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AND A FINITE ELEMENT OPERATOR

P. BOTTOIS*, F. ABLITZER, N.J OLY and C. PÉZERAT

Laboratoire d’Acoustique de l’Université du Mans (LAUM), FRANCE

ABSTRACT

Identification of elastic and damping properties is a challenge for fabrication of composite materi-
als, which can have complex shapes. A new approach based on the Force Analysis Technique (FAT)
was developed to identify structural parameters from local equation of motion. For structures with
known analytical models, this method worked well. This work presents a similar approach to ex-
tend the previous method to the structure which can be described with known analytical models.
This knowledge of the model is replaced by a finite Element (FE) operator. In this paper, iden-
tification of complex Young’s Modulus from measured displacement fields is shown using the FE
model. To denoising the measured displacement a procedure based on a probabilistic approach
coupled to a residue minimization is proposed. The method is illustrated on a curved beam using
simulated displacement.

1 INTRODUCTION

The vibro-acoustic behavior of structures made of composite materials is difficult to grasp nu-
merically, because the modeling of each constituent may lead to a huge model, which can not be
operated. Such models can be reduced using for example homogenized material properties. How-
ever, obtaining these properties is not straightforward. The common methods to identify structural
parameters can be divided in four categories. The first category corresponds to static or quasi-static
methods, which are based on the linear elastic theory of materials [1]. Although these methods are
well established, they provide incomplete information, in the sense that they do not allow to evalu-
ate the frequency dependence of properties. The second category concern methods based on modal
analysis [2]. They rely on the identification of natural frequencies and modal damping ratios to
estimate the Young’s Modulus and loss factor of a material. A third class of methods is based on
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the finite element (FE) method. The principle is to model a structure and to compare the modal
parameter numerically obtained (natural frequencies and mode shapes) with those measured on the
real structure. The identification of structural parameters is performed by updating the FE model
until the theoretical data match the experimental data [3]. The last family includes high frequency
methods, also known as ultrasound methods [4], which may be used to obtain a spatial mapping of
material properties.

At the end of 1990s, a new method was developed by Pézerat for vibration source identifi-
cation [5] called Force Analysis Technique (FAT) or Résolution Inverse Filtrée Fenêtrée (RIFF),
which stands for Windowed Filtered Inverse Resolution. This inverse method is based on the verifi-
cation of the local equation of motion of a vibrating structure. As a consequence, the identification
procedure can be performed locally on the structure and does not require the knowledge of the
vibration field outside the area of interest. From the measurement of a local vibration field, this
technique allows to obtain the distribution of external forces acting on the structure. To discretize
the local equation of motion, the FAT method is based on a finite difference (FD) scheme. As the
FD scheme amplifies the measurement noise, the inverse problem requires a regularization step. In
the FAT method, the regularization is ensured by a spatial windowing associated with a low-pass
filtering of the calculated force distribution. The main advantage of this method is that few infor-
mations are required: the local equation of motion and a local displacement field. Originally the
method was developed only to identify sources on structures for which an analytical equation of
motion exist, such as beams [6], plates [7] and shells [8].

To extend the FAT method and make it suitable for more complex structures, a Finite Element
(FE) formulation of the inverse problem was developed by Renzi [9]. This variant of the method
allows to identify nodal loads on a finite element mesh from the measured displacements. It has
been experimentally validated on flexural beams and plates.

Another variant of the FAT method aims at identifying material properties (stiffness and damp-
ing). It is based on the verification of the local equation of motion in an area of the structure in
which no external force applies. This method is independent of boundary condition and allows
identification of material properties at any frequency, not only at resonances. The ability of the
method to provide a spatial mapping of properties has been experimentally demonstrated by con-
sidering a composite plate containing patches of damping material [10]. Wassereau [11] extended
this approach to characterize structural parameters on thick sandwich beams using Timoshenko’s
model. He estimated complex Young’s Modulus and complex shear Modulus.

Recently, the two aforementioned variants of the FAT method have been coupled in an at-
tempt to identify material properties on structure having complex geometries, using a FE operator.
A proof-of-concept was presented considering a flat beam [12]. The estimation of a complex
Young’s Modulus was demonstrated using numerical and experimental data. The regularization of
the inverse problem was introduced by a probabilistic approach inspired from previous work by
Faure [13].

