

Un schéma de calcul multi-échelles de type Éléments Finis au carré pour la simulation de combustibles nucléaires hétérogènes.

CSMA2017 | <u>I. Ramière</u>, R. Masson, B. Michel, S. Bernaud

DEN, DEC, SESC

18 MAI 2017

Approches multi-échelles et homogénéisation

www.cea.fr

- Contexte et objectifs industriels
- Calcul mécanique hybride à deux échelles
- Vérification du modèle proposé
- Résultats industriels
- Conclusions et perspectives

Contexte et objectifs

- Simulation du comportement du combustible des réacteurs à eau sous pression (parc électronucléaire français)
- Un problème multi-échelles

 Une microstructure hétérogène (MOX MIMAS)

I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 2/21

Simulation du comportement mécanique multi-échelles du combustible hétérogène :

Simulation numérique

Simulation du comportement mécanique multi-échelles du combustible hétérogène :

A l'échelle macroscopique

- Lois empiriques
- Lois déduites par homogénéisation (depuis 2010)

A l'échelle microscopique

 Calculs sur des Volumes Élémentaires Représentatifs (VER)

 → répartition locale des variables mécaniques (contraintes, déformations,...)

- pour vérifier les lois homogénéisées
- en post-traitement (relocalisation) d'un calcul macroscopique.

Simulation numérique

Simulation du comportement mécanique multi-échelles du combustible hétérogène :

A l'échelle macroscopique

- Lois empiriques
- Lois déduites par homogénéisation (depuis 2010)

A l'échelle microscopique

- Calculs sur des Volumes Élémentaires Représentatifs (VER)
 - → répartition locale des variables mécaniques (contraintes, déformations,...)

Objectif :

Coupler les 2 échelles dans un même calcul industriel.

Calcul mécanique industriel à deux échelles

Résolution du problème quasi-statique non linéaire :

$$\begin{pmatrix} -\operatorname{div} \underline{\sigma} = \underline{f} & \operatorname{dans} \ \Omega, \\ \underline{\sigma} = \mathcal{F}(\underline{\varepsilon}(\underline{u})) & \operatorname{dans} \ \Omega, \end{cases}$$

$$\mathcal{P}) \quad \left\{ \begin{array}{c} \underline{\underline{\varepsilon}}(\underline{u}) = \frac{1}{2} \left(\operatorname{grad} \underline{u} + (\operatorname{grad} \underline{u})^T \right) & \text{dans } \Omega, \end{array} \right.$$

Algorithme de type prédicteur/correcteur en contraintes :

- Prédiction linéaire de la contrainte

$$\underline{\underline{\sigma}}^{*k} = \underline{\underline{\sigma}}^{k-1} + \underline{\underline{\underline{H}}}_{\underline{\underline{\underline{u}}}}(\underline{\underline{\underline{u}}}^{k-1}) : (\underline{\underline{\underline{c}}}(\underline{\underline{u}}^{k} - \underline{\underline{u}}^{k-1}))$$

- Correcteur via l'équation constitutive

$$\underline{\underline{\sigma}}^{k} = \mathcal{F}(\underline{\underline{\varepsilon}}(\underline{\underline{u}}^{k}))$$

Méthode de type Newton ou quasi-Newton

I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 4/21

Méthode des Eléments Finis au Carré (EF²)

Résolution du problème quasi-statique non linéaire :

Algorithme de résolution EF

Pour k = 1 jusqu'à convergence faire

Un calcul d'équilibre global

 $[\underline{\underline{K}}^{k-1}][\delta \underline{\underline{U}}^k] = -[\underline{\underline{R}}^{k-1}]$

 En chaque point de Gauss, une intégration locale de l'équation constitutive

$$\underline{\underline{\Sigma}}^k = \mathcal{F}(\underline{\underline{E}}([\underline{U}^k]))$$

I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 5/21

Méthode des Eléments Finis au Carré (EF²)

Résolution du problème quasi-statique non linéaire :

Algorithme de résolution EF

- Pour k = 1 jusqu'à convergence faire
 - Un calcul d'équilibre global

 $[\underline{\underline{K}}^{k-1}][\delta \underline{\underline{U}}^k] = -[\underline{\underline{R}}^{k-1}]$

 En chaque point de Gauss, une intégration locale de l'équation constitutive

$$\underline{\underline{\Sigma}}^{k} = \mathcal{F}(\underline{\underline{E}}([\underline{\underline{U}}^{k}]))$$

Principe de la méthode EF^{2 1} :

- étape intégration locale \rightarrow

résolution d'un problème quasi-statique local sur un VER, moyenne des contraintes sur le VER (correcteur)

^{1.} F. Feyel, Computational Materials Science, 1999 I. Ramière *et al.* | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 5/21

Ø Méthode des Eléments Finis au Carré (EF²)

Principe de la méthode EF² :

Algorithme de résolution EF²

- **Pour** k = 1 **jusqu'à** convergence faire
 - Un calcul d'équilibre global

 $[\underline{\underline{K}}^{k-1}][\delta \underline{\underline{U}}^k] = -[\underline{\underline{R}}^{k-1}]$

En chaque point de Gauss : résolution du « modèle EF² »

- localisation : C.L. sur ∂VER à partir de $\underline{E}([\underline{U}^k])$
- Résolution EF d'un problème quasi-statique non-linéaire sur le VER

- homogénéisation :
$$\underline{\underline{s}}^k = < \underline{\underline{g}}^k >_{VER} = \frac{1}{|VER|} \int_{VER} \underline{\underline{g}} dV$$

Méthode des Eléments Finis au Carré (EF²)

En chaque point de Gauss : résolution du « modèle EF² »

Méthode :

- parallélisable : par point de Gauss
- récursive : d'où le nom EF² pour 2 échelles...
- générique : solveur sur l'échelle micro (EF, FFT,...)

