i.e. paths which are rightcontinuous and have a left limit everywhere. This left limit is denoted X t-:= lim s↑t,s<t X s , and for any t such that X t = X t-, we denote by ∆X t = X t -X t-the jump of X at time t. Note that a càdlàg path has at most countably many jumps on R + .

We remind that the quadratic variation of a scalar discontinuous bounded variation locally square integrable martingale M t is the sum of the squares of its jumps and is denoted by :

[M ] t = s≤t |∆M s | 2 .
Its predictable quadratic variation M t is the unique increasing predictable process such that [M ] t -M t , and hence also M 2 t -M t is a local martingale. In the d-dimensional case, we define the quadratic variation of a discontinuous bounded variation locally square integrable martingale M t as :

[[M ]] t = s≤t ∆M s ⊗ ∆M s .
Its predictable quadratic variation M t is the unique S d -valued predictable increasing process such that both [[M ]] t -M t and M t ⊗M t -M t are S d -valued local martingales. Here S d denotes the set of symmetric positive semi-definite

d × d matrices. Note that [[M ]] t (resp. M t ) is the matrix whose i, j element is [M i , M j ] t (resp. M i , M j t ). We shall use the notation [M ] t = 0<s≤t ∆M s 2 = Tr[[M ]] t , and M t = Tr M t ,
so that M t 2 -M t is an R-valued local martingale, and the notations in the scalar and vector case are coherent. See [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF] for more details. Suppose now that X t is a d-dimensional process which takes the form

X t = X 0 + t 0 A s ds + M t ,
where A t is d-dimensional and M t is a d-dimensional martingale with paths of bounded variation (hence discontinuous). Then, if • and (•, •) denote the Euclidean norm and scalar product in R d , we have the following

X t 2 = X 0 2 + 2 t 0 (X s , A s )ds + 2 t 0 (X s-, dM s ) + [M ] t . ( 1 
)
This is a change of variable formula which is the content (in the case where X t is scalar) of Theorem 31 in [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF]. Its proof is quite elementary and does not require any stochastic calculus.

Finally in this paper we will repeatedly write integrals of vector-valued (or matrixvalued) functions of their argument, as we already did in the definition of X t above, where the vector t 0 A s ds was such that its i-th coordinates equals t 0 A i s ds if A i s stands for the i-th coordinate of A s . Below in [START_REF] Kimura | On the probability of fixation of mutant genes in a population[END_REF], (x,α)≤0 α ⊗ α ν(dα) (where {α, (x, α) ≤ 0} is a subset of R d ) stands for the d × d matrix whose (i, j) entry is (x,α)≤0 α i α j ν(dα), and (x,α)≤0 α ν(dα) stands for the d-dimensional vector whose i-th coordinate is (x,α)≤0 α i ν(dα).

The model

The model from Matuszewski et al. [START_REF] Matuszewski | Fisher's geometric model with a moving-optimum[END_REF] is set up as follows: a population of constant size N is subject to Gaussian stabilizing selection with a moving optimum that increases linearly with speed vector v ∈ R d . That is, at time t, the phenotypic lag between an individual with trait value z ∈ R d and the optimum equals x = z -vt ∈ R d , and the corresponding fitness is

W(x) = exp -x Σ -1 x , (2) 
where Σ describes the shape of the fitness landscape. For the adaptive-walk approximation, the population is assumed to be monomorphic at all times (i.e., its state is completely characterized by x). Mutations arise at rate Θ/2 = N µ (where µ is the per-capita mutation rate and Θ = 2N µ is a standard population-genetic parameter), and their phenotypic effects α are drawn from a distribution p(α). We neglect the possibility of fixation for deleterious mutations. Yet even beneficial mutations have a significant probability of being lost due to the effects of genetic drift while they are rare. A mutation with effect α that arises in a population with phenotypic lag x has a probability of fixation

g(x, α) =    1 -exp(-2s(x, α)) if s(x, α) > 0, 0 otherwise (3) 
where

s(x, α) = -(2x + α) Σ -1 α (4)
is the selection coefficient. Once a mutation gets fixed, it is assumed to do so instantaneously (which is of course a simplification which is not realistic), and the phenotypic lag x of the population is updated accordingly.

We make the following assumptions (see [START_REF] Matuszewski | Fisher's geometric model with a moving-optimum[END_REF]):

1. v is a horizontal vector, v = (v 1 , 0, . . . , 0) with v 1 > 0. 2. Σ is isotropic, i.e. Σ = σ 2 I R d .
It is always possible to reduce the situation to our assumptions, via a change of variables.

The evolution of the phenotypic lag of the population can be described by the following equation:

X t = x 0 -vt + [0,t]×R d ×[0,1] αΓ(X s -, α, ξ)N (ds, dα, dξ). (5) 
Here, N is a Poisson point process over R + × R d × [0, 1] with intensity ds ν(dα) dξ where ν(dα) is the measure of new mutations and

Γ(x, α, ξ) = 1 {ξ≤g(x,α)} ,
where the fixation probability g(x, α) of a mutation of size α that hits the population when the lag is x, as defined by ( 3) and ( 4), can be expressed as

g(x, α) = 1 -exp 2σ -2 (2x + α, α) × 1 {(2x+α,α)≤0} .
Following the model by [START_REF] Matuszewski | Fisher's geometric model with a moving-optimum[END_REF], we consider that

ν(dα) = Θ 2 p(α)dα, ( 6 
)
where p is the density of a centered multidimensional Gaussian distribution N (0, M ), M being a positive definite symmetric matrix. Under the above assumptions about the speed vector v and the fitness matrix Σ, M is generally not an isotropic matrix. Θ/2 is the rate at which new mutations are "proposed".

