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ABSTRACT

This paper defines distributed futures, a construct that provides at
the same time a data container similar to a distributed vector, and a
single synchronization entity that behaves similarly to a standard
future. This simple construct makes it easy to program a composi-
tion, in a task-parallel way, of several massively data-parallel tasks.
The approach is implemented and evaluated in the context of a bulk
synchronous parallel (BSP) active object framework.
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1 CONTEXT AND INTRODUCTION

Two of the most common parallel abstractions are task-parallelism,
which decomposes work into different parts that can be executed
in parallel and can be functionally different, and data-parallelism,
which splits the work by distributing the data. Because task paral-
lelism and data parallelism are convenient to parallelize different
parts of an application, it is valuable to mix them into one program-
ming framework. In data-parallel models, synchronization and data
exchanges between the tasks are quite restricted while task paral-
lelism is generally very flexible on these aspects. This is why several
interaction patterns exist in task parallel models, we focus here on
futures, a programming construct that both serves to synchronize
tasks and to exchange data. While futures are convenient for task-
parallel models, they are not very well integrated in data-parallel
models. To enable a better interaction of these two programming
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models, this article designs and shows how to implement distributed
futures.

A future is a placeholder for a value being computed by a task.
While the task is not finished, the future is unresolved, automatically,
the future gets filled by the value computed by the task when it
finishes (the future is fulfilled). Futures can also be accessed by
trying to get their value, synchronizing the current task with the
resolution of the future. Several mechanisms exist for accessing
futures, either blocking on the result or registering a continuation
to be executed when the future is resolved. All these mechanisms
provide a convenient and safe way to write parallel and distributed
applications, with a behavior close to a sequential program.

Here, we choose actors as the task-parallel model, and BSP (Bulk
Synchronous Parallel [13] ) as the data-parallel programming frame-
work. The Actor [1] model is a task-parallel paradigm. Actors pre-
vent data-races by enforcing that asynchronous message passing is
the only interaction between processes: actors communicate with
each other by putting messages in their mailboxes. In this article
we use active objects [4], which are objects that are at the same
time actors. In active objects, a method call to an active object
creates a message that reaches its mailbox and a future is used to
represent the result returned by such an asynchronous method
invocation. Data-parallel programming abstractions like BSP are
better suited to parallel computations on large amounts of data.
BSP algorithms are defined as a sequence of supersteps, each made
of three phases: computation, communication, and synchronization.
BSP is limited in terms of application elasticity or loose coupling of
computing components as it relies on the strong synchronization
of all computing entities.

The scope of our contribution is broader than the strict context
of BSP and active objects. As soon as one wants to compose task-
parallel and data-parallel programming models, the question of the
interaction between the synchronization mechanisms arises. In this
article, we focus on futures, which are synchronization artefacts
frequently used in task-parallel applications. However, because a
future encapsulates a single piece of data on which synchronization
is possible, it is not suited to the context of data-parallelism that
requires data to be spread over different processes. This is why
we design, implement, and evaluate distributed futures: futures
representing data distributed over multiple processes.

1.1 Futures in programming languages

Many languages use futures because they provide a high-level
synchronization paradigm. Futures are used in actors [14], active
objects [4], Synchronous languages [6], but also many mainstream
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languages like C++ or Java. Basic future usages include synchroniza-
tion of a process on the availability of the future’s referred data (i.e.
the resolution of the future) and asynchronous reaction to the reso-
lution of a future, i.e. registration of a continuation to be executed
upon future resolution. The synchronization primitive is generally
called get and waits for a future to be resolved while blocking the
current thread of execution. Some languages like Akka [14] favour
asynchronous chaining of the form f.onSuccess(. . .) that does
not execute the consequence of the future resolution immediately,
but registers what is to be executed when f becomes available.

1.2 A data-parallel and task-parallel
framework: BSP Active Objects

As highlighted above, data-parallelism and task-parallelism should
benefit from each other and both are often integrated in the same
application. A few frameworks for coupling different parallel codes
support the design of these applications.