Méthode des Eléments Finis au Carré (EF²)

En chaque point de Gauss : résolution du « modèle EF² »

Intérêts ③ :

- aucune équation constitutive macroscopique
- répartition spatiale locale des variables mécaniques

2 Méthode des Eléments Finis au Carré (EF²)

En chaque point de Gauss : résolution du « modèle EF² »

Intérêts 🙂 :

- aucune équation constitutive macroscopique
- répartition spatiale locale des variables mécaniques

Inconvénients ③ :

temps de calcul et espace mémoire très importants.

$\hookrightarrow \text{Incompatible avec une utilisation industrielle}$

Cea Méthode EF² hybride

Principe de la méthode EF² hybride :

- Appeler le modèle EF² que sur des points de Gauss d'intérêt,
- Utilisé un modèle homogénéisé ailleurs

DE LA RECHERCHE À CENDOSTRE

Cera Méthode EF² hybride

Principe de la méthode EF² hybride :

Algorithme de résolution EF²

Pour k = 1 **jusqu'à** convergence faire

Un calcul d'équilibre global

 $[\underline{\underline{K}}^{k-1}][\delta \underline{\underline{U}}^k] = -[\underline{\underline{R}}^{k-1}]$

Si point de Gauss d'intérêt alors faire appel du modèle EF²

- *localisation* : C.L. sur ∂VER à partir de $\underline{\underline{E}}([\underline{U}^k])$
- Résolution EF d'un problème quasi-statique non-linéaire sur le VER
- homogénéisation : $\underline{\underline{\Sigma}}^k = < \underline{\underline{\sigma}}^k >_{VER} = \frac{1}{|VER|} \int_{VER} \underline{\underline{\sigma}} dV$
- Sinon faire appel du modèle homogénéisé $\underline{\underline{\Sigma}}^{k} = \mathcal{F}(\underline{\underline{E}}([\underline{U}^{k}]))$

Cea Méthode EF² hybride

Principe de la méthode EF² hybride :

Algorithme de résolution EF²

Pour k = 1 **jusqu'à** convergence faire

Un calcul d'équilibre global

Si point de Gauss d'intérêt alors faire appel du modèle EF²

Sinon faire appel du modèle homogénéisé

Intérêts ③ :

- gain en temps de calcul, espace mémoire et/ou en processeurs nécessaires vs EF² standard
- répartition spatiale locale autour des points de Gauss d'intérêt
- dégénère naturellement en algo EF ou EF² standard.

Inconvénients ③ :

 nécessite une loi homogénéisée macroscopique représentative du comportement moyen de la microstructure

Vérification du modèle hybride

 Couplage multi-physiques et multi-échelles

- Plateforme logicielle : PLEIADES
- Solveur mécanique : Cast3M

I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 8/21

Couplage multi-physiques et multi-échelles

Solveur mécanique : Cast3M

Couplage multi-dimensionnel

Hypothèses :

- localisation : hypothèse de déformations homogènes
- propriétés élastiques homogènes
- chargement externes homogènes par phase
- déformations imposées homogènes par phase ou sur le VER
- homogénéisation : moyennes spatiales sur le VER et sur les phases (couplage multi-physiques)
- Loi constitutive microscopique : Norton linéaire Pour chaque phase i :

$$\underline{\underline{\sigma}} = \underline{\underline{C}}_{el} : \left(\underline{\underline{\varepsilon}} - \underline{\underline{\underline{\omega}}}^{i} - \underline{\underline{\underline{E}}}^{g,i} - \underline{\underline{\underline{E}}}^{hom}\right)$$

avec $\underline{\dot{\alpha}}^{i} = K \dot{\phi}^{i} \underline{\underline{\sigma}}^{d}$ et $\underline{\underline{E}}_{kl}^{g,i} = E^{g,i} \delta_{kl}$.

■ Loi Mori Tanaka Incrémental (MTI)² :

 Microstructures régies par des lois constitutives de type Norton linéaire

$$\underline{\underline{\Sigma}} = \underline{\underline{\underline{C}}}_{el} : \left(\underline{\underline{\underline{E}}} - \sum_{j=1}^{3} \underline{\underline{\underline{A}}}^{i} - \underline{\underline{\underline{E}}}^{g} - \underline{\underline{\underline{E}}}^{hom}\right).$$

avec
$$\underline{\dot{A}}^{j} + \frac{1}{\tau^{j}}\underline{\underline{E}}^{j} = \beta^{j}\underline{\underline{E}}^{d}$$
 et $\underline{\underline{E}}_{kl}^{g} = (c^{1} E^{g,1} + c^{2} E^{g,2}) \delta_{kl}$

- Permet d'estimer l'évolution temporelle des contraintes hydrostatiques moyennes par phase.
- Vérifiée avec succès sur des calculs VER autonomes avec lois locales par phase.