The points of this Poisson Point Process (T i , A i , Ξ i ) are such that the (T i , A i ) form a Poisson Point Process over R + ×R d of the mutations that hit the population with intensity dsν(dα), and the Ξ i are i.i.d. U[0, 1], globally independent of the Poisson Point Process of the (T i , A i ). T i 's are the times when mutations are proposed and A i 's are the effect sizes of those mutations. The Ξ i are auxiliary variables determining fixation: a mutation gets instantaneously fixed if Ξ i ≤ g(X T i , A i ), and is lost otherwise.

Note that the limit of the probability of fixation as x → ∞, while x x remains a constant unit vector, is 1 {(x,α)≤0} . This means that when the process is sufficiently far away from 0, the fixation mechanism tends to accept all mutations inside the half space x

x , α ≤ 0. Define the covariance matrix of fixed mutations :

V (x) = (x,α)≤0 α ⊗ α ν(dα). ( 7 
)
Proposition 1. Under the definition of ν given by (6), V (x) is independent of the direction of x and

V = Θ 4 M.
Proof. The additional factor 1/2 comes from the fact that we integrate over a half space. What is not obvious a priori is that V does not depend upon x.

We assume without loss of generality that we have chosen as orthonormal basis of R d a basis made of eigenvectors of M , the covariance matrix of p. In other words,

M = P DP,
where D is a diagonal matrix and P is the matrix representing the change of basis such that P = P -1 = P * . First, we will show that 1

(2π) d 2 (det D) 1 2 (x,α)≤0 α ⊗ α e -1 2 α D -1 α dα = D 2 . ( 8 
)
This is equivalent to showing that for X 1 , . . . , X d being mutually independent zero mean Gaussian random variables, and for any vector

a = (a 1 , . . . , a d ) ∈ R d , with the notation E[Z; A] = E(Z1 A ), E X 2 j ; (X, a) ≤ 0 = 1 2 E X 2 j , for any j ∈ {1, . . . , d} and E [X j X ; (X, a) ≤ 0] = 0, for any j = ∈ {1, . . . , d}.
The first of these two identities follows from the fact that if X and Y are two mutually independent zero mean Gaussian random variables, then

E[X 2 ; Y < X] = 1 2 E[X 2 ].
Indeed, if F Y denotes the distribution function of the zero mean Gaussian r.v. Y , and σ 2 is the variance of X, since

F Y (x) + F Y (-x) = 1 for all x ∈ R, E[X 2 ; Y ≤ X] = E[X 2 F Y (X)] = 1 σ √ 2π ∞ 0 x 2 [F Y (x) + F Y (-x)]e -x 2 /2σ 2 dx = 1 2 E[X 2 ].
We now establish the second formula. All we have to compute is the following quantity, where X, Y, Z are mutually independent zero mean Gaussian random variables, and a, b are arbitary real numbers,

E[XY ; Z ≤ aX + bY ] = E[XY F Z (aX + bY )] = 1 στ 2π R R xyF Z (ax + by)e -x 2 2σ 2 -y 2 2τ 2 dxdy = 1 στ 2π ∞ 0 ∞ 0 xy[F Z (ax+by)+F Z (-ax-by) -F Z (-ax+by)-F Z (ax-by)]dxdy = 0, since clearly F Z (ax + by + F Z (-ax -by) = F Z (-ax + by) + F Z (ax -by) = 1.
Now that (8) is established, the change of variables α = P α in the integral formula for V yields

V = Θ 2 P D 2 P = Θ 4 M.

Small Jumps Limit

We now introduce the rescaling α = εα and s = s ε 2 with ε > 0 of the jumps and the time, respectively. In other words, we rewrite our process (5) as

X ε t = X ε 0 -vt + t 0 R d 1 0 εαΓ(X ε s -, εα, ξ)N ε (ds, dα, dξ),
where the intensity measure of the Poisson Point Process N ε is

1 ε 2 ds × ν(dα) × dξ.
The above SDE can be rewritten as

X ε t = X ε 0 -vt + t 0 1 ε 2 m ε (X ε s )ds + M ε t , (9) 
with

m ε (x) = R d εαg(x, εα)ν(dα), where g(x, εα) ≤ 2σ -2 (2x + εα, εα) 1 {(2x+εα,εα)≤0} ≤ 4σ -2 ε (x, α) 1 {(x,α)≤0} ,
and, if N ε denotes the compensated Poisson measure N ε , i.e.

N ε (ds, dα, dξ) = N ε (ds, dα, dξ) - 1 ε 2 dsν(dα)dξ, M ε t = t 0 R d 1 0 εαΓ(X ε s -, εα, ξ)N ε (ds, dα, dξ)
is a martingale. We will sometimes consider the above SDE with a random initial condition X ε 0 . We insist upon the fact that in such a case the Poisson Point Process N ε will be assumed to be independent of the initial condition X ε 0 . The goal of this section is to prove Theorem 1 below, which says that if X ε 0 → x0 , then X ε t converges to the solution xt of a linear ODE, and Theorem 2 below, which says the fluctuations U ε t := ε -1/2 (X ε t -xt ) converge to an Ornstein-Uhlenbeck process. We prepare the proofs of those two main results by first establishing two Lemmas and one Proposition. Lemma 1, Lemma 2, 1. and Proposition 2, 1. will be used in the proof of Theorem 1, Lemma 2, 2. Proposition 2, 2. in the proof of Theorem 2. The general idea of the proof of both Theorems is to prove tightness and identify a unique possible limit. In Theorem 1, we do that for the sequence X ε t , while in Theorem 2 we apply this strategy not directly to U ε t , but rather to the right-hand side of the linear SDE whose solution is U ε t .