In particular, we rely on BSP Active Objects[9], a C++ library
that allows the coordination of several data-parallel tasks imple-
mented in BSP by using an actor-based task-parallel interaction
with basic (non distributed) futures. It runs on top of MPI and uses
the BSPonMPI v0.2 implementation of the BSPlib specification.

A BSP active object is running on several processes, one of them
is called the head process; this process handles the active object
requests sequentially, it is able to run a parallel function by giving
it as parameter of a bsp_run primitive. This parallel function is exe-
cuted on all the processes of the active object, which communicate
in a BSP manner. A class can be declared as an active object class,
tagging some of the methods as “active object methods”. Each BSP
process has two threads. The first one is a worker thread that exe-
cutes the user’s code. The other one is called a management thread:
it ensures responsiveness of the active object as it is available when
the processes are inside a BSP computation. We will use this per
BSP process thread to perform tasks dedicated to our distributed
future management. The use of BSP active objects is illustrated
in [9].

2 DISTRIBUTED FUTURES
2.1 Principle

To incorporate data-parallelism inside a task-parallel framework,
the most efficient solution is to use multiple processes for each
entity that handles a parallel task. This means that one needs to
gather all the parts of the computed result into a single place in order
to return back a result as a future even if it was distributed among
processes. This gathering raises a performance issue whenever the
result array is large, especially when passed to another task that
scatters it again to do data-parallel processing. Consequently, it is
more efficient that every data-parallel process keeps its part of the
result, and transmits it directly where it is needed. The data-parallel
processes thus only need to send a description of the part of the
result it holds. We call this description a distributed future because
it represents a distributed vector being computed in the same way a
future represents a value being computed. A distributed future is
a future on which synchronization is possible, but its content is the
description of a distributed vector. Provided the distributed future
is way smaller than the distributed vector, a distributed future is

Pierre Leca, Ludovic Henrio, Francoise Baude, and Wijnand Suijlen

cheaper to pass around between tasks. Using a distributed future,
any process in a data-parallel task can obtain the distributed vector
parts it needs, directly from the processes that hold them. The
programmer does not have to know where each part is located and
on how many processes each part is distributed.

Resolving a distributed future means waiting to get the metadata,
which is returned from an active object producing a distributed vec-
tor. However the meta-data is only produced after the distributed
vector is produced. This means resolving a distributed future waits for
the full distributed vector be produced, but only transfer its metadata.
Every process only receives the data it is interested in, and directly
from process(es) that computed these data. A synchronization on
a distributed future consists in retrieving metadata necessary to
access the content of the distributed future value, then the differ-
ent part(s) of the effective data collection. Our design is such that
requesting the value of a distributed future and making use of it
to trigger effective data transfer is similar to using a lazy synchro-
nization strategy with classical futures: the data is only transmitted
upon need. Indeed, because data parallelism is often bandwidth-
bound, we need precise control of the communication when large
amounts of data may be communicated over multiple processes.

A more declarative strategy can also be envisioned: the program-
mer could declare a distribution policy inside each actor and this
policy could be used by the different data-parallel processes hosted
in this actor to pre-fetch the data before the computation is started.
Such a pre-fetching strategy is outside the scope of this paper.

2.2 Implementation

Our implementation of distributed futures is based on the BSP active
object library, described in Section 1.2 above. To implement the
concept of distributed futures, two aspects have to be implemented:
the future resolution and the future access. We review our solution
for both of them below. We start by defining a data structure to
represent a distributed vector, this data structure is stored in the
distributed future when it is resolved.

When a distributed future is resolved, we assign it a collection of
(pid, local_id, size, offset) quadruplets. Each quadruplet describes a
part of a distributed vector. pid is the process which owns this part;
local_id is the part identifier that is unique within the owner; size is
the part size; offset is the index in the distributed vector. Fields offset
and size are specified in bytes. For example, a part with offset 1 and
size 1is the second byte of a distributed vector. This structure allows
storing different types of contiguous elements, including structs.
The simplest data distribution is the block distribution, which stores
one contiguous range per process, in this case the distributed future
is made of one quadruplet per process. For example, if we have a
block-distributed vector of 40 elements computed by 4 processes
numbered 1, 2, 3 and 4, then the distributed future value is the list
((1,1,10,0), (2,12, 10, 10), (3,41, 10, 20), (4, 33, 10, 30)). Processes
own consecutive parts of size 10 each.

