DE LA RECHERCHE À L'INDUSTRIE

Acceleration methods for fixed point coupled problems iterations

Coupled Problems 2017 | <u>I. RAMIÈRE,</u> T. HELFER (DEN, DEC, SESC)

12-14 JUNE 2017

Numerical Methods in Coupled Problems

www.cea.fr

- Fixed point iterations acceleration
- A generic residual-based acceleration method
- Numerical experiments
- Conclusions and perspectives

Fixed point iterations acceleration

Fixed point problems

Fixed point iterations

$$X_{n+1} = F(X_n)$$
, until $||F(X_n) - X_n|| \le \varepsilon$

are still the most common approach to dealing with a variety of numerical problems :

- coupled problems : partitioning multi-physics, domain decomposition, proper generalized decomposition,...
- nonlinear problems : heat transfer, nonlinear mechanics, electronic structure,...

Fixed point iterations

$$X_{n+1} = F(X_n)$$
, until $||F(X_n) - X_n|| \le \varepsilon$

are still the most common approach to dealing with a variety of numerical problems

- © : generic, no a priori knowledge on F (derivative,...)
- © : often slow and poor (linear) convergence

Fixed point iterations

$$X_{n+1} = F(X_n)$$
, until $||F(X_n) - X_n|| \le \varepsilon$

are still the most common approach to dealing with a variety of numerical problems

- ③ : generic, no a priori knowledge on F (derivative,...)
- $\ensuremath{\textcircled{\sc s}}$: often slow and poor (linear) convergence

 \hookrightarrow acceleration methods (aka extrapolation methods) for sequence convergence

$$X_{n+1} = G(F(X_n), F(X_{n-1}), ..., X_n, X_{n-1}, ...), \text{ until } ||F(X_n) - X_n|| \le \varepsilon$$

which aim to converge faster (in less iterations and computational cost) to the solution \bar{X} .

Most popular and efficient acceleration method for first order sequences remains the Δ² of Aitken (1926) :

Aitken Δ^2 -method (static sequence transformation)

Assuming
$$x_{n+1} - \bar{x} = (\lambda + \varepsilon_n)(x_n - \bar{x}), \quad \lim_{n \to \infty} \varepsilon_n = 0$$

Then $y_n = x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n}$ with $\begin{cases} \Delta x_n = x_{n+1} - x_n \\ \Delta^2 x_n = \Delta x_{n+1} - \Delta x_n \end{cases}$

Most popular and efficient acceleration method for first order sequences remains the Δ^2 of Aitken (1926) :

Aitken Δ^2 -method (static sequence transformation)

Assuming
$$x_{n+1} - \bar{x} = (\lambda + \varepsilon_n)(x_n - \bar{x}), \quad \lim_{n \to \infty} \varepsilon_n = 0$$

Then $y_n = x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n}$ with $\begin{cases} \Delta x_n = x_{n+1} - x_n \\ \Delta^2 x_n = \Delta x_{n+1} - \Delta x_n \end{cases}$

Dynamic (/cycling/recursive) sequence transformations based on the Δ²-method

Most popular and efficient acceleration method for first order sequences remains the Δ^2 of Aitken (1926) :

Aitken Δ^2 -method (static sequence transformation)

Assuming
$$x_{n+1} - \bar{x} = (\lambda + \varepsilon_n)(x_n - \bar{x})$$
, $\lim_{n \to \infty} \varepsilon_n = 0$
Then $y_n = x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n}$ with $\begin{cases} \Delta x_n = x_{n+1} - x_n \\ \Delta^2 x_n = \Delta x_{n+1} - \Delta x_n \end{cases}$

Dynamic (/cycling/recursive) sequence transformations based on the Δ^2 -method

Steffensen algorithm
$$x_{n+1} = x_n - \frac{(f(x_n) - x_n)^2}{f(f(x_n)) - 2f(x_n) + x_n}$$

- two-steps method
- second-order method
- but efficacy index 1.4
- converges even when the basic fixed point iterations diverge !

Most popular and efficient acceleration method for first order sequences remains the Δ^2 of Aitken (1926) :

Aitken Δ^2 -method (static sequence transformation)

Assuming
$$x_{n+1} - \bar{x} = (\lambda + \varepsilon_n)(x_n - \bar{x})$$
, $\lim_{n \to \infty} \varepsilon_n = 0$
Then $y_n = x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n}$ with $\begin{cases} \Delta x_n = x_{n+1} - x_n \\ \Delta^2 x_n = \Delta x_{n+1} - \Delta x_n \end{cases}$

Dynamic (/cycling/recursive) sequence transformations based on the Δ^2 -method

- Secant method
$$x_{n+1} = x_n - \frac{(x_n - x_{n-1})(f(x_n) - x_n)}{(f(x_n) - x_n) - (f(x_{n-1}) + x_{n-1})}$$

- also called dynamic relaxation, Aitken relaxation,...
- one-step method
- order : $(1 + \sqrt{5})/2 \simeq 1.6$
- efficacy index 1.6 > Steffensen method

Most popular and efficient acceleration method for first order sequences remains the Δ^2 of Aitken (1926) :

Aitken Δ^2 -method (static sequence transformation)

Assuming
$$x_{n+1} - \bar{x} = (\lambda + \varepsilon_n)(x_n - \bar{x}), \quad \lim_{n \to \infty} \varepsilon_n = 0$$

Then $y_n = x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n}$ with $\begin{cases} \Delta x_n = x_{n+1} - x_n \\ \Delta^2 x_n = \Delta x_{n+1} - \Delta x_n \end{cases}$

Dynamic (/cycling/recursive) sequence transformations based on the Δ²-method

- Many other generalizations of the Aitken's process : ε -algorithm,...