In this paper, this approach is extended to the case a curved beam, where coupling between
flexural and membrane deformations occurs. In a first part, the general principle of the method
is exposed. Then, the proposed approach is demonstrated using a simulated displacement field.
Finally, the effect of noise is illustrated and a probabilistic framework is proposed to automatically
adjust the level of regularization.

2 IDENTIFICATION TECHNIQUE

After previous development of the method on a straight beam [12], the considered case is now a
curved beam. An essential difference between these two cases is the coupling occurring between
traction motion and flexural motion. As a consequence, two Young’s Moduli may be identified,
one governing the axial stiffness Et and the other one governing the bending stiffness Ef .

Let us consider the dynamic problem of an Euler-Bernoulli beam with length Lg, thickness h,
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width b, section S = h.b and second moment of area Iz = b.h3/12. The materials properties are
mass density ρ, axial complex Young’s Modulus Ẽt = Et.(1+ j.ηt), where Et is the axial Young’s
Modulus, ηt the axial structural loss factor and j the unit imaginary number, and flexural complex
Young’s Modulus Ẽf = Ef .(1+ j.ηf ), where Ef is the bending Young’s Modulus, ηf , the bending
structural loss factor.

Harmonic motion at angular frequency ω is considered. The beam is modeled by the Finite
Element Method. The mesh consists of N nodes, corresponding to NDOF = 3N degrees of
freedom (DOFs) and Ne = N −1 elements. The dynamic matrix equation can be written as [14] :(

K− ω2M
)

u = f , (1)

where M is the mass matrix, K is the dynamic stiffness matrix, u is the response vector consisting
of nodal displacements and rotations and f is the vector of external forces and moments.

The matrices M and K are computed from the elementary matrices Me and Ke. The elementary
matrices are basically expressed in the local coordinate system (x, y) of each beam element (see
Fig. 1) as [14]:
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and
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ẼtS
Le

0 0 − ẼtS
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6Ẽf Iz
L2
e
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where Le is the length of a beam element.
The stiffness elementary matrix (Eq. 3) can also be written as

Ke = ẼtK
e
t + ẼfK

e
f , (4)

where

Ke
t = S



1
Le

0 0 − 1
Le

0 0
0 0 0 0 0 0
0 0 0 0 0 0
− 1

Le
0 0 1

Le
0 0

0 0 0 0 0 0
0 0 0 0 0 0

 , (5)

is a matrix governing the axial stiffness of the element and

Ke
f = Iz
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is a matrix governing the bending stiffness of the element.
Both matrices are formulated with respect to the local coordinate system (x, y). To obtain the

assembled mass and stiffness matrices of Eq. (1), the elementary matrices have to be expressed
in the global coordinate system (Xg, Yg). For this purpose, a transformation matrix Te is intro-
duced [14], which allows to compute the mass and stiffness matrices of each element relative to
the global coordinate system as

Me
g = Te

TMeTe, (7)

and
Ke

g = Te
TKeTe = ẼtTe

TKe
tTe + ẼfTe

TKe
f Te. (8)

As seen, the separability property of the elementary stiffness matrix with respect to axial and
bending behaviors is not altered by the coordinate transformation.

Figure 1: Two-dimensional beam element in arbitrary axes.

Then, the elementary matrices expressed in the global coordinate system are assembled to create
the structural matrices K and M of Eq. (1). Since this process only involves matrix addition, it
also does not alter the separability property expressed by Eq. (4) and propagated in Eq. (8).

Finally, considering a part of the beam where no external force or moment applies (i.e. where
f = 0), Eq. (1) can be rewritten as(

ẼtKt + ẼfKf − ω2M
)

u = 0, (9)

where Kt and Kf represent respectively the assembled matrices governing the axial and bending
stiffness of the beam. This equation can be rewritten in a matrix form as

[
Ktu Kfu

] [ Ẽt

Ẽf

]
= ω2Mu. (10)

Eq. (10) indicates that both Young’s moduli Ẽt and Ẽf can be identified using a least square
regression, if the nodal translations and rotations u are known.

3 NUMERICAL SIMULATIONS

3.1 Direct problem computed by FEM

In this section, a reference solution is calculated using the Finite Element Method (FEM). For this
purpose, a clamped-clamped curved beam is considered (Fig. 2), whose characteristics are given
in Table 1.
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Figure 2: Geometry of beam used for numerical simulation.

