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Fixed point iterations
acceleration




Cea Fixed point problems

Fixed point iterations
| Xni1 = F(Xp), until [F(Xy) — Xol| <<

are still the most common approach to dealing with a variety of
numerical problems :
m coupled problems : partitioning multi-physics, domain
decomposition, proper generalized decomposition,...
m nonlinear problems : heat transfer, nonlinear mechanics, electronic
structure,...
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Cea Fixed point problems

Fixed point iterations

Xo1 = F(Xn), untl [ F(Xn) — Xal| < < |

are still the most common approach to dealing with a variety of
numerical problems

® : generic, no a priori knowledge on F (derivative,...)
® : often slow and poor (linear) convergence
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Cea Fixed point problems

Fixed point iterations

Xo1 = F(Xn), untl [ F(Xn) — Xal| < < |

are still the most common approach to dealing with a variety of
numerical problems

® : generic, no a priori knowledge on F (derivative,...)
® : often slow and poor (linear) convergence

< acceleration methods (aka extrapolation methods) for sequence
convergence

Xyt = G(F(Xn), F(Xa_1), - X, Xo_1, .), until [ F(Xn) — Xy < ]|

which aim to converge faster (in less iterations and computational cost)
to the solution X.
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C22 Scalar sequences acceleration

m Most popular and efficient acceleration method for first order
sequences remains the A2 of Aitken (1926) :

Aitken A2-method (static sequence transformation)

Assuming  Xpr1 — X = (A +en)(Xn — X), nILm en=0

(Axn)2 with Azxn = Xnt1 — Xn
AXp = AXxpp1 — AXxp

Th = Xp —
en Vi = 5% Alx,
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(Axn)2 with Azxn = Xnt1 — Xn
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Th = Xp —
en Vi = 5% Alx,

m Dynamic (/cycling/recursive) sequence transformations based on
the A%-method
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Ce2 Scalar sequences acceleration

m Most popular and efficient acceleration method for first order
sequences remains the A2 of Aitken (1926) :

Aitken A2-method (static sequence transformation)

Assum|ng Xn+1 - )_( = ()\ aF gn)(Xn - )_(), nh_}m En = O

3 (Axp)? Axp = Xn1 — Xn
Then Yn=Xn— A2Xn with A2Xn = AXn+1 - AXn

m Dynamic (/cycling/recursive) sequence transformations based on
the A%-method
(f(xn) = Xn)?

= Steffensen algorithm | x,..1 = x, —
g =0T F () — 27 (Xn) + X

two-steps method

second-order method

but efficacy index 1.4

converges even when the basic fixed point iterations diverge !
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Ce2 Scalar sequences acceleration

m Most popular and efficient acceleration method for first order
sequences remains the A2 of Aitken (1926) :

Aitken A2-method (static sequence transformation)

Assum|ng Xn+1 - )_( = ()\ aF gn)(Xn - )_(), nh_}m En = O

3 (Axp)? Axp = Xn1 — Xn
Then Yn=Xn— A2Xn with A2Xn = AXn+1 - AXn

m Dynamic (/cycling/recursive) sequence transformations based on
the A%-method

— Secant method | X1 = X, —

(Xn = Xn—1)(f(Xn) — Xn)
(f(Xn) - Xn) - (f(XnA) + Xn71)

- also called dynamic relaxation, Aitken relaxation,...
— one-step method

— order: (1++5)/2~1.6

- efficacy index 1.6 > Steffensen method
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Ce2 Scalar sequences acceleration

m Most popular and efficient acceleration method for first order
sequences remains the A2 of Aitken (1926) :

Aitken A2-method (static sequence transformation)

Assuming  Xpr1 — X = (A +en)(Xn — X), nILm en=0

AXp = AXxpp1 — AXxp

Th = Xp —
en Vi = 5% Alx,

m Dynamic (/cycling/recursive) sequence transformations based on
the A2-method
— Many other generalizations of the Aitken’s process : e-algorithm,...
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Ce2y Vector sequences acceleration

m Correspond to the majority of the problems of interest

m Generalization of scalar transformations to vector transformations
are non-unigue (convergence properties ?...)

m Extensively studied in the literature in the 60s and since the 90s.
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Ce2a Vector sequences acceleration

m Correspond to the majority of the problems of interest
m Generalization of scalar transformations to vector transformations
are non-unique (convergence properties ?...)
m Extensively studied in the literature in the 60s and since the 90s.
= Most of them are scalar extension using

X
X'1=_"_ y X '=——
X2 or more generally v X

— Steffensen — Irons and Tuck, Lemaréchal, Graves-Morris,
A-algorithm, Jennings, Zienkiewicz and Lohner,...

