
HAL Id: hal-02418181
https://hal.science/hal-02418181

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connected Working Spaces: the case of computer
programming in mathematics education

Jean-Baptiste Lagrange, Dominique Laval

To cite this version:
Jean-Baptiste Lagrange, Dominique Laval. Connected Working Spaces: the case of computer pro-
gramming in mathematics education. Eleventh Congress of the European Society for Research in
Mathematics Education, Utrecht University, Feb 2019, Utrecht, Netherlands. �hal-02418181�

https://hal.science/hal-02418181
https://hal.archives-ouvertes.fr


 

 

Connected Working Spaces: the case of computer programming in 

mathematics education 

Jean–baptiste Lagrange
1
 and Dominique Laval 

2
 

1
LDAR, Université Paris Diderot, France; jb.lagrange@casyopee.eu 

2
LDAR, Université Paris Diderot, France; dominique.laval@gmail.com 

In current approaches of mathematics education at the upper secondary level, activities proposed to 

students involve several domains in interaction. After studying activities about modelling or 

functions, we question here the development in many mathematical curricula around the world of 

activities involving computer programming, sometimes labelled “coding” or “algorithmics”. The 

motivation of this paper is that a suitable theoretical framework is required to make sense of 

students’ work in activities involving various domains, taking into account the semiotic dimension 

as well as the use of instruments, and the contents and reasoning specific to each domain. 

Keywords: Connected Working Spaces, computer programming, modelling, functions, mathematics 

and other domains. 

Introduction 

We are concerned with teaching/learning situations associating mathematical domains and other 

domains, and problems arising in these situations. Here are three examples. First, with regard to co-

variation and functions, many researchers stress the need to offer students domains of sensual 

experience of co-variation for instance by way of dynamic geometry before or in parallel with 

formal approaches of functions. Modelling is another activity associating domains of everyday 

experience or scientific or professional domains in order that students make sense of mathematical 

notions and processes. Finally, there is now a big emphasis in many curricula on the introduction of 

programming (or algorithmics, or coding) into mathematical activities. Our concern, looking at real 

classroom situations or even experimental situations, is the lack of connection between the 

experience in the other domains and the mathematical formalism, techniques, etc. There is also a 

lack of connection between the processes of solving and reasoning in other domains on one side and 

in mathematics on the other side. In this paper, we consider especially the case of computer 

programming in mathematics education. Few research studies have been done in this area 

(Lagrange, 2014) and then this paper is based upon a recent doctoral research study carried out by 

the second author (Laval, 2018). We have two aims: to discuss how current theoretical frameworks 

analyze various aspects of activities involving mathematics and other domains, and to propose a 

framework, taking into account comprehensively these aspects.  

Theoretical developments and question 

Classically, activities involving mathematics and other domains are analysed by considering that 

entities involved in the task appear under different semiotic representations, each pertaining to a 

field. This is the “multi–representation” view. Among the many theoretical approaches of multi–

representations, we start from Duval’s (2006) consideration of the plurality of representations for a 

given object. For Duval there is no other ways of gaining access to the mathematical objects but to 
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produce some semiotic representations and he stresses that representations are organized in semiotic 

systems. In a semiotic system, some representations are called “registers” and there is a need for a 

specific focus on processes of work inside and between the registers. In this multi–representational 

approach, activities for students in different fields are considered helpful because of the 

opportunities they offer for working on different semiotic representations and coordinating these. In 

spite of the usefulness of frameworks like Duval’s, the “multi–representation” view is for us too 

reductively semiotic and cannot alone really make sense of activities involving several fields in 

interaction, and of their potentialities. In some curricula, much emphasis has been put on the work 

on representations and students can be fluent in the processes of conversion and treatments, but this 

does not necessarily imply a deep understanding of notions at stake. For instance, even when 

students are proficient in dealing with the four classical representations of functions (verbal, 

symbolic, graphic, and tabular), fundamental aspects of functions (correspondence, co–variation, 

mapping, etc.) and their coordination remain problematic. 

