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In current approaches of mathematics education at the upper secondary level, activities proposed to students involve several domains in interaction. After studying activities about modelling or functions, we question here the development in many mathematical curricula around the world of activities involving computer programming, sometimes labelled "coding" or "algorithmics". The motivation of this paper is that a suitable theoretical framework is required to make sense of students' work in activities involving various domains, taking into account the semiotic dimension as well as the use of instruments, and the contents and reasoning specific to each domain.

Introduction

We are concerned with teaching/learning situations associating mathematical domains and other domains, and problems arising in these situations. Here are three examples. First, with regard to covariation and functions, many researchers stress the need to offer students domains of sensual experience of co-variation for instance by way of dynamic geometry before or in parallel with formal approaches of functions. Modelling is another activity associating domains of everyday experience or scientific or professional domains in order that students make sense of mathematical notions and processes. Finally, there is now a big emphasis in many curricula on the introduction of programming (or algorithmics, or coding) into mathematical activities. Our concern, looking at real classroom situations or even experimental situations, is the lack of connection between the experience in the other domains and the mathematical formalism, techniques, etc. There is also a lack of connection between the processes of solving and reasoning in other domains on one side and in mathematics on the other side. In this paper, we consider especially the case of computer programming in mathematics education. Few research studies have been done in this area [START_REF] Lagrange | Algorithmics[END_REF] and then this paper is based upon a recent doctoral research study carried out by the second author [START_REF] Laval | L'algorithmique au lycée entre développement de savoirs spécifiques et usage dans différents domaines mathématiques[END_REF]. We have two aims: to discuss how current theoretical frameworks analyze various aspects of activities involving mathematics and other domains, and to propose a framework, taking into account comprehensively these aspects.

Theoretical developments and question

Classically, activities involving mathematics and other domains are analysed by considering that entities involved in the task appear under different semiotic representations, each pertaining to a field. This is the "multi-representation" view. Among the many theoretical approaches of multirepresentations, we start from [START_REF] Duval | Quelle sémiotique pour l'analyse de l'activité et des productions mathématiques?[END_REF] consideration of the plurality of representations for a given object. For Duval there is no other ways of gaining access to the mathematical objects but to produce some semiotic representations and he stresses that representations are organized in semiotic systems. In a semiotic system, some representations are called "registers" and there is a need for a specific focus on processes of work inside and between the registers. In this multi-representational approach, activities for students in different fields are considered helpful because of the opportunities they offer for working on different semiotic representations and coordinating these. In spite of the usefulness of frameworks like Duval's, the "multi-representation" view is for us too reductively semiotic and cannot alone really make sense of activities involving several fields in interaction, and of their potentialities. In some curricula, much emphasis has been put on the work on representations and students can be fluent in the processes of conversion and treatments, but this does not necessarily imply a deep understanding of notions at stake. For instance, even when students are proficient in dealing with the four classical representations of functions (verbal, symbolic, graphic, and tabular), fundamental aspects of functions (correspondence, co-variation, mapping, etc.) and their coordination remain problematic.

Another framework for making sense of activities of coordinating different domains (especially mathematical domains) is by [START_REF] Douady | Jeux de cadres et dialectique outil-objet[END_REF]. For Douady, a setting is constituted of objects from a branch of mathematics, of relationship between these objects, their various expressions and the mental images associated with these objects. When students solve a problem, they can consider this problem in different settings. Switching from one setting to another is important in order that students progress and that their conceptions evolve. According to authors like [START_REF] Perrin-Glorian | Éclairages et questions pour la didactique des mathématiques: Cadres et registres en jeu dans la résolution de problèmes[END_REF], it is sometimes difficult to distinguish the representational and the settings approaches, especially when a phase of work can be thought of both as a switch between settings and as a conversion of representations. Actually, rather than contradicting, the two approaches complement: beyond its mathematical contents, each setting offers specific semiotic systems, and coordinating the settings also implies coordinating the semiotic systems.

Another concern is how instruments are taken into account in the students' mathematical activity. Twenty years ago, sophisticated calculators became available for students' work and a framework was developed: the instrumental approach of the use of digital technologies to teach and learn mathematics. This approach has been inspired by research work in cognitive ergonomics but researchers like [START_REF] Lagrange | Complex calculators in the classroom: Theoretical and practical reflections on teaching pre-calculus[END_REF] insisted on the intertwined development of knowledge related to the instrument and of knowledge about mathematics in an instrumental genesis. This is important because otherwise an instrumental approach would be only a psychological framework with little insight for mathematics education. Authors like Bartolini [START_REF] Bartolini Bussi | Semiotic mediation in the mathematics classroom: Artefacts and signs after a Vygotskian perspective[END_REF] also noted that the use of instruments and the associated reflection involve a lot of signs that, for a student, may have not immediately a mathematical meaning, and they propose the idea of "semiotic mediation" to refer to the classroom activity necessary in order to ensure the productivity of the work with instruments at a semiotic level.