— Secant — many variant of the vector secant method, dynamic
relaxation method,...

- e-algorithm — vector e-algorithm, topological e-algorithm
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Ce2 Vector sequences acceleration

m Correspond to the majority of the problems of interest

m Generalization of scalar transformations to vector transformations
are non-unique (convergence properties ?...)
m Extensively studied in the literature in the 60s and since the 90s.

— Other ones are directly dedicated to vector sequences and often
based on a minimization process (or projection)

— Nonlinear hybrid procedure and the associated A¥-method
— Anderson method (equivalent to the interface quasi-Newton method),
— Reduced rank extrapolation method, Minimal Polynomial extrapolation
method,...
These methods can generally reduce (for special choices of
parameters) in the scalar case to the Aitken A2 method.

— Generalization of Aitken’s method for vector sequences.
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Ce2y Vector sequences acceleration

m Correspond to the majority of the problems of interest

m Generalization of scalar transformations to vector transformations
are non-unigue (convergence properties ?...)

m Extensively studied in the literature in the 60s and since the 90s.
— We propose a common framework to build new vector

acceleration methods and to recover the most popular and efficient
extrapolation methods
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A generic
residual-based
acceleration method




Cea Principle of the static method

m A generic formalism for vector sequences

Residual-based acceleration method

Assuming e Y, = X,— M. Azl 'Lmoo Zl=0, \. eR

nt1 = Xny1 — E/ 1 )‘I n+1
Then the minimization of §Y, = Y1 — Y, gives A}, and an
estimation of X
Yn = Xn - Zn((;Z,T&Zn)_1 (52,;’-5)(,7

— Generalization for M > 1 of the nonlinear hybrid procedure

= Very close to the polynomial extrapolation formalism : reduced rank
extrapolation method recovered for Z) = 6 X, 1

- For Z,", = 0X,_; : basic idea of Anderson method
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C22 Two classes of dynamic methods

m lterative acceleration for fixed point iterations :
— two sequences (X,), and (F(X,)), are generated
— two main formalisms of iterative residual-based methods are
available
m One-step iterative methods (easily transportable to multi-step
methods)
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C22 Two classes of dynamic methods

m lterative acceleration for fixed point iterations :
— two sequences (X,), and (F(X,)), are generated
— two main formalisms of iterative residual-based methods are
available
m One-step iterative methods (easily transportable to multi-step
methods)

Crossed sequences method

BV, = F(Xo)-XM Az

Yorr = F(X0) =X NZhy

— Focus on the basic fixed point sequence (F(Xs))n

— Take generally into account (X,), in the definition of Z/

— For Z! = F(X,_;) — X,_j and M = 1 : standard vector secant
(dynamic relaxation) and Irons-Tuck if two-step method.
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C22 Two classes of dynamic methods

m lterative acceleration for fixed point iterations :

— two sequences (X,), and (F(X,)), are generated
- two main formalisms of iterative residual-based methods are

available
m One-step iterative methods (easily transportable to multi-step

methods)

Alternate sequences method
" Yo = Xp - Zf\g )‘ZZ/;
Yori = F(Xa) = XM NoZiy s

— Y, is only concerned by (X,), whereas Y1 depends on (F(X,))n

— Then ¢Y, is a linear combination of fixed point residual (F(X,) — Xp)
with the same coefficients than the sequence coefficients.

— ForZj = X,_i11 — Xp—jand Z!; = F(Xp_i11) — F(Xs—;) : Anderson

method.
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Numerical
experiments




Ce22a Nonlinear mechanics test case

m Point-wise solver used to perform nonlinear mechanical behaviour
unit testings : MTest (MFront) tool, developed in the PLEIADES
platform.