Length Lg (m) Width b (m) Thickness h (m)
1 0.01 0.001

Second moment of area I (m4) Density ρ (kg/m3) Axial Young’s Modulus Et (GPa)
b · h3/12 2700 75

Traction loss factor ηt Bending loss factor ηf Bending Young’s Modulus Ef (GPa)
0.1 % 0.1 % 70

Spatial sampling Le (m) Frequency (Hz) Amplitude of excitation |FXg | and |FYg | (N)
0.01 5000 1

Excitation location x0 (m) Observation area [x1;x2] (m) in curvilinear abscissa
0.1 [0.3 ; 0.8]

Table 1: Geometrical and materials properties set for the simulated beam and excitation character-
istics.

The displacement field u (translations and rotations) is computed at discrete abscissas delimited
by x ∈ [0.3; 0.8] m, i.e. in a region not directly excited by external forces of moments (see Fig. 3).
The displacement field is then blurred with noise,

unoisy = u + 10
−SNR

20 α, (11)

where unoisy denotes the noisy displacements, α is a zero mean Gaussian random variable with
unit variance and the Signal to Noise Ratio (SNR) is set at 40 dB.

3.2 Numerical inverse problem

The aim of the inverse problem is to identify Young’s moduli Ef and Et from the measured dis-
placement field. First, the feasibility of the proposed method with exact data is shown. Then, the
problem arising from noisy measurements will be illustrated. In the next section, a regularization
procedure allowing the identification of Young’s moduli will be proposed.

As stated above, the inverse problem is based on verifying the equilibrium between stiffness and
inertia terms of Eq. (1) in an area where no external effort applies, i.e. where Eq.(9) is expected
to be verified. A first issue related to the practical use of Eq. (9) on a subdomain of the beam
concerns the existence of efforts at the boundaries of the observation area (Figure 4). These efforts
correspond to forces and moments exerted by the adjacent parts of the beam on both sides. As
a result, the left hand side of Eq. (9) is actually zero valued everywhere except at boundaries, as
shown in Figure 4.
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Figure 3: Displacements in observed area: (a) Translations (scale ×1000) in the global axes, (b)
Rotation displacement along the curvilinear abscissa of the beam.
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Figure 4: External efforts in the beam calculated from the left hand side of Eq. (9), using non-
truncated or truncated stiffness and mass matrices.

A way to avoid these efforts is to truncate mass and stiffness matrices, by removing the first
three and last three lines. This corresponds to ignoring the three external efforts (2 forces and 1
moment) at each end, which ensures that Eq. (9) is fully verified (see Fig. 4). In the following, the
truncated matrices are simply denoted by Kt, Kf and M to keep a good readability.

3.3 Principle of regularization

In this section, a probabilistic framework is introduced to regularize the inverse problem when
noisy data is considered.

Taking into account explicitly the noise perturbation coming from the measurement, the obser-
vation equation can be written as

unoisy = u + n, (12)
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where n denotes the vector of noise. Considering white noise, the probability of n can be written
as

n ∼ Nc(0, σ
2
n · I), (13)

which represents a multivariate complex Gaussian distribution with zero mean and variance σ2
n.

Substituting Eq. (13) into the observation equation Eq. (12) provides the probability of exact dis-
placements

u ∼ Nc(unoisy, σ
2
n · I), (14)

It has been observed that the calculation of Ktunoisy and Ktunoisy is responsible for the instabil-
ity of the inverse problem, since it drastically amplifies measurement noise (for the sake of brevity
these results are not shown in the paper). For this reason, the proposed regularization procedure
consists in estimating the term

δ = ẼtKtu + ẼfKfu. (15)

This can be done by merging the probabilistic information provided by two equations. A first
equation corresponds to the direct estimation of δ from noisy displacements using Eq. (15). Sub-
stituting Eq. (14) into Eq. (15) provides the probability

δ ∼ Nc(ẼtKtunoisy + ẼfKfunoisy, (ẼtKt + ẼfKf )σ
2
n(ẼtKt + ẼfKf )

H), (16)

where superscript H denotes the Hermitian transpose. A second equation is related to the a priori
verification of the equation of motion Eq. (9), i.e.

δ = ω2Mu. (17)

Substituting Eq. (14) into Eq. (17) provides the probability

δ ∼ Nc(ω
2Munoisy, (ω

2M)σ2
n(ω

2M)H). (18)

A regularized estimate of δ can therefore be obtained from the intersection of both probabilities,
i.e. the product of the two Gaussian distributions of Eqs. (16) and (18),

[δ] ∝ Nc(µδ1 ,Σδ1) · Nc(µδ2 ,Σδ2), (19)

where 
µδ1 = ẼtKtunoisy + ẼfKfunoisy

Σδ1 = (ẼtKt + ẼfKf )σ
2
n(ẼtKt + ẼfKf )

H

µδ2 = ω2Munoisy

Σδ2 = (ω2M)σ2
n(ω

2M)H .