Each framework, multi-representation, coordination of mathematical settings and instrumental approach, puts a focus on a specific dimension: the semiotic processes or on the contents and reasoning, or on the use of instruments (Figure 1). We present the framework of connected working spaces, taking into account comprehensively these three dimensions in order to address work in mathematical domains as well as in non-mathematical domains where mathematical notions can take sense. This framework was proposed by [START_REF] Minh | Connected Functional Working Spaces: A framework for the teaching and learning of functions at upper secondary level[END_REF] and by [START_REF] Lagrange | Connected Working Spaces: Designing and evaluating modelling based teaching situations[END_REF] for activities related respectively to functions and to modelling and we question here its utility for addressing the new challenge brought about by activities involving computer programming in mathematics education. 

Connected Working Spaces

The framework of the Mathematical Working Spaces (MWS) allows characterizing the way the concepts make sense in a given work context. According to Kuzniak & Richard (2013) a MWS is an abstract space organized to ensure the mathematical work in an educational setting. Work in a MWS is organized around three dimensions:  Semiotic: use of symbols, graphics, concrete objects understood as signs.  Instrumental: construction using artefacts (geometric figure, graphs, program...)  Discursive: justification and proof using a theoretical frame of reference.

Activities considered in this paper involve several domains, and for each of these domains, a working space. The framework of "Connected Working Spaces" has been introduced in order to give account of how connections between Working Spaces bring meaning to the concepts involved. This extended MWS framework takes into account the semiotic and instrumental dimensions as well as the contents and mode of reasoning, in different domains of activity and their interaction in a mathematical activity. Then it is not contradictory with the theoretical developments outlined above (Figure 1), but it rather aims to organize them in a comprehensive structure. What we expect from this framework is to help building and analysing situations on a given topic involving a mathematical and another domain, identifying the three dimensions in the corresponding Working Spaces, contrasting these and looking for possibilities of connection.

Connecting Algorithmic and Mathematical Working Spaces: The Intermediate Value Theorem (IVT)

Activities involving computer programming in mathematics education connect two distinct Working Spaces: an Algorithmic Working Space (AWS) and a Mathematical Working Space 

Interplay between settings:

Changes of settings make pupils progress and conceptions evolve. 

Discursive dimension Semiotic dimension

Instrumental dimension

(MWS). In the continuation of this paper we will focus on a particular topic that can be considered both from a computer science and a mathematical point of view: the solution of an equation f(x)=0 for a given function f defined on a closed interval [a ; b]. We will consider this topic relatively to how it can be a subject for secondary students' work, that is to say how it implies connecting the two Working Spaces. From a computer programming point of view, specific algorithms allow approaching solutions as close as possible. We consider algorithms able to find, for an arbitrary precision e, an interval [u ; v] with the property P(e): |u -v| < e and f(u)×f(v)≤0. The simplest algorithm scans iteratively the sub intervals of length e, until finding a suitable one (Figure 2, left). A more efficient algorithm is based on dichotomy (Figure 2, right). In the corresponding AWS, the semiotic dimension is characterized by specific marker of iterative (While…) and alternative (If…) treatments and by variables, whose value, as a difference with mathematical variables, change along the treatment by way of the specific operation of assignment (sign ← in Figure 1). Mathematical expressions are also involved. The associated semiotic system can be at stake for students not fluent in algebra, especially the notation f(…). There is a strong instrumental dimension, since algorithms are intended to be executed by an automatic device and it is expected that execution will help students to make sense of the formalism. The discursive dimension is characterized by questions like the termination of an algorithm (does it terminate in a finite number of steps?), its effectivity (does it return an appropriate solution?) and its efficiency (how many steps are necessary for a given set of data?).

A scan algorithm A dichotomy algorithm

While f(u)×f(v)>0 The corresponding MWS has a strong discursive dimension: it includes properties of functions like continuity and monotonicity; it is focused on a mathematical solution, rather than on a process of approximation. A classical proof is based on two adjacent sequences. In addition to the usual mathematical formalism, the semiotic dimension is then characterized by the formalism of infinite sequences, different from the iterative variables of the algorithms, although both are defined by way of the dichotomy method. Students are introduced progressively into these notions and formalism from 10 th to 12 th grade. The instruments here are paper and pencil calculations, and graphical display of functions. Figure 3 summarizes the dimensions in the two Working Spaces.