We provide 4 main high-level primitives for manipulating
vector_distribution, shown in Figure 1. Their following descrip-
tion can be followed along figure 2.

The register_result function stores a distributed vector part
of size size at local address data into the management thread’s
memory of the current process; offset is the position of this
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void register_result(const char »data,
vector_distribution gather_vd_parts();
void broadcast_vd(vector_distribution & vd);
void get_part(const vector_distribution & vd,

size_t offset, char «buf, size_t size);

size_t size, size_t offset);

Figure 1: Vector distribution primitives
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Figure 2: Distributed future API example

part within the distributed vector. This step creates a quadruplet
as defined in Section 2.2. After all parts are registered, a call to
gather_vd_parts by the head process assembles the quadruplet
list as a vector_distribution structure, which, when given as re-
turn value, becomes a distributed future. Resolving this future with
an usual get returns this vector_distribution, after the associ-
ated distributed vector was produced. The broadcast_vd primitive
allows a head process to send it to its other active object processes.
The get_part primitive then enables any of these processes to
request any subpart of the distributed vector, where its distribution
is transparently deduced from the vector_distribution given as
parameter. In Figure 2, the second process of objectB requests the
second half of the distributed vector, which is deduced to be on P1
and P2 of objectA.

3 EXPERIMENTS

In this section, we demonstrate the performance gain of distributed
futures when used between parallel actors. To do so, we create a
pipeline of three such actors, and we focus on the middle one that
receives a distributed future, work with it, and produces another.
This actor is a parallel image compressor, of which the performance
vary with the number of assigned processes. We configure other
actors so that the compressor is the bottleneck in the pipeline. The
pipeline is set-up from a coordinator process, which executes a
code similar to figure 3.

3.1 Experimental setting

For these experiments, we are using seven Huawei RH2288v2
servers, each with two Intel Xeon E5-2690v2 CPUs that have ten
cores each. We use the Intel C++ compiler version 18.0.1. Because
each BSP active object process uses two threads, we put a maxi-
mum of ten processes on each of these servers. When an active
object is assigned more than ten processes, it means it is distributed
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std :: string path;
std :: ifstream is(img_list file);
while (getline (is, path)) {
Future <distr_vector > img = objectl.loadImage (path);
Future <distr_vector > compressed = compressor.compress(img);

Future <int> inserted = object2.insert(compressed);

// File with list of path

Figure 3: Main part of the coordinator process
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Figure 4: Execution time for inserting 1000 images as func-
tion of the number of compressor processes

over multiple nodes. For example twenty processes are distributed
over two. We dedicate one of our servers to the main coordinator
process, so that all active objects are on remote nodes.

3.2 Results

We choose large image sizes: 36 Mega-pixel images of resolution
4912 x 7360. Each of these images amounts to about 108 MB uncom-
pressed in pure bitmap format. We execute our pipeline for 1000 of
these images, measure its performance while varying the number of
compressor processes, as shown in figure 4. Because the compressor
is the bottleneck in the pipeline, the whole pipeline performance
improves with the compressor performance. Here the performance
stops improving at sixteen processes with distributed futures and
four processes with normal futures. This experiment clearly shows
the advantages of distributed futures, showing the gain brought by
parallel data transfers instead of gathers and scatters.

4 RELATED WORKS

Several works focus on the efficient use of futures in concurrent
and distributed settings 2, 7, 12], sometimes synchronizing a group
of tasks, but none of them use a single future as the abstraction
of a large set of data. In the domain of parallel and distributed
computing, such an abstraction is generally provided by distributed
arrays. To the best of our knowledge we are the first to define
futures of distributed data in the form of distributed vectors.