Another framework for making sense of activities of coordinating different domains (especially 

mathematical domains) is by Douady (1986). For Douady, a setting is constituted of objects from a 

branch of mathematics, of relationship between these objects, their various expressions and the 

mental images associated with these objects. When students solve a problem, they can consider this 

problem in different settings. Switching from one setting to another is important in order that 

students progress and that their conceptions evolve. According to authors like Perrin–Glorian 

(2004), it is sometimes difficult to distinguish the representational and the settings approaches, 

especially when a phase of work can be thought of both as a switch between settings and as a 

conversion of representations. Actually, rather than contradicting, the two approaches complement: 

beyond its mathematical contents, each setting offers specific semiotic systems, and coordinating 

the settings also implies coordinating the semiotic systems.  

Another concern is how instruments are taken into account in the students’ mathematical activity. 

Twenty years ago, sophisticated calculators became available for students’ work and a framework 

was developed: the instrumental approach of the use of digital technologies to teach and learn 

mathematics. This approach has been inspired by research work in cognitive ergonomics but 

researchers like Lagrange (1999) insisted on the intertwined development of knowledge related to 

the instrument and of knowledge about mathematics in an instrumental genesis. This is important 

because otherwise an instrumental approach would be only a psychological framework with little 

insight for mathematics education. Authors like Bartolini Bussi & Mariotti (2008) also noted that 

the use of instruments and the associated reflection involve a lot of signs that, for a student, may 

have not immediately a mathematical meaning, and they propose the idea of “semiotic mediation” 

to refer to the classroom activity necessary in order to ensure the productivity of the work with 

instruments at a semiotic level.  

Each framework, multi–representation, coordination of mathematical settings and instrumental 

approach, puts a focus on a specific dimension: the semiotic processes or on the contents and 

reasoning, or on the use of instruments (Figure 1). We present the framework of connected working 

spaces, taking into account comprehensively these three dimensions in order to address work in 

mathematical domains as well as in non–mathematical domains where mathematical notions can 



 

 

take sense. This framework was proposed by Minh & Lagrange (2016) and by Lagrange (2018) for 

activities related respectively to functions and to modelling and we question here its utility for 

addressing the new challenge brought about by activities involving computer programming in 

mathematics education. 

 

Figure 1: Four frameworks, three dimensions. 

Connected Working Spaces 

The framework of the Mathematical Working Spaces (MWS) allows characterizing the way the 

concepts make sense in a given work context. According to Kuzniak & Richard (2013) a MWS is 

an abstract space organized to ensure the mathematical work in an educational setting. Work in a 

MWS is organized around three dimensions: 

 Semiotic: use of symbols, graphics, concrete objects understood as signs. 

 Instrumental: construction using artefacts (geometric figure, graphs, program...) 

 Discursive: justification and proof using a theoretical frame of reference. 

Activities considered in this paper involve several domains, and for each of these domains, a 

working space. The framework of “Connected Working Spaces” has been introduced in order to 

give account of how connections between Working Spaces bring meaning to the concepts involved. 

This extended MWS framework takes into account the semiotic and instrumental dimensions as 

well as the contents and mode of reasoning, in different domains of activity and their interaction in 

a mathematical activity. Then it is not contradictory with the theoretical developments outlined 

above (Figure 1), but it rather aims to organize them in a comprehensive structure. What we expect 

from this framework is to help building and analysing situations on a given topic involving a 

mathematical and another domain, identifying the three dimensions in the corresponding Working 

Spaces, contrasting these and looking for possibilities of connection. 