Organizing the Working Spaces: A classroom experiment

The outcome of the above analysis is that the algorithms and the theorem have different targets: while the IVT is about solutions, the algorithms aims at obtaining an interval with the property P(e).

Mathematical Working Space • Discursive dimension:

-Focus on a mathematical solution, -Properties of functions.

• Semiotic dimension:

-Usual mathematical formalism, -Formalism of infinite sequence.

-Graphs (iconic).

• Instrumental dimension:

-Paper and pencil calculations, Graphs.

Algorithmic Working Space • Discursive dimension:

-Focus on process of approximation: termination, effectivity, efficiency.

• Semiotic dimension:

-Specific markers of treatments.

-Variables.

-Mathematical expressions.

• Instrumental dimension:

-Execution by automatic device.

Figure 3: The Working Spaces

However, there are clear links. First, the IVT ensures that, with the sufficient condition of continuity, an interval with the property P(e) actually contains one or more solutions, and the corollary that, with the additional sufficient condition of monotonicity, it contains the unique solution. Second, the algorithms, especially the dichotomy algorithm provides a mode of generation of sequences that play a crucial role in a proof of the IVT. From these links, different organisations of the MWS and the AWS can be envisioned. In a first organization, after being taught about the IVT, students can work on the algorithms with a function verifying the sufficient conditions in order to get an approximation of the solution. We name this organisation "application": computer programming is considered as an application of "pure" mathematics. This is the most common scheme that we found when looking at textbooks in France. As for us, we envision other organisations making the Working Spaces interact more closely. It is because, as we wrote above, knowledge is at stake in both Working Spaces, and interaction can help understanding. Working on an algorithm, and after proving that the returned interval has the property P(e), students can experiment on diverse functions, in order to infer sufficient conditions for the IVT. They can then work on a proof by conceiving recurrent sequences from the iterative variables in the algorithm.

Classroom situations

We designed classroom situations in order to test the hypothesis that, transitioning from "application" to other organisations, students make connections between Working Spaces in the various dimensions. The situations were implemented in three French classes at 10 th , 11 th and 12 th grade in order to get evidence about the work of students with different mathematical attainments. Each class had around 30 students and had nothing particular with regard to the work expected. The duration of each situation was between one-half and one hour. The students had worked before on the dichotomy method for discrete numbers (Laval, 2016) and this work was mainly in the AWS.

Otherwise they had no previous experience in the domain, except that, for the 12 th graders, the IVT had been introduced and not proved. A first situation was "application": a continuous monotonic function was given and the dichotomy method was exposed by way of a flow chart. The students had to give some evidence of the existence of a unique solution, and to implement the method for this function in a textual programming environment allowing execution. The situation was intended to make students work in the AWS and MWS and coordinate these especially in the semiotic and discursive dimensions. Then, in a second situation, with the same function and the same programming environment, students had to complete a scan algorithm where the condition of continuation (following While) was missing. While this situation clearly involves the AWS in the three dimensions, the MWS is in the background, both with regard to the formalism and to the properties of the function.

We analyse here particularly two subsequent situations. A situation was intended to make students aware of sufficient conditions for the IVT, by encountering functions for which the dichotomy algorithm does not return a suitable interval. They were requested to implement and execute a dichotomy algorithm for "hidden" functions, i.e., functions that students could use in the algorithm and display graphs, but whose formula was not given. Students had to answer the question "does the interval returned by the algorithm actually contain the unique solution?" See an example in Figure 4. The task is reflective, both in the AWS and the MWS: evaluating the effectivity of the algorithm at a mathematical level. The students were expected to be influenced toward an affirmative answer by the "application" situation where mathematical effectivity was not discussed.

Students at 12th grade knew the IVT, but were expected not to focus on sufficient conditions, because all examples treated before were continuous monotonic functions. However, the students were expected to double check by graphing the functions, or computing values. This connection between the AWS and the MWS involves the instrumental and the discursive dimensions. The last situation was implemented only for 12 th grade students. Students were invited to build a proof of the IVT, using adjacent sequences and the dichotomy method. The semiotic dimensions of the MWS and the AWS are at stake in this task, with a process of conversion, from the iteration on variables in the AWS, to sequences in the MWS. In the discursive dimensions the convergence of the sequences had to be inferred from the fact that P(e) holds for arbitrary e. However, the convergence does not prove that the limit is a solution, and students were expected to use explicitly a theorem on continuous functions and sequences, and another about the compatibility of limit and order. This work is specific to the MWS and had been prepared by the focus on sufficient conditions in the third situation.