Lemma 1. If the collection {X ε 0 , 0 < ε ≤ 1} of d-dimensional random vectors is tight, then the following two properties hold:

1. the collection {X ε , 0 < ε ≤ 1} is tight in D(R + , R d ); 2. we have M ε t --→ ε→0
0 in probability, locally uniformly in t.

Proof.

Step 1 Proof of the Lemma under a stronger condition We assume in this step that the following holds

sup 0<ε≤1 E( X ε 0 2 ) < ∞. ( 10 
)
It is plain that

1 ε 2 m ε (X ε t ) ≤ 4 X ε t σ -2 R d α 2 ν(dα), (11) 
and

M ε t = 1 ε 2 t 0 R d εα 2 g(X ε s , εα)ν(dα)ds ≤ 4σ -2 ε t 0 (α,X ε s )≤0 α 2 (α, X ε s ) ν(dα)ds ≤ 4σ -2 ε R d α 3 ν(dα) t 0 X ε s ds. ( 12 
)
Moreover for all x ∈ R d , we have

1 ε 2 (m ε (x), x) ≤ 0.
On the other hand, from (1),

X ε t 2 = X ε 0 2 -2 t 0 (v, X ε s ) ds + 2 ε 2 t 0 (m ε (X ε s ), X ε s ) ds + 2 t 0 X s -dM ε s + [M ε ] t
Hence, for fixed T , we have for all 0 ≤ t ≤ T

E X ε t 2 ≤ E X ε 0 2 + 2v 1 t 0 E X ε s ds + E M ε t ≤ E X ε 0 2 + v 1 t + t 0 E X ε s 2 ds + 2 ε σ 2 R d α 3 ν(dα) t + t 0 E X ε s 2 ds ≤ E X ε 0 2 + v 1 + 2 ε σ 2 R d α 3 ν(dα) t + v 1 + 2 ε σ 2 R d α 3 ν(dα) t 0 E X ε s 2 ds ≤ E X ε 0 2 + v 1 + 2 ε σ 2 R d α 3 ν(dα) T e [v1+2 ε σ 2 ( R d α 3 ν(dα))]T , ( 13 
) since 2E X ≤ 1 + E( X 2 )
, and where we have used Gronwall's Lemma (see e.g. Proposition 6.59 in [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF]). We deduce from ( 11), ( 12) and ( 13) that the process X ε is tight in D R + , R d . Indeed, as noted in Remark 14, part 2 page 119 in [START_REF] Pardoux | Probabilistic Models of Population Evolution[END_REF], if

X ε t = X ε 0 + t 0 F ε s ds + M ε t , where M ε t = t 0 G ε s ds, tightness of the collection of real valued r.v.'s { X ε 0 + T 0 ( F ε t 2 + G ε t 2 )dt, 0 < ε ≤ 1} for each T > 0 implies tightness of X ε in D(R + ; R d ) (
this makes use of Aldous' tightness criterion [START_REF] Aldous | Stopping times and tightness[END_REF]). Note that [START_REF] Pardoux | Probabilistic Models of Population Evolution[END_REF] treats real valued processes, but the proof is identical in the vector valued case.

Finally from [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF],

M ε t --→ ε→0 0 in probability.
This convergence is locally uniformly in t since t → M ε t is increasing.

Step 2 Proof of the Lemma under the original assumption For each n ≥ 1 let ϕ n be a bounded function from R d into itself such that ϕ n (x) = x whenever x ≤ n. Let now for each ε > 0 and n ≥ 1 {X ε,n t , t ≥ 0} denote the solution of equation ( 9) starting with the initial condition X ε,n 0 := ϕ n (X ε 0 ), and

M ε,n t = t 0 R d 1 0 εαΓ(X ε,n s -, εα, ξ)N ε (ds, dα, dξ). On the event { X ε 0 ≤ n}, X ε t ≡ X ε,n t and M ε t ≡ M ε,n t .
From the original assumption, for any δ > 0, there exists n δ ≥ 1 such that P( X ε 0 > n δ ) ≤ δ/2 for each ε > 0. Let T > 0 be arbitrarily fixed. From step 1 of the proof, there exists a compact subset

K δ ⊂⊂ D([0, T ], R d ) such that P(X ε,n δ • ∈ K δ ) ≤ δ/2,
and ε δ > 0 small enough such that P(sup 0≤t≤T M ε,n δ t ≥ δ) ≤ δ/2 for all 0 < ε ≤ ε δ . It follows readily that P(X ε ∈ K δ ) ≤ δ for all 0 < ε ≤ 1 and

P(sup 0≤t≤T M ε t ≥ δ) ≤ δ for all 0 < ε ≤ ε δ . QED Lemma 2. For all x ∈ R d , we have that 1. ε -2 m ε (x) --→ ε→0 Lx, where Lx = 4σ -2 (x,α)≤0 α (x, α) ν(dα) = -4σ -2 V x = -Θσ -2 M x. ( 14 
) 2. α ⊗ α g(x,εα) ε ν(dα) --→ ε→0 Λ(x), where 
Λ(x) = 4σ -2 (x,α)≤0 (x, α) α ⊗ αν(dα), ( 15 
)
Remark 1. Note that the above two Lemmas remain true if the measure ν is not Gaussian, but satisfies the following moment condition :

R d α 4 ν(dα) < ∞. ( 16 
)
In this case the limit L(x) is given by the expression

L(x) = 4σ -2 (x,α)≤0 α (x, α) ν(dα) = -4σ -2 V (x)x,
where V depends upon the direction of x. The advantage of taking a Gaussian measure (up to a multiplicative constant) of new mutations is the resulting linear behavior of the limit Lx, due to the fact that V (x) is a constant matrix. More generally, V (x) would depend upon x x .