(20)

The result is itself a Gaussian distribution,

[δ] ∝ Nc(δ|µδ,Σδ), (21)

where the mean vector and covariance matrix are given by{
Σδ =

(
Σδ1

−1 + Σδ2
−1
)−1

µδ = Σδ

(
Σδ1

−1µδ1 + Σδ2
−1µδ2

) (22)

In the following, the MAP (Maximum A Posteriori) estimate of δ, i.e. µδ, is considered. It can
be shown from Eqs (20) and (22) that µδ finally does not depend on σn. As a consequence, no a
priori knowledge of noise level is required to perform the regularization.
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3.4 Regularized results on noisy data

In the previous section, a regularized estimate of the left hand side of Eq. (10) has been derived.
In contrast, it has been shown in a previous paper [12] that the term Munoisy does not notably
amplifies the measurement noise. For this reason, no regularized expression is seeked for this
term.

Following this and Eq. (10), the result of µδ − ω2Munoisy should be close to zero when the
Young’s moduli Ẽt and Ẽf are close to their actual values. To perform the identification of these
moduli, a cost function

f(Ẽt, Ẽf ) =
∑
|µδ − ω2Munoisy|2. (23)

is introduced, where the dependence on Ẽt and Ẽf is carried by µδ (see Eqs (20) and (22)). The
result of this cost function should be interpreted as an indication of the residual efforts in the right
hand side of Eq. (9).

Figure 5 (a) shows the residue for different values of Young’s Modules. Here, the displacement
u is exact. A minimum residue is clearly obtained and points to the correct values of Young’s
Modules. Young’s Modules can also be identified.

When noise is added to displacement, Figure 5 (a) becomes Figure 5 (b). It can be observed
that Young’s Modules are unidentified.

After regularisation and optimisation, on Figure 5 (c), it seems that Ef is correctly identified
but Et not. If a research of minimum is done, the traction Young’s Modulus is also well identified.

This new developed method with this regularisation is applied on a large band of frequencies,
between 100 Hz and 10000 Hz. Figure 6 (a) and (b) show the result of the parameters identifica-
tion.

It can be observed that the bending Young’s Modulus is correctly identified at any frequencies.
However some difficulties arise at some singular frequencies where the structure is excited on
nodal point. For the traction/compression Young’s Modulus, the identification seems to be more
complicated, especially in the low frequency domain. Concerning loss factor, Figure 6 (b) shows
the difficulty to obtain accurate results.

4 CONCLUSION

Continuing the work for the identification of materials properties on a straight beam, this paper
presented the extension of the same method for a curved beam where the identification of Young’s
Modulus in traction/compression and in bending is proposed. The developed method is based on
the RIFF method coupled to a Finite Element operator. The use of this method is conditioned by
the knowledge of the structure geometry, to build stiffness and mass matrices, by the assurance no
force is applied on the observation area and the access of the displacement field. To overcome to
the noise issue, a probabilistic approach coupled to a residue minimization is used.

This method has been validated on a simulated beam for a wide frequency band. It allows
also to identify material properties, like complex Young’s Modules in traction/compression and in
bending.

Finally, the effect of the curvatures on both equivalent Young’s modules will be studied in order
to propose more simple FEM operator to model structures in composite materials.

ACKNOWLEDGEMENTS

This study is part of the RICTUS project managed by IRT Jules Verne (French Institute in Research
and Technology in Advanced Manufacturing Technologies for Composite, Metallic and Hybrid
Structures).

171759 - 8



(a)

×1010

9

E
T
 (Pa)

8

7

6
8

7.5
7

E
F
 (Pa)

6.5
6

×1010

4.25

4.15

4.3

4

4.05

4.1

4.2

S
u
m

 o
f 
a
b
s
o
lu

te
 v

a
lu

e
s
 o

f 
e
ff
o
rt

 r
e
s
id

u
e
 

 i
n
 t
h
e
 o

b
s
e
rv

a
ti
o
n
 a

re
a

(b) (c)

Figure 5: Surface of effort residue in function of traction and bending Young’s Modules: (a) Exact
data, (b) Noisy data non regularized and (c) Noisy data regularized.
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