Connecting Algorithmic and Mathematical Working Spaces: The Intermediate 

Value Theorem (IVT) 

Activities involving computer programming in mathematics education connect two distinct 

Working Spaces: an Algorithmic Working Space (AWS) and a Mathematical Working Space 

Multirepresentation: Working on 

different representations of a 
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Interplay between settings: 
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(MWS). In the continuation of this paper we will focus on a particular topic that can be considered 

both from a computer science and a mathematical point of view: the solution of an equation f(x)=0 

for a given function f defined on a closed interval [a ; b]. We will consider this topic relatively to 

how it can be a subject for secondary students’ work, that is to say how it implies connecting the 

two Working Spaces. From a computer programming point of view, specific algorithms allow 

approaching solutions as close as possible. We consider algorithms able to find, for an arbitrary 

precision e, an interval [u ; v] with the property P(e): |u – v| < e and f(u)×f(v)≤0. The simplest 

algorithm scans iteratively the sub intervals of length e, until finding a suitable one (Figure 2, left). 

A more efficient algorithm is based on dichotomy (Figure 2, right). In the corresponding AWS, the 

semiotic dimension is characterized by specific marker of iterative (While…) and alternative (If…) 

treatments and by variables, whose value, as a difference with mathematical variables, change along 

the treatment by way of the specific operation of assignment (sign ← in Figure 1). Mathematical 

expressions are also involved. The associated semiotic system can be at stake for students not fluent 

in algebra, especially the notation f(…). There is a strong instrumental dimension, since algorithms 

are intended to be executed by an automatic device and it is expected that execution will help 

students to make sense of the formalism. The discursive dimension is characterized by questions 

like the termination of an algorithm (does it terminate in a finite number of steps?), its effectivity 

(does it return an appropriate solution?) and its efficiency (how many steps are necessary for a 

given set of data?).  

A scan algorithm A dichotomy algorithm 

 

 
While f(u)×f(v)>0 

   

   
End While 
Return  

 

  
 While  

    
   If f(u)×f(m)>0 then 

     

   Else 

     
   Endif 

 End While 
 Return  

Figure 2: Algorithms approximating a solution of an equation f(x)=0. 

From a mathematical point of view, the Intermediate Value Theorem (IVT) guarantees the existence 

of a solution on the interval [a ; b] under the sufficient conditions: f is continuous and f(a)×f(b)<0. 

The corresponding MWS has a strong discursive dimension: it includes properties of functions like 

continuity and monotonicity; it is focused on a mathematical solution, rather than on a process of 

approximation. A classical proof is based on two adjacent sequences. In addition to the usual 

mathematical formalism, the semiotic dimension is then characterized by the formalism of infinite 

sequences, different from the iterative variables of the algorithms, although both are defined by way 

of the dichotomy method. Students are introduced progressively into these notions and formalism 

from 10th to 12th grade. The instruments here are paper and pencil calculations, and graphical 

display of functions. Figure 3 summarizes the dimensions in the two Working Spaces. 

Organizing the Working Spaces: A classroom experiment 

The outcome of the above analysis is that the algorithms and the theorem have different targets: 

while the IVT is about solutions, the algorithms aims at obtaining an interval with the property P(e).  



 

 

Mathematical Working Space 
• Discursive dimension:  

– Focus on a mathematical solution, 
– Properties of functions.  

• Semiotic dimension:  
– Usual mathematical formalism,  
– Formalism of infinite sequence. 
– Graphs (iconic). 

• Instrumental dimension:  
– Paper and pencil calculations, Graphs.  

Algorithmic Working Space 
• Discursive dimension: 

– Focus on process of approximation: 
termination, effectivity, efficiency. 

• Semiotic dimension:  
– Specific markers of treatments.  
– Variables. 
– Mathematical expressions.  

• Instrumental dimension:  
– Execution by automatic device.  

