DE LA RECHERCHE À L'INDUSTRIE

<u>Ceaden</u>

THE TAF-ID DATABASE – APPLICATION CALCULATIONS TO SEVERE ACCIDENTS AND IRRADIATED FUEL

> Andrea QUAINI¹ Bonnie LINDAHL¹ Ernesto GEIGER^{1,2} Christine GUÉNEAU¹ Stéphane GOSSÉ¹

¹ CEA Saclay DEN/DANS/DPC/SCCME/LM2T ² Royal Military College of Canada, Dept. Chemistry and Chemical Engineering DE LA RECHERCHE À L'INDUSTRI

ceaden sp

Speech layout

Context

TAF-ID database

Calculations

Conclusions & Perspectives

- \rightarrow Objectives
- \rightarrow Structure of the OECD project
- → Current status
- \rightarrow Severe accidents in LWR
- → SIMFUELS

LA RECHERCHE À L'INDUSTRIE Ceaden Context

Gen II-III reactors

- Support of safety improvement -
- Severe accidents -
- Life extension -

Gen IV

- Support design -
- Severe accidents

Scheme of the ASTRID reactor

TAF-ID database – Objectives Thermodynamics of Advanced Fuels – International Database

- Objectives
 - → To develop a thermodynamic database as a computational tool for advanced fuel materials using the Calphad method

Phase diagrams + Thermodynamic properties of the phases → Multicomponents

→ To exchange on the models, review of experimental data, software, assessments, ...

• System of interest: Reactor materials for Gen II, III and IV

- \rightarrow Fuel
- UO₂, (U,Pu,Am,Np)O₂, (U,Th)O₂, (U,Pu,Zr,Am,Np), UN, (U,Pu)C
- → Fission products
- Ba, Sr, Mo, Zr, Lanthanides (Ce, La, Nd, Gd), metallic FPs (Pd, Rh, Ru), volatile FPs (Cs, I, Te)
- → Structural materials
- Fe-Ni-Cr, Zr alloys, Fe-Cr-Al-Y, Concrete (SiO₂-CaO-Fe_xO_y-Al₂O₃-MgO), SiC, B₄C

Applications

- → Fuel behavior at high temperature under normal and off-normal conditions
- Influence of minor actinides
- FPs "chemistry"
- Solid/liquid transitions and vaporization
- → Fuel-cladding chemical interaction at high temperature
- → Fuel fabrication

NuFuel 2017 | Lecco, Italy, 04-06/09/2017 | PAGE 4

Lower head

The Calphad method

Kaufman & Bernstein (1970)

<u>ceaden</u>

Ceaden TAF-ID database – Structure of the project

Roadmap

- \rightarrow Proposed by CEA in 2011
- → Project started in 2013 for 3-years duration : OECD-NEA
- → Canada, France, Japan, Republic of Korea, The Netherlands, UK, USA
- \rightarrow Extension of the project until the end of 2017
- \rightarrow Phase 2 of the project: 2018

www.oecd-nea.org/science/taf-id/

41 elements

TAF-ID : Thermodynamics of Advanced Fuels - International Database TDB Home Introduction Models Phases Systems Elements н He Assessed binary systems С Ν 0 Assessed ternary systems 12 18 Mg Si Ar Systems with Ag, Al, Am, Ar, B, Ba, C, Ca, Ce, Cr, Cs, 20 22 **Ti** 23 V Cr Fe Са Ni Fe, Gd, H, He, I, La, Mg, 41 42 43 44 45 46 47 Nb Mo Tc Ru Rh Pd Ag 38 Mo, N, Nb, Nd, Ni, Np, O, 40 52 53 Zr Sr Te Pd, Pu, Re, Rh, Ru, Si, Sr, 55 56 Ta, Tc, Te, Th, Ti, U, V, Та W Re Cs Ba W, Zr Periodic table La Ce Nd Gd 90 92 93 95 Th U Np Pu Am