- Correspond to the majority of the problems of interest
- Generalization of scalar transformations to vector transformations are non-unique (convergence properties ?...)
- Extensively studied in the literature in the 60s and since the 90s.

22 Vector sequences acceleration

- Correspond to the majority of the problems of interest
- Generalization of scalar transformations to vector transformations are non-unique (convergence properties ?...)
- Extensively studied in the literature in the 60s and since the 90s.
 - Most of them are scalar extension using

$$X^{-1} = rac{X}{\|X\|^2}$$
 or more generally $X^{-1} = rac{Y}{Y \cdot X}$

- Steffensen → Irons and Tuck, Lemaréchal, Graves-Morris, A-algorithm, Jennings, Zienkiewicz and Lohner,...
- Secant \rightarrow many variant of the vector secant method, dynamic relaxation method,...
- ε -algorithm \rightarrow vector ε -algorithm, topological ε -algorithm

Vector sequences acceleration

- Correspond to the majority of the problems of interest
- Generalization of scalar transformations to vector transformations are non-unique (convergence properties ?...)
- Extensively studied in the literature in the 60s and since the 90s.
 - Other ones are directly dedicated to vector sequences and often based on a minimization process (or projection)
 - Nonlinear hybrid procedure and the associated Δ^k-method
 - Anderson method (equivalent to the interface quasi-Newton method),
 - Reduced rank extrapolation method, Minimal Polynomial extrapolation method,...

These methods can generally reduce (for special choices of parameters) in the scalar case to the Aitken Δ^2 method.

 \hookrightarrow Generalization of Aitken's method for vector sequences.

- Correspond to the majority of the problems of interest
- Generalization of scalar transformations to vector transformations are non-unique (convergence properties ?...)
- Extensively studied in the literature in the 60s and since the 90s.

 \hookrightarrow We propose a common framework to build new vector acceleration methods and to recover the most popular and efficient extrapolation methods

A generic residual-based acceleration method

Principle of the static method

A generic formalism for vector sequences

Residual-based acceleration method

Assuming •
$$Y_n = X_n - \sum_{i=1}^M \lambda_n^i Z_n^i$$
, $\lim_{n \to \infty} Z_n^i = 0$, $\lambda_n^i \in \mathbb{R}$
• $Y_{n+1} = X_{n+1} - \sum_{i=1}^M \lambda_n^i Z_{n+1}^i$

Then the minimization of $\delta Y_n = Y_{n+1} - Y_n$ gives λ_n^i and an estimation of \bar{X}

$$Y_n = X_n - Z_n (\delta Z_n^T \delta Z_n)^{-1} \delta Z_n^T \delta X_n$$

- Generalization for M > 1 of the nonlinear hybrid procedure
- Very close to the polynomial extrapolation formalism : reduced rank extrapolation method recovered for $Z_n^i = \delta X_{n+i-1}$
- For $Z_n^i = \delta X_{n-i}$: basic idea of Anderson method

Two classes of dynamic methods

Iterative acceleration for fixed point iterations :

- two sequences $(X_n)_n$ and $(F(X_n))_n$ are generated
- two main formalisms of iterative residual-based methods are available
- One-step iterative methods (easily transportable to multi-step methods)

Two classes of dynamic methods

- Iterative acceleration for fixed point iterations :
 - two sequences $(X_n)_n$ and $(F(X_n))_n$ are generated
 - two main formalisms of iterative residual-based methods are available
- One-step iterative methods (easily transportable to multi-step methods)

Crossed sequences method

$$Y_n = F(X_{n-1}) - \sum_{i=1}^M \lambda_n^i Z_n^i$$

$$Y_{n+1} = F(X_n) - \sum_{i=1}^M \lambda_n^i Z_{n+1}^i$$

- Focus on the basic fixed point sequence $(F(X_n))_n$
- Take generally into account $(X_n)_n$ in the definition of Z_n^i
- For $Z_n^i = F(X_{n-i}) X_{n-i}$ and M = 1: standard vector secant (dynamic relaxation) and Irons-Tuck if two-step method.