m Solved by a quasi-Newton fixed point equation

Equilibrium resolution

Let X = E|tyat — E|t, then ,
solve R(X) = X|rrar(X, AL, V) — £[7%, =0
using

Xn+1 = Xn— H_1 R(Xn)

with H : elastic operator

v

® : H easy to compute, symmetrical and definite positive and can be
factorized only once (or updated from time to time)
: Very slow fixed point linear convergence.
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C22 Chaboche plastic behaviour

m Fixed point iterations converge very slowly (~ 1.000 iterations per
time-step)
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C22 Chaboche plastic behaviour

m Fixed point iterations converge very slowly (~ 1.000 iterations per
time-step)

m Two iteration residual methods comparison + second-order Newton
method - e = 1078
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C22 Chaboche plastic behaviour

m Fixed point iterations converge very slowly (~ 1.000 iterations per
time-step)

m Two iteration residual methods comparison + second-order Newton
method - ¢ = 1078
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C22 Chaboche plastic behaviour

m Fixed point iterations converge very slowly (~ 1.000 iterations per
time-step)

m Three iteration residual methods are not better than two iteration
methods : Alternate 2 — 6 ~ Alternate secant.
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C22 Chaboche plastic behaviour

m Fixed point iterations converge very slowly (~ 1.000 iterations per
time-step)

m Three iteration residual methods are not better than two iteration
methods : Alternate 2 — § ~ Alternate secant.
Crossed 2-0 method converges but not to the fixed point.

A

le-04 4-.. \

s

. | R

é 1e-08 ) X‘%ﬁ \Rﬁ
I 1Y

le-10 | ﬁ%\z

m‘?

‘ s b

le-12 | Af“’\ I W“L
{%Y %“i‘ Y

0 10 20 30 40 50 60 70 80 90 100
Number of iterations

TGXm Xl -
IX{nt1] - Xnl —o—

|. Ramiere | Coupled Problems 2017 | 12-14 June 2017 | PAGE 8/14



Ce2 Polycrystals test case

m Fixed point iterations converge faster
m Jacobian matrix unavailable = no Newton method
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Cea Polycrystals test case

m Fixed point iterations converge faster
m Jacobian matrix unavailable = no Newton method
m Two iteration residual methods comparison - ¢ = 108
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Cea Polycrystals test case
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Cea Polycrystals test case

m Fixed point iterations converge faster
m Jacobian matrix unavailable = no Newton method
m Three iteration residual methods comparison
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Cea Polycrystals test case

m Fixed point iterations converge faster
m Jacobian matrix unavailable = no Newton method
m Three iteration residual methods comparison

Residual
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Cea Partial conclusion

m Performances of the acceleration method depend on the test case

m Secant methods seem really efficient : they can concurrence the
second-order Newton method !

m Alternate M — § (= Anderson) methods seem the best M-iterates
methods.
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C22 Multi-physics coupling

time t

Neutronic

platform dedicated
to nuclear fuel behaviour simulation

L1

Thermic

m Partitioning coupling

Mechanics

Time evolution

Multi—physics loop

m Gauss-Seidel multi-physics fixed point
iterations

time t + dt
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Fuel diameter

Fuel Diameter
(cm)

0,57048
0,57047
0,57046
0,57045
0,57044
0,57043

0,57039

0,57048
0,57047
0,57046
0,57045
0,57044
0,57043
0,57042
0,57041

0,5704

0,57039 1’

Fixed point iterations

& —~0 Input value
&—= Output value

»»»»»»»»»»»»»»»»»

|
20 30 40 50 60 70 80 90 100
MP Iteration

Crossed secant (dynamic relaxation)

& —-0 Input value
&—= Output value

S}
w
N
W
=N

MP Iteration
|. Ramiere | Coupled Problems 2017 | 12-14 June 2017 | PAGE 12/14



Cea Irons and Tuck method

m Crossed secant (dynamic relaxation) not always converge in case
of fixed point iterations divergence

m Irons and Tuck method seems always converge but sometimes
slower than the fixed point.

Fixed point iterations Irons and Tuck acceleration
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Cea Irons and Tuck method

m Crossed secant (dynamic relaxation) not always converge in case
of fixed point iterations divergence

m Irons and Tuck method seems always converge but sometimes
slower than the fixed point.
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m Crossed secant (dynamic relaxation) not always converge in case
of fixed point iterations divergence

m Irons and Tuck method seems always converge but sometimes
slower than the fixed point.

m Currently trying alternate M — 6 methods...
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Conclusions




Cea Conclusions

m A generic residual-based approach has been introduced to build
sequence acceleration processes

= generalization of various existing vector acceleration methods
= derived in two main classes of dynamic acceleration methods :
crossed and alternate approaches

m A set of iterative acceleration approaches have been tested on
nonlinear mechanics resolution and multi-physics simulation

— the crossed approach is only interesting in its secant (1 — 4 .X)
version

— in particular alternate M — ¢ (Anderson) approaches seem the most
efficient

m This generic acceleration formalism has already been successfully
applied on other applications : FFT, PGD,...
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