DE LA RECHERCHE À L'INDUSTRIE

Ceaden TAF-ID database – assessed systems

TAF-ID working version V7 (January 2017) 204 assessed binary systems

TAF-ID : Thermodyn	amics of Advanced Fuels - International Database	
Home Introduction	Models Phases Systems	TDB
HomeIntroductionElementsAssessed binary systemsAssessed ternary systemsSystems with Ag, Al, Am, Ar,B, Ba, C, Ca, Ce, Cr, Cs,Fe, Gd, H, He, I, La, Mg,Mo, N, Nb, Nd, Ni, Np, O,Pd, Pu, Re, Rh, Ru, Si, Sr,Ta, Tc, Te, Th, Ti, U, V,W, ZrPeriodic table	ModelsPhasesSystemsThe phase diagrams calculated at 10 ⁵ Pa for the different assessed binary systems can be displayed thanks to the following list.Ag-1 ⁺ Ag-O ⁺ Ag-Ti ⁺ Ag-Zr Al-CaAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-FeAl-MgAl-CaAl-CrAl-CaAl-CrAl-CaAl-CrAl-CaAl-CrAl-CaAl-CrAl-CaAl-CrAl-CaAl-CrAl-CaCr-CrC-CrC-FeC-HoC-NC-YC-YC-YC-YC-YC-YC-YC-YC-YC-CrC-CrC-FeC-HoC-NC-TiC-C-TeC-TiC-TiC-CrC-FeC-HoC-C-TeC-TeC-TeC-TeC-TeC-TeC-TeC-TeC-TeC-TeC-TeC-TeC-TeC-TeC-TeC-TeC-Te	TDB
	and 84 [*] assessed during the present work.	

DE LA RECHERCHE À L'INDUSTRIE

Ceaden TAF-ID database – assessed systems

TAF-ID working version V7 (January 2017) 66 assessed ternary systems

TAF-ID : Thermodyn	amics of Advanced Fuels - International Database	
Home Introduction	Models Phases Systems	TDB
Elements	Ternary systems	
Assessed binary systems Assessed ternary systems	The assessed ternary systems defined by the database are listed hereunder by alphabetical order. At the current state of development of the database, only a few is assessed.	
Systems with Ag, Al, Am, Ar, B, Ba, C, Ca, Ce, Cr, Cs, Fe, Gd, H, He, I, La, Mg, Mo, N, Nb, Nd, Ni, Np, O, Pd, Pu, Re, Rh, Ru, Si, Sr, Ta, Tc, Te, Th, Ti, U, V, W, Zr Periodic table	Al-Ca-O Al-Cr-O Al-Fe-O Al-Mg-O Al-O-Si Al-O-U Al-O-Zr Am-O-Pu B-C-Fe B-C-U B-C-Zr B-Fe-Zr B-Pu-U Ba-O-U Ba-O-Zr C-Mo-Re C-Mo-Si C-Mo-Ti C-Mo-U C-N-Ti C-N-U C-O-U C-O-U C-Pu-U C-Pu-W C-Re-U C-Re-W C-Si-Ti C-Si-U C-U-W C-U-Zr Ca-Fe-O Ca-Mg-O Ca-O-Si Ca-O-U Ca-O-Zr Ce-Fe-Nd Cr-Fe-O Cr-Fe-Zr Cs-Mo-O Cs-O-U Cs-O-Zr Fe-O-Si Fe-O-U Fe-O-Zr Fe-U-Zr Gd-O-U La-O-U Mg-O-Si Mg-O-U Mg-O-Zr Mo-O-U Mo-Pd-Rh Mo-Pd-Ru Mo-Rh-Ru Nb-O-U Nd-O-U Ni-O-Si O-Pu-U O-Pu-Zr O-Si-U O-Si-Zr O-U-Zr Pd-Rh-Ru Pu-U-Zr Thus over 10660 ternary systems, 66 systems are assessed in the current database.	