Proof of Lemma 2. Let for all ε > 0 and x, α ∈ R d y ε = -2σ -2 (2x + εα, α) , and y = -4σ -2 (x, α) .

Note that ε -2 m ε (x) = yε≥0
1-e -εyε ε αν(dα). We have that

1 -e -εyε ε 1 yε≥0 -y1 y≥0 = 1 -e -εyε ε 1 yε≥0 -y ε 1 yε≥0 + (y ε 1 yε≥0 -y1 y≥0 ) . ( 17 
)
In addition, since for all z > 0, z -

z 2 2 ≤ 1 -e -z ≤ z, -ε y 2 ε 2 1 yε≥0 ≤ 1 -e -εyε ε 1 yε≥0 -y ε 1 yε≥0 ≤ 0, (18) 
From y ε = y -2ε σ 2 α 2 , y ε ≤ y and 1 yε≥0 ≤ 1 y≥0 . This combines with Cauchy-Schwarz entails

y 2 ε 1 yε≥0 ≤ y 2 1 y≥0 ≤ 16σ -4 x 2 α 2 .
Combining the last inequality with [START_REF] Stroock | Multidimensional Diffusion Proceses[END_REF], we obtain

-8σ -4 ε x 2 α 2 ≤ 1 -e -εyε ε 1 yε≥0 -y ε 1 yε≥0 ≤ 0. ( 19 
)
Again {y ε ≥ 0} ⊂ {y ≥ 0}. It follows that

y ε 1 yε≥0 -y1 y≥0 = (y ε -y)1 y≥0 -y ε 1 y≥0\yε≥0 = -2σ -2 ε α 2 1 y≥0 -y ε 1 y≥0\yε≥0 ≥ -2σ -2 ε α 2 .
We have proved that

-2σ -2 ε α 2 ≤ y ε 1 yε≥0 -y1 y≥0 ≤ 0. ( 20 
)
We deduce from ( 17), ( 19) and (20) that

-ε 8σ -4 x 2 + 2σ -2 α 2 ≤ 1 -e -εyε ε 1 yε≥0 -y1 y≥0 ≤ 0.
Hence,

α 1 -e -εyε ε 1 yε≥0 -y1 y≥0 ≤ ε 8σ -4 x 2 + 2σ -2 α 3 . ( 21 
)
By integrating (21) with respect to ν, we obtain

1 ε 2 m ε (x) -L(x) ≤ ε 8σ -4 x 2 + 2σ -2 R d α 3 ν(dα). (22) Hence, ε -2 m ε (x) --→ ε→0 Lx.
By a similar argument, we have that

α ⊗ α g(x, εα) ε ν(dα) -Λ(x) ≤ ε 8σ -4 x 2 + 2σ -2 R d α 4 ν(dα), ( 23 
)
and we deduce the second result of the Lemma.

Under the assumption of Lemma 1, we can extract a subsequence which we still denote X ε by an abuse of notation such that X ε ⇒ X (this notation means here and below that X ε converges in law towards X as D(R + , R d )-valued random variables), and we have the following result:

Proposition 2. If X ε ⇒ X, then 1. 1 ε 2 m ε (X ε • ) ⇒ L X• in D(R + , R d ), and 
2. 1 ε d dt M ε • ⇒ Λ( X• ) in D(R + , R d ),
Proof of 1. It follows from ( 22) that for all δ, C > 0, there exists ε δ,C such that if ε < ε δ,C and for all x ≤ C,

1 ε 2 m ε (x) -Lx ≤ δ,
thus, for an arbitrary T > 0 and for ε < ε δ,C ,

P sup t≤T 1 ε 2 m ε (X ε t ) -L(X ε t ) > δ ≤ P sup t≤T X ε t > C .
It follows that for all δ, C > 0, lim sup

ε→0 P sup t≤T 1 ε 2 m ε (X ε t ) -L(X ε t ) > δ ≤ sup ε P sup t≤T X ε t > C .
From the tightness of X ε , for all η > 0, we can choose C > 0 such that sup

ε P sup t≤T X ε t > C ≤ η.
Hence for all δ, η > 0 lim sup

ε→0 sup t≤T 1 ε 2 m ε (X ε t ) -L(X ε t ) > δ ≤ η. Moreover L(X ε ) ⇒ L( X) in D(R + , R d ) since L is a continuous function. Conse- quently, 1 ε 2 m ε (X ε ) = 1 ε 2 m ε (X ε ) -L(X ε ) + L(X ε ) ⇒ L( X). Proof of 2. Note that d dt M ε t = R d α ⊗ α g(X ε t , ε α)ν(dα).
By a similar argument as in the first part of the proof, using this time (23), we establish the second claim, thanks to the fact that

α 4 ν(dα) < ∞.
We can now establish Theorem 1. If X ε 0 → x 0 in probability as ε → 0, then X ε t --→ ε→0 xt in probability, locally uniformly in t, where

dx t dt = -v + Lx t , x0 = x 0 . ( 24 
)
Proof.

The assumption and Lemma 1 imply tightness of the collection of processes {X ε • , 0 < ε ≤ 1}. Hence X ε converges weakly to a limit along a subsequence. From (9), Proposition 2, 1. and Lemma 1, 2., we deduce that the limit solves the ODE (24). Since the limit xt is uniquely determined and deterministic, the whole collection X ε t converges in probability as ε → 0 towards xt , locally uniformly in t.

Remark 2. In case X ε 0 ⇒ 0 , where X 0 is a d-dimensional random vector, the same result still holds, except that the limit is random and the convergence is in law.

