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I – Nuclear graphite waste presentation 

II – An original treatment proposition for 14C extraction
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Graphite in French gas-cooled reactors

Neutron moderator in first generation of nuclear reactors

Neutron irradiation 

Consequences of dismantling 

23,000 tons of graphite waste will be generated in France (250,000 tons at the world scale)

14C and 36Cl are still active after a thousand years
14C will be the main contributor to the activity

Our aim: to reduce 14C concentration of graphite waste

I – GRAPHITE WASTE
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I – GRAPHITE WASTE

CONTEXT NEUTRON IRRADIATION EFFECT
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Pageot et al., 2016

on average

ID1/IG ≈ 0.6
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nm scale
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ID1/IG ≈ 0.4
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nm scale and 14C
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II – GRAPHITE WASTE TREATMENT PROPOSITION

PRINCIPLE         C – CO2 SELECTIVE REACTIVITY

Graphite waste CO2 gasification treatment proposition 
Treatment principle and global vision of the 14C management

To selectively extract 14C from graphite stacks with the lowest weight loss as possible

To concentrate 14C into an insoluble carbon
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Graphite waste CO2 gasification treatment proposition 
Treatment principle and global vision of the 14C management

To selectively extract 14C from graphite stacks with the lowest weight loss as possible
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Nanostructure and C-CO2 reactivity
Hypothesis on 14C localization and nanostructure 

Lamellar and nanoporous areas are deeply associated at the nanostructure scale.

Hypothesis: 14C should be localized into nanoporous areas.

C(s) + CO2(g) 2 CO(g)

Rouzaud et al., Carbon 2011

Moneger et al., Eurocarbon 1998

Rodriguez-Reinoso et al.,1974 

Walker et al., 1959
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Active sites ≡ edges of sheets
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Nanostructure and C-CO2 reactivity
Reactivity according to the nanostructures

C-CO2 reaction takes place on edges of graphene sheets and depends on active sites density. 

C-CO2 reactivity also depends on the probability of shocks CO2 – active site.
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Nanostructure and C-CO2 reactivity
Selective reaction on nanoporous and 14C rich areas

Neutron irradiated graphite partial gasification 
14C global concentration decrease
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III – CO2 GASIFICATION TREATMENT TESTS

ANALOGUES   NUCLEAR GRAPHITE WASTE

Irradiated graphite analogue: milled graphite 
Similar structure (Raman, TEM) nanostructure (TEM) and heterogeneities

Advantages: non radioactive and important available volume 

Initial milled graphite

0,1 < ID1/IG < 1

CO2 gasification treatment

T°=950°C, pCO2=0.1 MPa, t=1h

Gasified residues

0 < ID1/IG < 0.4

Weak relative weight loss 

about 10 %

Pageot et al., 2015

Reactivity experiments carried out at the IS2M laboratory 
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III – CO2 GASIFICATION TREATMENT TESTS

ANALOGUES   NUCLEAR GRAPHITE WASTE

Irradiated graphite analogue: milled graphite 
Similar structure (Raman, TEM) nanostructure (TEM) and heterogeneities

Advantages: non radioactive and important available volume 

Initial milled graphite

0,1 < ID1/IG < 1

CO2 gasification treatment

T°=950°C, pCO2=0.1 MPa, t=3h

Gasified residues

0 < ID1/IG < 0.1

Weak relative weight loss 

about 12 %

Pageot et al., 2015

Reactivity experiments carried out at the IS2M laboratory 



Experiments on nuclear graphite waste
A. Duhart-Barone, S. Lutzler and J. Comte (CEA Cadarache)

Method: 

Goals:

Determine the optimal temperature in our conditions 

Gasification duration effect 

Balance

Graphite

heating

element

Purge

CO2

pure flow

Setsys

SETERAM

Crushed samples  

of French graphite 

waste

Initial [14C]

Liquid scintillation beta 

250 mg

Gasified residues from 

graphite waste

treated by CO2

Relative weight loss (%)

Final [14C]

TGA

pCO2 = 0,1 MPa

T(°C): 900, 950, 1000 and 1050°C

t(h): 1, 3, 6, 12 and 24 h 

Crucible

𝟏𝟒𝐂 𝐝𝐞𝐜𝐫𝐞𝐚𝐬𝐞(%) = 𝟏 −
𝟏𝟒𝐂 𝐟𝐢𝐧𝐚𝐥

𝟏𝟒𝐂 𝐢𝐧𝐢
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III – CO2 GASIFICATION TREATMENT TESTS

ANALOGUES NUCLEAR GRAPHITE WASTE

[14C] decrease versus relative weight loss

Thermal effect at 1000 °C (He)

Very weak 14C extraction but measurable

Interpretations : some of the 14C is weakly linked to the graphite

In an other sample, no thermal effect is measurable
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[14C] decrease versus relative weight loss

T ≤ 950 °C

Weak and slow reactivity.

Weak 14C extraction.

Bad accessibility to active sites in closed and nanometer sized porosity ?
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ANALOGUES NUCLEAR GRAPHITE WASTE
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III – CO2 GASIFICATION TREATMENT TESTS

ANALOGUES NUCLEAR GRAPHITE WASTE

[14C] decrease versus relative weight loss

T ≥ 1000°C

High temperatures and long durations required

Significant 14C extraction

Interpretations : porosity opening 

With gasification duration, selectivity decrease
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[14C] decrease versus relative weight loss

14C extraction interpretation: 1st step (between 5 and 10% of [14C]ini)

For the same relative weight loss, whatever the T°, 14C extraction is quite the same.

Easy 14C extraction.

By thermal effect or selectivity on the most degraded and accessible areas.
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III – CO2 GASIFICATION TREATMENT TESTS

ANALOGUES NUCLEAR GRAPHITE WASTE
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Diminution en [14C] en fonction de la perte de masse relative

14C extraction interpretation: 2nd step (remaining 14C after the 1st step, 90–95% of [14C]ini)

Dependence according to the gasification temperature. 

Extraction of 14C strongly linked to graphite waste structure and hardly accessible. 
14C maybe trapped in closed porosity.

Significant material gasification should be required.
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Relative weight loss (%) ± 0,4%
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ANALOGUES NUCLEAR GRAPHITE WASTE

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

Highly irradiated G2 sample

950 °C

1000 °C
1050 °C

[14C] decrease (%) 

± 5%



21 AVRIL 2017 |  PAGE 20

The main goal was to extract 14C from graphite waste

Interests of the treatment:

1st step 3rd step

Graphite neutron 

irradiation knowledge

Nanoporous 

nanostructure
14C

2nd step

CONCLUSIONS
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The main goal was to extract 14C from graphite waste

Interests of the treatment:
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The main goal was to extract 14C from graphite waste

Interests of the treatment:

To decrease the activity

To extract the most « mobile » 14C

The treatment process is easily optimizable 
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