Ceaden TAF-ID database – assessed systems

Example : Cs-Mo-O system

Phase diagram

LA RECHERCHE À L'INDUSTRIE

Vapor pressure over Cs₂MoO₄

Cp and heat increment for Cs₂MoO₄

Cp and heat increment for Cs₂Mo₂O₇

Source of the description: Dupin & Pham Thi, PhD thesis 2014

<u>ceaden</u>

Application to a simplified in-vessel corium : UO₂-ZrO₂+steel Radiative heat transfer Miscibility gap in liquid in-vessel corium: $\overset{\circ}{\mathcal{O}_{\circ}}$ 0 0 0 0 ° 0 Degree of oxidation of zirconium 0 Light metal layer $\rho_{\text{metallic}} < \rho_{\text{oxide}}$ U/Zr ratio ρ_{heavy metallic} > ρ_{oxide} wATE Amount of molten steel 0 0 0 Molten oxidic pool 0 0 Thickness of upper metallic layer \downarrow Maximum heat fluy C O \rightarrow Enhanced focusing effect \rightarrow Failure of the reactor vessel Oxidic crust OC Heavy metal layer Water Vessel wall Lower

P. Hofmann – "Reaktions- und Schmelzverhalten der LWR- Corekomponenten UO₂, Zircaloy und Stahl wahrend der Abschmelzperiode" KFK 2220, 1976

1.6

16.1

2.2

15.1

16.2

0.5

16.8

0.3

Cr

0

2.2

8.9

Ceaden

Cr

0

9.3

8.1

NuFuel 2017 | Lecco, Italy, 04-06/09/2017 | PAGE 11

0.09

12.8

5.9

1.4

7.1

0.05

0.5

12.3

Application to a simplified in-vessel corium : UO₂-Zry+steel

Corium E2		Oxide	liquid	Metalli	c liquid	
	Overall	Exp.	TAF-ID	Exp.	TAF-ID	
Weight %		50	49.4	50	50.6	
U	30.0	61.0	60.7	<0.6	0.03	
Zr	9.3	19.8	18.8	<0.4	0.005	
Fe	37.9	1.2	2.8	70.0	72.2	
Ni	5.4	<0.2	0.0006	12.0	10.7	
Cr	9.3	2.2	1.6	16.2	16.8	
0	8.1	15.1	16.1	0.5	0.3	

Ceaden

Corium A1		Oxide	liquid	Metalli	c liquid	
	Overall	Exp.	TAF-ID	Exp.	TAF-ID	
Weight %		68	69.7	32	30.3	
U	60.4	67.3	66.3	45.6	46.9	
Zr	17.3	17.8	20.7	16.4	9.5	
Fe	Fe 9.7		0.20	26.6	31.5	
Ni	Ni 1.5		0.0001	4.1	4.9	
Cr	2.2	0.5	0.09	5.9	7.1	
0	8.9	12.3	12.8	1.4	0.05	

Ex-vessel scenario: Application to the interaction in-vessel corium/concrete

→ Reactor steel vessel failure

Fukushima Unit 1

Ex-vessel scenario: Application to the interaction in-vessel corium/concrete

Calculations obtained by extrapolation from (28) binary, (56) ternary, 7 quaternary and 1 quinary descriptions

			Weight %						Solidus	s / K	Liquidu	s/K
	Concrete type	UO ₂	ZrO ₂	CaO	SiO ₂	AI_2O_3	MgO	Fe ₂ O ₃	Exp.	TAF-ID	Exp.	TAF-ID
MC_SC_2	Siliceous	56.5	16	4.1	21.5	1.4	0.275	0.275	1407-1595	1422	2369-2549	2418
MC_LC_3	Limestone	56.6	15.9	19.5	3.3	0.8	3.6	0.3	1520	1584	>2850	2801
MC_LCSC_6	Mix	56.6	16	10.4	11.3	1.4	3.9	0.5	1360	1456	2628-2850	2642
0.9- 0.8- 0.7- 0.6- 0.5- 0.4- 0.4- 0.2- 0.1- 0.1- 0.1- 0.1- 0.1- 0.1- 0.1- 0.1	MC_SC_2 MC_SC_2 MC_LC_3 MC_LCSC_6 MC_LC_3 MC_LCSC_6 $MC_C_CSC_6$ $MC_C_C_C_6$									CSC_6	0 2800 O2	