The differential equation (24) represents a deterministic approximation for the stochastic process X ε in the limit of small jumps. We note that xt ---→ t→∞ x∞ = -

M -1 v Θσ -2 . ( 25 
)
To estimate the fluctuations of the process in the small-jumps limit, we now consider the following process

U ε t = X ε t -xt √ ε . ( 26 
)
Theorem 2. Assume that X ε 0 = x0 . Then U ε ⇒ U , where U is an Ornstein-Uhlenbeck process:

dU t = LU t dt + Λ 1 2 (x t )dB t , U 0 = 0, ( 27 
)
with B being a d-dimensional standard Brownian motion. In other words,

U t = t 0 e L(t-s) Λ 1 2 (x s )dB s .
Proof. We have that

U ε t = t 0 ε -2 m ε (X ε s ) -Lx s √ ε ds + 1 √ ε M ε t , = L t 0 X ε s -xs √ ε ds + 1 √ ε t 0 1 ε 2 m ε (X ε s ) -LX ε s ds + 1 √ ε M ε t = L t 0 U ε s ds + 1 √ ε t 0 1 ε 2 m ε (X ε s ) -LX ε s ds + 1 √ ε M ε t .
Thus by the formula for the solution of a linear ODE and an integration by parts,

U ε t = 1 √ ε t 0 e L(t-s) 1 ε 2 m ε (X ε s ) -LX ε s ds+ 1 √ ε M ε t + 1 √ ε t 0 e L(t-s) LM ε s ds. ( 28 
)
We deduce from ( 22) that

1 √ ε t 0 e L(t-s) 1 ε 2 m ε (X ε s ) -LX ε s ds --→ ε→0 0 (29)
in probability. Furthermore, 1 √ ε M ε are tight martingales by a similar argument as before since sup

{t>0, ε} R 2 α 2 g(X ε t , εα)ν(dα) ≤ R 2 α 2 ν(dα) < ∞.
Let us admit for a moment the Lemma 3. For any T > 0, as ε → 0,

sup t≤T 1 √ ε (M ε t -M ε t -) → 0 in probability.
Hence every converging subsequence of 1 √ ε M ε converges to a continuous process M as ε goes to 0, and using Proposition 2, 2., we have (recall ( 15))

1 √ ε M ε t = t 0 α ⊗ α g(X ε s , εα) ε ν(dα)ds --→ ε→0 t 0 Λ(x s )ds.
Let us now explain why these facts imply that M t is a martingale such that

M t = t 0 Λ(x s )ds.
We first note that since X ε 0 (ω) = x0 for all ε > 0 and ω, we deduce from ( 12) and ( 13) that for each t > 0 the collections indexed by ε of random matrices and vectors

1 ε M ε t , 1 ε M ε t ⊗ M ε t and 1 √ ε M ε t are uniformly integrable. On the other hand, for any n ≥ 1, 0 < s 1 < • • • < s n = s < t, Φ ∈ C b (R nd ), we have E Φ M ε s 1 √ ε , . . . , M ε sn √ ε M ε t √ ε - M ε s √ ε = 0, E Φ M ε s 1 √ ε , . . . , M ε sn √ ε 1 ε M ε t ⊗ M ε t - 1 ε M ε t - 1 ε M ε s ⊗ M ε s + 1 ε M ε s = 0.
We may take the limit as ε → 0 in these two identities, which yields identities which (thanks to the freedom of choice of n, s 1 , . . . , s n and Φ) show that both M t and M t ⊗ M t -t 0 Λ(x s )ds are continuous martingales.

We deduce thanks to a representation theorem of continuous martingales, see e.g. Theorem 4.5.2 from [START_REF] Stroock | Multidimensional Diffusion Proceses[END_REF], that there exists a d-dimensional Brownian motion B t such that

M t = t 0 Λ 1 2 (x s )dB s , t ≥ 0.
This being true for any converging subsequence of 1 √ ε M ε , the limit is unique (in law). Finally, combining this with (28) and (29), we deduce that

U ε t ⇒ t 0 e L(t-s) Λ 1 2 (x s )dB s .

It remains to turn to the

Proof of Lemma 3 It is clearly sufficient to prove the result for any coordinate of the d-dimensional process M ε t , which means that it suffices to prove the result in case d = 1, which we assume for the rest of this proof. In other words, p is the density of the Gaussian law N (0, γ 2 ), with some γ > 0. Let us define

M ε t = [0,t]×R×[0,1] εαN ε (ds, dα, dξ).
It is plain that

sup t≤T 1 √ ε (M ε t -M ε t -) ≤ sup t≤T 1 √ ε M ε t -M ε t - .
Hence all we need to show is that the above right hand side tends to 0 in probability, as ε → 0. Let a > 0 be arbitrary. We need to estimate

P sup t≤T | M ε t -M ε t -| > a √ ε .
It is plain that, with

Z ε := N ε ([0, T ] × R × [0, 1]), P sup t≤T | M ε t -M ε t -| > a √ ε ≤ P Z ε > Kε -2 + P Z ε ≤ Kε -2 , sup t≤T | M ε t -M ε t -| > a √ ε = A(K, ε, T ) + B(K, ε, T ).
Since the law of Z ε is Poisson with mean (2ε 2 ) -1 ΘT , it follows from Chebychef's inequality that

A(K, ε, T ) ≤ ΘT 2K . ( 30 
)
On the other hand, if {Y k , k ≥ 1} are i.i.d. r.v.'s with the common distribution N (0, 1), with the notation

a ε = a γ √ ε , B(K, ε, T ) ≤ P sup 0≤k≤Kε -2 |Y k | ≥ a ε ≤ 2P sup 0≤k≤Kε -2 Y k ≥ a ε = 2 -2P sup 0≤k≤Kε -2 Y k ≤ a ε = 2 -2 (1 -P(Y 1 > a ε )) Kε -2 .
Note that, since exp(a ε Y 1 -a2 ε /2) has mean 1,