Figure 3: The Working Spaces 

However, there are clear links. First, the IVT ensures that, with the sufficient condition of 

continuity, an interval with the property P(e) actually contains one or more solutions, and the 

corollary that, with the additional sufficient condition of monotonicity, it contains the unique 

solution. Second, the algorithms, especially the dichotomy algorithm provides a mode of generation 

of sequences that play a crucial role in a proof of the IVT. From these links, different organisations 

of the MWS and the AWS can be envisioned. In a first organization, after being taught about the 

IVT, students can work on the algorithms with a function verifying the sufficient conditions in order 

to get an approximation of the solution. We name this organisation “application”: computer 

programming is considered as an application of “pure” mathematics. This is the most common 

scheme that we found when looking at textbooks in France. As for us, we envision other 

organisations making the Working Spaces interact more closely. It is because, as we wrote above, 

knowledge is at stake in both Working Spaces, and interaction can help understanding. Working on 

an algorithm, and after proving that the returned interval has the property P(e), students can 

experiment on diverse functions, in order to infer sufficient conditions for the IVT. They can then 

work on a proof by conceiving recurrent sequences from the iterative variables in the algorithm. 

Classroom situations 

We designed classroom situations in order to test the hypothesis that, transitioning from 

“application” to other organisations, students make connections between Working Spaces in the 

various dimensions. The situations were implemented in three French classes at 10
th

, 11
th

 and 12
th

 

grade in order to get evidence about the work of students with different mathematical attainments. 

Each class had around 30 students and had nothing particular with regard to the work expected. The 

duration of each situation was between one-half and one hour. The students had worked before on 

the dichotomy method for discrete numbers (Laval, 2016) and this work was mainly in the AWS. 

Otherwise they had no previous experience in the domain, except that, for the 12
th

 graders, the IVT 

had been introduced and not proved. A first situation was “application”: a continuous monotonic 

function was given and the dichotomy method was exposed by way of a flow chart. The students 

had to give some evidence of the existence of a unique solution, and to implement the method for 

this function in a textual programming environment allowing execution. The situation was intended 

to make students work in the AWS and MWS and coordinate these especially in the semiotic and 

discursive dimensions. Then, in a second situation, with the same function and the same 

programming environment, students had to complete a scan algorithm where the condition of 

continuation (following While) was missing. While this situation clearly involves the AWS in the 



 

 

three dimensions, the MWS is in the background, both with regard to the formalism and to the 

properties of the function.  

We analyse here particularly two subsequent situations. A situation was intended to make students 

aware of sufficient conditions for the IVT, by encountering functions for which the dichotomy 

algorithm does not return a suitable interval. They were requested to implement and execute a 

dichotomy algorithm for “hidden” functions, i.e., functions that students could use in the algorithm 

and display graphs, but whose formula was not given.  Students had to answer the question “does 

the interval returned by the algorithm actually contain the unique solution?” See an example in 

Figure 4. The task is reflective, both in the AWS and the MWS: evaluating the effectivity of the 

algorithm at a mathematical level. The students were expected to be influenced toward an 

affirmative answer by the “application” situation where mathematical effectivity was not discussed. 

Students at 12th grade knew the IVT, but were expected not to focus on sufficient conditions, 

because all examples treated before were continuous monotonic functions. However, the students 

were expected to double check by graphing the functions, or computing values. This connection 

between the AWS and the MWS involves the instrumental and the discursive dimensions.  

Figure 4: A situation to make students aware of sufficient conditions for the existence of a solution. 

The last situation was implemented only for 12
th

 grade students. Students were invited to build a 

proof of the IVT, using adjacent sequences and the dichotomy method. The semiotic dimensions of 

the MWS and the AWS are at stake in this task, with a process of conversion, from the iteration on 

variables in the AWS, to sequences in the MWS. In the discursive dimensions the convergence of 

the sequences had to be inferred from the fact that P(e) holds for arbitrary e. However, the 

convergence does not prove that the limit is a solution, and students were expected to use explicitly 

a theorem on continuous functions and sequences, and another about the compatibility of limit and 

order. This work is specific to the MWS and had been prepared by the focus on sufficient 

conditions in the third situation. 