M.F. Roche, L. Leibowitz, J.K. Fink and L.J. Baker - "Solidus and liquidus temperatures of core-concrete mixtures" Argonne National Laboratory, 1993

RECHERCHE À L'INDUSTRII

Ceaden

NuFuel 2017 | Lecco, Italy, 04-06/09/2017 | PAGE 14

Ceade∩ Calculations – SIMFUELS

SIMFUELS: representative of irradiated fuel (but without radioactivity)

Sample composition (at%) / complement to UO ₂												
Nd	Ru	Pd	Rh	Zr	Y	Sr	Мо	La	Ce	Ва		
0.91	0.64	0.42	0.03	0.60	0.06	0.13	0.51	0.20	0.61	0.26		

C1_MO2 (U,Nd,Ce,La,ɛZr)O₂ Perovskite (Ba,Sr)ZrO₃ Metallic precipitates (Mo,Ru,Pd,Rh)

Agreement with experimental observation on irradiated fuel

Heat treatment at 1973 K under flowing Ar+4% H₂ to reproduce the behavior of irradiated fuel during a severe accident

Mechanisms of degradation at an intermediate state of a severe accident

Ceade∩ Calculations – SIMFUELS

SIMFUELS: representative of irradiated fuel (but without radioactivity)

	Sample composition (at%) / complement to UO ₂											
	Ва	Ce	La	Мо	Sr	Y	Zr	Rh	Pd	Ru	Nd	Ī
	0.26	0.61	0.20	0.51	0.13	0.06	0.60	0.03	0.42	0.64	0.91	Ī
Heat treatment Ar + 4% H ₂ Experimental observation											n	
C1_MO2 (U,Nd,Ce,La, ε Zr)O ₂ Perovskite (Ba,Sr)ZrO ₃ Metallic precipitates (Mo Ru Pd Rh)						1973 K		C1_MC Vetallio	02 (U,N c precij	Nd,Ce, pitates	La,ɛZr))O ₂
100 90-	C1_	MO2		, , 	J			2.0- 1.8-	F	Perovskite	I	
<mark>ي</mark> 80–								പ്പ 1.6–		\backslash		

E. Geiger, PhD Thesis, Université Paris-Saclay 2016

Ceade∩ Calculations – SIMFUELS

SIMFUELS: representative of irradiated fuel (but without radioactivity)

E. Geiger, PhD Thesis, Université Paris-Saclay 2016

NuFuel 2017 | Lecco, Italy, 04-06/09/2017 | PAGE 17

Ceaden Conclusions and perspectives

- The current status of development of the TAF-ID database allows to perform thermodynamic calculations on complex multi-components compositions (oxides and metallic) containing fuel, cladding and structural materials.
 - Severe accidents studies : stratification behaviour, MCCI
 - □ FPs are also described in the database allowing calculations on SIMFUELS compositions → irradiated fuel
 - Application to Gen IV related systems: on going
- The **Phase 2** of the OECD-NEA TAF-ID project is foreseen to start in 2018. In this frame, the database will be further extended and a new task of the project will be dedicated to the validation of this tool.
 - **Coupling with other codes:**
 - DICTRA (diffusion)
 - Fuel performance codes
 - Multi-physics
 - Severe accident codes (thermal-hydraulics)
 - Application calculations: JOG, Gen IV, ...

All information contained in this document is to be considered as Confidential Information pursuant to the Implementing Arrangement between CEA, AREVA, JAEA, MHI and MFBR signed on August 7, 2014.

Thanks for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

DEN/DANS/DPC/SCCME/LM2T

Etablissement public à caractère industriel et commercial R.C.S Paris B 775 685 019

CALPHAD METHOD – MODEL FOR LIQUID

ceaden