P(Y 1 > a ε ) = P(e aεY 1 -a 2 ε /2 > e a 2 ε /2 ) ≤ e -a 2 ε /2 . Hence B(K, ε, T ) ≤ 2 -2 1 -e -a 2 ε /2 Kε -2 For ε small enough, e -a 2 ε /2 ≤ 1/2, from which follows that 1-e -a 2 ε /2 ≥ exp(-e -a 2 ε /2 ), hence B(K, ε, T ) ≤ 2 1 -exp - K ε 2 e -a 2 2γ 2 ε . ( 31 
)
For any δ > 0, we first choose K δ = ΘT δ , so that from (30), A(K δ , ε, T ) ≤ δ/2 for all ε > 0, and then thanks to (31) ε small enough such that B(K δ , ε, T ) ≤ δ/2. The result follows. Remark 3. We have exploited the fact that p is the density of a Gaussian distribution. In fact it would suffice that P(|Y 1 | > a) ≤ C a 4+δ for some C, δ > 0. We note that this is exactly what is already necessary for [START_REF] Peischl | Establishment of new mutations in changing environments[END_REF] to hold.

The Ornstein-Uhlenbeck process U t which appears in the last Theorem is a centered Gaussian vector. It is easy to compute its covariance matrix

E(U t ⊗ U t ) = t 0 e L(t-s) Λ(x s )e L(t-s) ds.
as well as the limit of the latter as t → ∞

E(U t ⊗ U t ) ---→ t→∞ S2 = ∞ 0 e Lt Λ(x ∞ )e Lt dt. ( 32 
)
It follows readily that the law of U t converges, as t → ∞, to N (0, S2 ). In case xt = x∞ for all t ≥ 0, then U t solution of the linear SDE dU t = LU t dt+Λ 3 Large time behavior of X ε t for small ε > 0

In this section, we shall first prove that provided ε is small enough, X ε t is positive Harris recurrent with a unique invariant probability measure, next that the collection of invariant probability measures indexed by ε is tight, and finally that the large time behavior of xt + √ εU t is a good approximation of the large time behavior of X ε t , thus justifying a sort of interchange of the limits as ε → 0 and as t → ∞.

Large time behavior of the process X ε t

The aim of this subsection is to prove (in the next statement, • stands for the total variation norm): Theorem 3. There exists ε 0 > 0 such that for any 0 < ε ≤ ε 0 , the process X ε t is positive Harris recurrent, with a unique invariant probability measure µ ε . Moreover

X ε t is ergodic, in the sense that P(X ε t ∈ •|X ε 0 = x) -µ ε → 0, as t → ∞, for all x ∈ R d .
Thanks to Theorem 4.2 from [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF], the first part Theorem 3 follows from a positive recurrence condition (which is called (CD2) in [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF]), and the fact that a certain ball centered at 0 is a petite set. We first establish in the next Lemma and the subsequent Corollary an a priori estimate. The proof of the first part of the Theorem will then consist in two steps : conclude (CD2) from the Corollary, and verify the petite set property. The second part will follow from Theorem 5.1 in [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF]. Lemma 4. There exists three constants c, C, a > 0 (whose values depend explicitly upon the parameters of our model) such that for all 0 < ε ≤ 1 4 , t > 0,

X ε t ≤ X ε 0 + C t -c t 0 X ε s ∧ a ε ds + N ε t ,
where the local martingale N ε t , which is a martingale as soon as E[ X ε 0 ] < ∞, is given as

N ε t = [0,t]×R d ×[0,1] ( X ε s-+ εα -X ε s-)Γ(X ε s-, εα, ξ) Mε (ds, dα, dξ).
Proof. We have

X ε t = X ε 0 - t 0 v, X ε s X ε s ds + s≤t ( X ε s -+ ∆X ε s -X ε s -) = X ε 0 - t 0 v, X ε s X ε s ds + [0,t]×R d ×[0,1] X ε s-+ εα -X ε s- Γ(X ε s-, εα, u)N ε (ds, dα, du) = X ε 0 + t 0 R d X ε s + εα -X ε s ε × g(X ε s , εα) ε ν(dα)-v, X ε s X ε s ds + N ε t ( 33 
)
Recall that only mutations which improve the fitness may get fixed, since from ( 3) and ( 4) g(x, α) > 0 requires s(x, α) > 0, i.e. (2x + α, α) < 0, hence, with again the notation ∆X ε s = X ε s -X ε s-, X ε s -+ ∆X ε s -X ε s -≤ 0, and moreover we shall restrict ourselves below to the jumps such that

X ε s -+ ∆X ε s -X ε s -≤ - 1 2 ∆X ε s .
For x ∈ R d , let C(x) denote the set of vectors α such that

x + α -x ≤ - 1 2 α .
We define γ, the angle between the two directions -x and α, as follows. If x and α are colinear, then γ = 0. Otherwise, we consider the plane spanned by x and α. If we restrict ourselves to those α such that Γ(x, εα, 0) > 0, then in the above plane, the angle between the directions -x and α is between -π/2 and π/2. We denote by γ that angle, whose sign is unimportant, since only cos γ will enter our computations. From the identity (again we consider only the case where (x, α) < 0)

x + α = x 2 + α 2 -2 x α cos γ, we deduce that α ∈ C(x) iff α ≤ 4 3 (2 cos γ -1) x .
We note in particular that whenever α ∈ C(x) and ε ≤ 1, then εα ∈ C(x). Now

R d X ε s + εα -X ε s ε × g(X ε s , εα) ε ν(dα) ≤ - 1 2 C(X ε s )/ε α g(X ε s , εα) ε ν(dα) ≤ -(1 -e -1 ) C(X ε s-)/ε α (2X ε s + εα, α) - σ 2 ∧ 1 2ε ν(dα)
where (y, z) -stands for the negative part the the scalar product of the two vectors y and z, and we have exploited the elementary inequality 1 -e -u ≥ (1 -e -1 )(u ∧ 1), for all u ≥ 0.