Observation and evaluation 

In the situation with the “hidden” functions (Figure 4), the students considered that the very small 

interval returned by the algorithm was an evidence of the existence of a single solution. Most 

students reconsidered this finding after graphing and recognizing the unusual shape of the graph. 

They calculated the values of the function at the boundaries of the intervals returned by the 

algorithm for decreasing values of the threshold e and found values of the function decreasing at the 

left boundary and increasing at the right boundary. They deduced that these intervals approach a 

 

Task: enter and execute the algorithm for the 

function f and for various values of the threshold e.  

Does the interval returned by the algorithm actually 

contain a solution?  

Look at the graph of the function and discuss. 



 

 

pole rather than a solution. The outcome of this third situation is that, except for a few 10
th

 graders, 

the students made a clear distinction between the effectivity of the algorithm in the AWS and its 

effectivity to approach a solution in the MWS. 11
th

 and 12
th

 graders had a notion of sequences and 

convergence that helped them to consider more closely the phenomenon. 

As mentioned before, the situation on the proof of the IVT was implemented only at 12
th

 grade. At 

the beginning, the students were confused, not connecting sequences and the IVT, which they 

thought related to functions. Then some of them proposed to look at the values of the boundaries of 

the intervals along the execution of the dichotomy algorithm for a particular function. This is a 

typical answer: 

The sequences (un) and (vn) are adjacent because (un) is increasing, (vn) is decreasing and (vn–un) 

becomes closer to zero when n becomes bigger and bigger. Then these two sequences converge 

towards a common limit c. Because f is continuous, f(un) and f(vn) converge towards f(c) which 

is zero. The theorem is proved by way of the computer for a particular function. 

This “proof” is a mix of observation (behaviour of the sequences, value of f(c)) and deduction 

(convergence of the sequences) and, for the students it is valid only for one function. Within the 

duration of this situation students could not go much beyond. Only one observed that a proof of the 

behaviour of the sequences could be made by induction. For us, the students adequately took 

advantage of the work in the AWS but in some way stayed halfway between the AWS that produces 

evidence on an example, and the MWS in which a formal proof for a generic function was 

expected. Students had no difficulty to operate the semiotic conversion from computer variables to 

sequences. In contrast, their answer witnesses a notion of proof still confusing instrumental 

evidence and mathematical reasoning. 

  

Figure 5: Connections by students in the situation of Figure 4 (left) and in the proof of the IVT (right). 

Conclusion 

This paper investigates the usefulness of the Connected Working Spaces framework for addressing 

activities for students involving distinctive domains and especially computer programming and 

mathematics. We used this framework for designing a classroom experiment to test a hypothesis: 

for a particular topic involving computer programming and mathematics, it is possible to 

characterize an AWS and a MWS, and to create situations in order that students make fruitful 

connections between these Working Spaces in the three dimensions, semiotic, instrumental and 

discursive. We observed a variety of connections validating this hypothesis (Figure 5). In the 

situation of Figure 4, students operated the delicate coordination of the discursive dimensions in the 

AWS and the MWS by combining work in the instrumental dimensions. In the proof of the IVT, the 

students took advantage of the work in the instrumental and discursive dimensions of the AWS for 

their discursive work in the MWS, although they were only partially successful. Previous studies 

AWS (iterative variables)’ 

Instrumental-Discursive 

MWS 
(partial proof of IVT) 

 
 

AWS (observation of 
variables’ behavior)  

AWS (execution) MWS (graph)  

 

Instrumental 

AWS (effectivity) 

Discursive 

MWS (existence)  

 

Semiotic 
MWS (recurrent sequences) 



 

 

about functions and modelling already gave insight into a potential of the Connected Working 

Spaces framework and this paper extends the analysis to computer programming and mathematics 

education. It also witnesses of a framework that do not contradict with other approaches like multi–

representation, settings and instruments but rather connects these in a comprehensive analysis of 

students’ work. 
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