Observation and evaluation

In the situation with the "hidden" functions (Figure 4), the students considered that the very small interval returned by the algorithm was an evidence of the existence of a single solution. Most students reconsidered this finding after graphing and recognizing the unusual shape of the graph.

They calculated the values of the function at the boundaries of the intervals returned by the algorithm for decreasing values of the threshold e and found values of the function decreasing at the left boundary and increasing at the right boundary. They deduced that these intervals approach a pole rather than a solution. The outcome of this third situation is that, except for a few 10 th graders, the students made a clear distinction between the effectivity of the algorithm in the AWS and its effectivity to approach a solution in the MWS. 11 th and 12 th graders had a notion of sequences and convergence that helped them to consider more closely the phenomenon.

As mentioned before, the situation on the proof of the IVT was implemented only at 12 th grade. At the beginning, the students were confused, not connecting sequences and the IVT, which they thought related to functions. Then some of them proposed to look at the values of the boundaries of the intervals along the execution of the dichotomy algorithm for a particular function. This is a typical answer:

The sequences (u n ) and (v n ) are adjacent because (u n ) is increasing, (v n ) is decreasing and (v n -u n ) becomes closer to zero when n becomes bigger and bigger. Then these two sequences converge towards a common limit c. Because f is continuous, f(u n ) and f(v n ) converge towards f(c) which is zero. The theorem is proved by way of the computer for a particular function. This "proof" is a mix of observation (behaviour of the sequences, value of f(c)) and deduction (convergence of the sequences) and, for the students it is valid only for one function. Within the duration of this situation students could not go much beyond. Only one observed that a proof of the behaviour of the sequences could be made by induction. For us, the students adequately took advantage of the work in the AWS but in some way stayed halfway between the AWS that produces evidence on an example, and the MWS in which a formal proof for a generic function was expected. Students had no difficulty to operate the semiotic conversion from computer variables to sequences. In contrast, their answer witnesses a notion of proof still confusing instrumental evidence and mathematical reasoning. 

Conclusion

This paper investigates the usefulness of the Connected Working Spaces framework for addressing activities for students involving distinctive domains and especially computer programming and mathematics. We used this framework for designing a classroom experiment to test a hypothesis: for a particular topic involving computer programming and mathematics, it is possible to characterize an AWS and a MWS, and to create situations in order that students make fruitful connections between these Working Spaces in the three dimensions, semiotic, instrumental and discursive. We observed a variety of connections validating this hypothesis (Figure 5). In the situation of Figure 4, students operated the delicate coordination of the discursive dimensions in the AWS and the MWS by combining work in the instrumental dimensions. In the proof of the IVT, the students took advantage of the work in the instrumental and discursive dimensions of the AWS for their discursive work in the MWS, although they were only partially successful. Previous studies about functions and modelling already gave insight into a potential of the Connected Working Spaces framework and this paper extends the analysis to computer programming and mathematics education. It also witnesses of a framework that do not contradict with other approaches like multirepresentation, settings and instruments but rather connects these in a comprehensive analysis of students' work.
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 1 Figure 1: Four frameworks, three dimensions.

  Semiotic mediation: Activities with artefacts, production of signs (individual, collective) Instrumental approach to math tools: Interplay between knowledge about the artefact and maths.
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 2 Figure 2: Algorithms approximating a solution of an equation f(x)=0. From a mathematical point of view, the Intermediate Value Theorem (IVT) guarantees the existence of a solution on the interval [a ; b] under the sufficient conditions: f is continuous and f(a)×f(b)<0.The corresponding MWS has a strong discursive dimension: it includes properties of functions like continuity and monotonicity; it is focused on a mathematical solution, rather than on a process of approximation. A classical proof is based on two adjacent sequences. In addition to the usual mathematical formalism, the semiotic dimension is then characterized by the formalism of infinite sequences, different from the iterative variables of the algorithms, although both are defined by way of the dichotomy method. Students are introduced progressively into these notions and formalism from 10 th to 12 th grade. The instruments here are paper and pencil calculations, and graphical display of functions. Figure3summarizes the dimensions in the two Working Spaces.
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 4 Figure 4: A situation to make students aware of sufficient conditions for the existence of a solution.

Task:

  enter and execute the algorithm for the function f and for various values of the threshold e. Does the interval returned by the algorithm actually contain a solution? Look at the graph of the function and discuss.
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 5 Figure 5: Connections by students in the situation of Figure 4 (left) and in the proof of the IVT (right).