We now need to lower bound the factor of -(1 -e -1 ) in the last right hand side.

For that sake, we consider the expression

α∈C(x)/ε α (2x + εα, α) - σ 2 ∧ 1 2ε ν(dα).
For x ≤ 2, we lower bound this integral by 0. We now consider the case x > 2.

We lower bound the integral by reducing the integration to the set

A ε (x) = C(x) ε ∩ {1 ≤ α ≤ 2}.
It is not hard to see that whenever α ∈ A ε (x), -2 ≤ α, x x < -1/2. Indeed, the lower bound is clear and from εα ∈ C(x), we deduce that 2(εα,

x) + α 2 ≤ α 2 4 -x × α , whence (α, x x ) ≤ -α] 2 ≤ -1 2 , since α ≥ 1. Moreover, since x > 2, if α ∈ A ε (x), -2 x < (x, α) < - x 2 < -1, because ε α 2 ≤ 1,
provided ε ≤ 1/4. Consequently (x, α) + ε α 2 ≤ 0 and

(2x + εα, α) -≥ (x, α) ≥ x 2 , so that Aε(x) α (2x + εα, α) - σ 2 ∧ 1 2ε ν(dα) ≥ 1 2σ 2 x ∧ σ 2 ε Aε(x) α ν(dα) ≥ β 2σ 2 x ∧ σ 2 ε ,
where β = inf x >2,ε≤1 Aε(x) α ν(dα) > 0. We have proved that, with a = σ 2 and c = (1 -e -1 )β/(2σ 2 ),

X ε t ≤ X ε 0 + v 1 × t -c t 0 1 X ε s >2 X ε s ∧ a ε ds + N ε t .
The result follows with C = v 1 + 2c.

Corollary 1. There exist 0 < ε 0 ≤ 1/4, b, k > 0 and B a compact subset of R d such that for any 0 < ε ≤ ε 0 ,

X ε t ≤ X ε 0 -bt + k t 0 1 B (X ε s )ds + N ε t . ( 34 
)
Proof. We choose B = {x; x ≤ 2C/c} and ε 0 = ca 2C . (34) with b = C, k = 2C now follows from Lemma 4.

We finally turn to the Proof of Theorem 3. Step 1. Verification of the positive recurrence condition The process X ε t satisfies (34) which is exactly condition (CD2) from [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF]. Indeed, (33) implies that the function V (x) := x belongs to the domain of the extended generator A ε of the Markov process X ε t and that

A ε V (x) = R d x + εα -x ε × g(x, εα) ε ν(dα) -v, x x .
The proof of Corollary 1 implies that

A ε V (x) ≤ -b + k1 B (x), again for V (x) = x .
Step 2. B is a petite set In order to deduce positive Harris recurrence from Theorem 4.2 in [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF], it remains to show that B = {x; x ≤ K}, with K = 2C/c is a closed petite set. This will follow if we show that there exist two constants t B , C B > 0 such that for all x ∈ B,

P(X ε t B ∈ dy|X ε 0 = x) ≥ C B 1 y ≤1 dy. ( 35 
)
We choose 0 < η < 1 and define the event

A ε K,η =    X ε t does not jump on the time interval 0, 2K-η v , and 
X ε t jumps exactly once on the time interval 2K-η v , 2K v .    It is plain that P(A ε K,η ) > 0. Let T ε denote the first jump time of X ε t . We note that, provided that X ε 0 = x ∈ B, on the event A ε K,η , X ε T ε -∈ B K,η , where B K,η = {x ∈ R d , -3K ≤ x 1 ≤ -K + η, -K ≤ x i ≤ K, 2 ≤ i ≤ d}.
. Let Λ ε denote a random vector which is such that the law of ε -1 Λ ε has the density p defined by [START_REF] Karatzas | Brownian motion and stochastic calculus 2nd[END_REF]. Denote by f ε (y) = εp(εy) the density of the law of Λ ε . We define

Σ ε = Λ ε 1 { X ε T ε -+Λε ≤1+η} . On the event Σ ε = 0, since K > 2 > 1 + η, g(X ε T -, Σ ε ) ≥ c ε,K,η , where c ε,K,η = inf x∈B K,η , x+α ≤1+η g(x, α) > 0.
We denote by ξ the random variable with the uniform distribution on the interval [0, 1], which is such that whenever

ξ ≤ g(X ε T -, Σ ε ), the "proposed" jump Σ ε happens at time T ε . Recall that 0 ≤ 2K v -T ε < η v . On the event A ε K,η ∩ {Σ ε = 0} ∩ {ξ ≤ c ε,K,η }, X2K v = X ε T ε -+ Σ ε + v 2K v -T ε , and for any h ∈ C(R d , R + ), Eh X ε 2K v ≥ P(A ε K,η ∩ {Σ ε = 0})c ε,K,η a ε,K,η y ≤1 h(y)dy, with a ε,K,η = inf x∈B K,η , x+y ≤1+η f ε (y). (35) follows, with t B = 2K v and C B = P(A ε K,η ∩ {Σ ε = 0})c ε,K,η a ε,K,η .
Step 3. Ergodicity We apply Theorem 5.1 from [START_REF] Meyn | Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes[END_REF]. All we have to show is that their condition (S) holds, namely that all compacts sets are petite for some skeleton chain. In fact in Step 2 of the proof, we have established that B is petite for a skeleton chain. It is easy to verify that the same proof works when replacing B by an arbitrary compact set.