ParT [8] in the Encore language, provides the notion of arrays
of futures that distributes data as different futures, but does not
allow to synchronize parts of data as a single future. It can be used
to implement speculative parallelism or barriers gathering a set of
results. The set of futures is not viewed as a distributed array but
rather as an array of futures. Also, the implementation is local to
a single machine and there is no support for distributing a ParT



SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

over multiple machines or the possibility to transparently allocate
a range of data to a process.

The notion of streaming futures was defined in the context of
ABS in [2]. This approach provides a solution for tailoring futures
to large amounts of data and in particular data streams. Stream-
ing futures can be accessed multiple times to obtain different data,
which departs from the traditional future concept. The advantage
is that such futures can create a streaming channel, and the com-
munication pattern can then be optimized using existing stream-
ing techniques. Our distributed futures are geared more toward
high-performance computing than to data-streaming applications,
because a single synchronization waits for completion of all data.

Distributed arrays, have been used as basic data structures for
data parallel algorithms since the early days of parallel computing.
In particular, they solve a scalability issue. On distributed memory
systems, where memory is partitioned, an array that could not be
stored on a single node can be stored on a distributed memory. In
the context of (direct mode) BSP programming, distributed arrays
are a natural way of dealing with integer-indexed data, because
the programming model assumes distributed memory. For that
reason, many BSP programming languages and frameworks support
distributed arrays, sometimes implicitly like registered memory in
BSPIlib [10], and other times more explicitly like the parallel vectors
in BSML [3] and coarrays in Bulk [5]. OSL [11] too is a library of
data parallel algorithmic skeletons which follow the BSP model.
OSL arrays are distributed but are manipulated as normal arrays by
the programmer, passing them as parameter to functions such as
parallel map or zip which return a new distributed array as result,
that can further be passed as parameter. OSL proposes to avoid the
creation of intermediate distributed arrays within a sequence of
supersteps. On the contrary, our distributed futures allow a vector
to be passed around to any method call without the need to delimit a
sequence of calls. The use of futures triggers a synchronization but
the data transfer is decoupled. Moreover, contrary to OSL where
arrays must be block-distributed, we can define an unbalanced
distribution of the future.

Distributed arrays require redistribution usually when two par-
allel programs exchange data, because, for example, the number of
processes doesn’t match, or the problem domain favors a different
distribution. E.g. in MPI, programs can use intercommunicators to
transfer data between producer and consumer tasks. However, both
must know exactly how data is redistributed, something that must
be specified on both ends by the programmer. In frameworks with
shared-memory like OpenMP, all offset and address calculations
and the synchronization can be done by the consumer task itself.
Still, the programmer must know exactly which process owns what
data on the producer task. Contrarily to the MPI-like approaches,
our distributed futures offer a better abstraction of distribution
than classical distributed arrays. The distribution information is
stored with the future as meta-data, obtained upon synchronization,
and the programmer doesn’t need to know its content or to ask
individual processes for subparts.

5 CONCLUSION

We presented the concept of distributed futures, an unification of
futures and distributed arrays where a distributed future represents
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a distributed array. It provides synchronization capacities on the en-
tire array and enables optimized communications by allowing pro-
cesses to fetch directly the parts they need from the processes that
computed them. Distributed futures as a programming abstraction
makes programming easier, in particular synchronization and data
transfer; it also makes the communication between data-parallel
entities more efficient than with standard futures. We implemented
this notion in the context of BSP active objects that allows several
BSP entities to interact in a task parallel and asynchronous manner.
We showed the practical benefits of this approach.

As future work, pre-fetching strategies would allow an active
object to trigger transfer between BSP processes earlier. Instead
of pulling data when the BSP computation starts, by invocation
of a get_part primitive, the idea is to push the data on the BSP
processes while the request is in the input (FIFO) queue of the active
object, i.e. between the moment the request is sent to the active
object and the moment the request is handled by the active object.
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