^{2.} J.M. Ricaud et R. Masson, International Journal of Solids and Structure, 2009 I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 10/21

2 VERs utilisés

- VERs 3D générés à partir d'images 2D de la microstructure réelle (images microsonde)³.
- Description 2-phases de la microstructure
 - 🕳 amas plutonifères
 - matrice = amas uranifères et enrobage
 - \hookrightarrow microstructure aléatoire de type matrice-inclusions.

^{3.} R. Largenton, Thèse de doctorat, 2012.

Ø VERs utilisés

- VERs 3D générés à partir d'images 2D de la microstructure réelle (images microsonde)³.
- Description 2-phases de la microstructure → microstructure aléatoire de type matrice-inclusions.
- 3 types de microstructures testés :

3. R. Largenton, Thèse de doctorat, 2012.

I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 11/21

Milieu périodique - EF tétrahédriques.

Nom	Nombre	Nombre	Nombre	Fraction
	d'éléments	de nœuds	de nœuds	volumique
		Linéaire	Quadratique	
Grossier	1771	496	3104	0.09995
Moyen	8717	2174	14354	0.10994
Fin	27451	6070	42314	0.11178
Très fin	103781	21690	155038	0.11268

Couplage multi-physiques et multi-dimensionel

Historique de puissance « plat » :

I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 12/21

DE LA RECHERCHE À CINCOSTRIE

DE LA RECHERCHE À L'INDUSTRE

DE LA RECHERCHE À L'INDUSTRE

Cea Vérification de l'accord EF²/ loi MTI

- Même exemple que précédemment
- Comparaison d'un calcul EF avec loi homogénéisée MTI et d'un calcul EF² hybride sur un point de Gauss d'intérêt.
- Vérification du modèle EF²

Cea Vérification de l'accord EF²/ loi MTI

Cea Vérification de l'accord EF²/ loi MTI

Application industrielle

Issu de la base de validation du code ALCYONE :

- 2 cycles d'irradiation en réacteur
- Fraction volumique du Pu 6%
- Crayon découpé en 9 tranches axiales
- Temps de calcul x8 (25.000 nœuds), x40 (120.000 nœuds) si 1 point de Gauss EF² par processeur (+ solveur itératif).

Inclusions polydispersées
Très bon accord EF²/ MTI

I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 17/21

Observations de la microstructure à différents instants

I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 17/21

Répartition spatiale locale

1 - Début irradiation (Pas de temps 14/320) : début de la phase de relaxation par fluage d'irradiation

- Matrice plus en compression que les amas
- Amas non répartis de manière aléatoire

Répartition spatiale locale

2 - Fin premier cycle (Pas de temps 30/320)

film_polyD_30.avi

- Matrice en moyenne en traction et amas en compression
 - \hookrightarrow Gonflement gazeux plus élevé dans les amas
- Enrobage en traction autour des amas

Répartition spatiale locale

3 - Milieu second cycle (Pas de temps 150/320)

■ Histogrammes se resserrent → contraintes homogènes.
■ Enrobage toujours en traction autour des amas Pu

I. Ramière et al. | Schéma EF² hybride | CSMA2017 | 18 mai 2017 | PAGE 20/21

Conclusions et perspectives

Conclusions et perspectives

- Faisabilité d'un calcul mécanique à deux échelles dans un code multi-physiques industriel existant.
- Stratégie hybride EF/EF² proposée :
 - informations locales spatiales dans la microstructure à des endroits d'intérêt
 - vérifiée (cvg en maillage, vs. loi homogénéisée)
 - appliquée sur un exemple industriel (combustible MOX)

Conclusions et perspectives

- Faisabilité d'un calcul mécanique à deux échelles dans un code multi-physiques industriel existant.
- Stratégie hybride EF/EF² proposée :
 - informations locales spatiales dans la microstructure à des endroits d'intérêt
 - vérifiée (cvg en maillage, vs. loi homogénéisée)
 - appliquée sur un exemple industriel (combustible MOX)

Perspectives :

- Tenir compte de la fissuration dans la microstructure : fragmentation locale du combustible
- Modes nécessaires aux approches basées sur la réduction de modèle (NTFA,...) et comparaison champ complet/réduction modèle/champ moyen
- Solveur FFT sur la microstructure : gain temps de calcul.

Merci pour votre attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | DENDEC/SES/D151 - 13108 Saint-Paul-Lez-Duranoe T. +33 (0)4.422.52.366 | F. +33 (0)4.42.55.47.47 Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019 Direction de l'Energie Nucléaire Département d'Études des Combustibles Service d'Études et de Simulation du comportement des Combustibles

Cea Autre cas test - Pu = 14%

Cea Loi MTI avec fissuration/EF² sans fissuration