Tightness of the invariant probability measure of X ε t

It follows from Theorem 3 that for any ε ≤ ε 0 , X ε t possesses a unique invariant probability measure µ ε . The aim of this subsection is to prove Theorem 4. For any sequence ε n ↓ 0, the sequence of invariant measures {µ εn , n ≥ 1} is tight.

The result will follow from the following statement Proposition 3. There exist two constants a, C > 0 such that for any

M > 0, if ε ≤ a M ∧ 1 4 , R d ( x ∧ M )µ ε (dx) ≤ C .
Let us first show how Theorem 4 follows from Proposition 3.

Proof of Theorem 4. We deduce from the above Proposition that whenever

ε ≤ a M ∧ 1 4 , µ ε ( x > M ) ≤ C M .
Fix δ > 0 arbitrarily small. Let us from now on fix M ≥ C /δ. Let n 0 be such that ε n 0 ≤ a M ∧ 1 4 . It follows from the above that for any n ≥ n 0 ,

µ εn ( x > M ) ≤ δ.
It is finally easy to find M ≥ M such that

µ εn ( x > M ) ≤ δ
for any 1 ≤ n ≤ n 0 , hence the result.

Now return to the

Proof of Proposition 3. It follows readily from Lemma 4 that whenever

X ε 0 = x ε 0 is deterministic, M < a/ε, E( X ε t ) ≤ x ε 0 + Ct -c t 0 E [ X ε s ∧ (a/ε)] ds ≤ x ε 0 + Ct -c t 0 E [ X ε s ∧ M ] ds.
Since the function f (x) = x ∧ M is bounded and continuous, it follows from the last part of Theorem 3 that E [ X ε t ∧ M ] → R d ( x ∧ M )µ ε (dx) as t → ∞. Hence, since the first part of the proof implies that

c t t 0 E [ X ε s ∧ M ] ds ≤ x ε 0 t + C
for all t > 0, the result follows by letting t → ∞.

Asymptotic analysis of the large time behavior of X ε t

We now want to analyze the large time behavior of X ε t , for small ε. We first show Theorem 5. As ε → 0, µ ε ⇒ δ x∞ .

Proof We consider the X ε t equation started with X ε 0 ∼ µ ε . Choose a sequence ε n which converges to 0 as n → ∞. Since the collection {µ εn } n≥1 is tight, along a subsequence still denoted the same way, µ εn ⇒ µ 0 . It follows from Theorem 1 (in fact its extension explained in Remark 2) that X εn t ⇒ X t , where X t solves the ODE dX t dt = LX t -v, X 0 ∼ µ 0 .

But for any f ∈ C b (R d ), n ≥ 1, t → Ef (X εn t ) is a constant, so this is true in the limit, which implies that µ 0 = δ x∞ . This shows that the whole collection µ ε ⇒ δ x∞ as ε → 0.

We expect from the above results that for small enough ε, the invariant measure µ ε is close to ν ε , which is the law of x∞ + √ εξ, where ξ ∼ N (0, S2 ) (recall (32)). If we interpret µ ε as the mass of X ε t for large t, this is not really correct, since for some large t, X ε t will make a large deviation from xt , see [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF]. Therefore, we prefer to interpret µ ε (A) as lim t→∞ 1 t t 0 1 A (X ε s )ds.

We now want to give a precise description of µ ε for small ε > 0. For that sake, let us introduce some notation. For any Borel set A and for all ε > 0, let A ε := x∞ + √ εA and denote by λ S2 = N (0, S2 ) the invariant Gaussian distribution of the Ornstein-Uhlenbeck process U t . Theorem 6. Consider the process X ε t , starting at time t = 0 from X ε 0 = x∞ . Let A be an arbitrary element of B d such that its boundary ∂A has zero d-dimensional Lebesgue measure. For any δ > 0 there exist t δ > 0 large enough such that for any t ≥ t δ , there exists ε t,δ > 0 such that for all ε ≤ ε t,δ , with a probability larger than 1 -δ, the fraction of the time in the interval [0, t] which X ε s spends in the set Hence there exists ε t,δ such that for any 0 < ε ≤ ε t,δ , P

A ε = x∞ + √ εA
1 t t 0 1 A (U ε s )ds -λ S2 (A) > δ ≤ δ.
Recall that

1 A (U ε s ) =    1, if X ε s ∈ x∞ +
√ εA, 0, otherwise, implying the result.

  belongs to the interval [λ S2 (A) -δ, λ S2 (A) + δ]. A (U s )ds → λ S2 (A) in probability, as t → ∞.Hence for all δ > 0, there exists t δ > 0 such that for any t ≥ t δ , A (U s )ds -λ S2 (A) ≥ δ ≤ δ/2.

	Proof. As ε → 0, for any fixed t > 0, U ε t being defined by (26), 1 t t 0 1 Aε (X ε s )ds = 1 t t 0 1 A (U ε s )ds ⇒ 1 t t 0 1 A (U s )ds, and 1 t t 0 1 P 1 0 t t 1 From the Portmanteau theorem, lim sup ε→0 P 1 t t 0 1 A (U ε

s )ds -λ S2 (A) ≥ δ ≤ δ/2.

(x ∞ )dB t is a time homogeneous Gauss-Markov process, and N (0, S2 ) is its unique invariant probability measure, see Theorem 5.6.7 in Karatzas and Shreve[START_REF] Karatzas | Brownian motion and stochastic calculus 2nd[END_REF]. Moreover (x t , U t ) is a time homogeneous Markov process and δ x∞ × N (0, S2 ) is its unique invariant probability measure.
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