Two classes of dynamic methods

- Iterative acceleration for fixed point iterations :
 - two sequences $(X_n)_n$ and $(F(X_n))_n$ are generated
 - two main formalisms of iterative residual-based methods are available
- One-step iterative methods (easily transportable to multi-step methods)

Alternate sequences method

$$Y_n = X_n - \sum_{i=1}^M \lambda_n^i Z_n^i$$

$$Y_{n+1} = F(X_n) - \sum_{i=1}^M \lambda_n^i Z_{n+1}^i$$

- *Y_n* is only concerned by (*X_n*)_n whereas *Y_{n+1}* depends on (*F*(*X_n*))_n
 Then δ*Y_n* is a linear combination of fixed point residual (*F*(*X_n*) *X_n*) with the same coefficients than the sequence coefficients.
- For $Z_n^i = X_{n-i+1} X_{n-i}$ and $Z_{n+1}^i = F(X_{n-i+1}) F(X_{n-i})$: Anderson method.

Numerical experiments

Cea Nonlinear mechanics test case

- Point-wise solver used to perform nonlinear mechanical behaviour unit testings : MTest (MFront) tool, developed in the PLEIADES platform.
- Solved by a quasi-Newton fixed point equation

Equilibrium resolution

Let
$$X = E|_{t+\Delta t} - E|_t$$
, then
solve $R(X) = \Sigma|_{t+\Delta t}(X, \Delta t, V|_t) - \Sigma|_{t+\Delta t}^{imp} = 0$
using

$$X_{n+1}=X_n-H^{-1}R(X_n)$$

with H : elastic operator

- : H easy to compute, symmetrical and definite positive and can be factorized only once (or updated from time to time)
- © : Very slow fixed point linear convergence.

■ Fixed point iterations converge very slowly (~ 1.000 iterations per time-step)

Chaboche plastic behaviour

- Fixed point iterations converge very slowly (~ 1.000 iterations per time-step)
- Two iteration residual methods comparison + second-order Newton method - ε = 10⁻⁸

Chaboche plastic behaviour

- Fixed point iterations converge very slowly (~ 1.000 iterations per time-step)
- Two iteration residual methods comparison + second-order Newton method ε = 10⁻⁸

- Fixed point iterations converge very slowly (~ 1.000 iterations per time-step)
- Three iteration residual methods are not better than two iteration methods : Alternate 2 - δ ≃ Alternate secant.

Cea Chaboche plastic behaviour

- Fixed point iterations converge very slowly (~ 1.000 iterations per time-step)
- Three iteration residual methods are not better than two iteration methods : Alternate 2 – δ ≃ Alternate secant.

Crossed 2- δ method converges but not to the fixed point.

- Fixed point iterations converge faster
- Jacobian matrix unavailable ⇒ no Newton method

Polycrystals test case

- Fixed point iterations converge faster
- Jacobian matrix unavailable ⇒ no Newton method
- Two iteration residual methods comparison $\varepsilon = 10^{-8}$

Polycrystals test case

- Fixed point iterations converge faster
- Jacobian matrix unavailable ⇒ no Newton method
- **Two iteration residual methods comparison -** $\varepsilon = 10^{-8}$

Polycrystals test case

- Fixed point iterations converge faster
- Jacobian matrix unavailable ⇒ no Newton method
- Three iteration residual methods comparison

Cea Polycrystals test case

- Fixed point iterations converge faster
- Jacobian matrix unavailable ⇒ no Newton method
- Three iteration residual methods comparison

- Performances of the acceleration method depend on the test case
- Secant methods seem really efficient : they can concurrence the second-order Newton method !
- Alternate $M \delta$ (\equiv Anderson) methods seem the best *M*-iterates methods.

PLEADES platform dedicated to nuclear fuel behaviour simulation

- Partitioning coupling
- Gauss-Seidel multi-physics fixed point iterations

Fixed point iterations

Cea Irons and Tuck method

- Crossed secant (dynamic relaxation) not always converge in case of fixed point iterations divergence
- Irons and Tuck method seems always converge but sometimes slower than the fixed point.

Fixed point iterations

Irons and Tuck acceleration

Cea Irons and Tuck method

- Crossed secant (dynamic relaxation) not always converge in case of fixed point iterations divergence
- Irons and Tuck method seems always converge but sometimes slower than the fixed point.

- Crossed secant (dynamic relaxation) not always converge in case of fixed point iterations divergence
- Irons and Tuck method seems always converge but sometimes slower than the fixed point.
- **Currently trying alternate** $M \delta$ methods...

Conclusions

Conclusions

- A generic residual-based approach has been introduced to build sequence acceleration processes
 - generalization of various existing vector acceleration methods
 - derived in two main classes of dynamic acceleration methods : crossed and alternate approaches
- A set of iterative acceleration approaches have been tested on nonlinear mechanics resolution and multi-physics simulation
 - the crossed approach is only interesting in its secant $(1 \delta X_n)$ version
 - in particular alternate $M \delta$ (Anderson) approaches seem the most efficient
- This generic acceleration formalism has already been successfully applied on other applications : FFT, PGD,...

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | DENDEC/SESC b15 - 13108 Saint-Paul-Lez-Durance T. +33 (0)4.42.25.23.66 | F. +33 (0)4.42.25.47.47 Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019 Direction de l'Energie Nucléaire Département d'Études des Combustibles Service d'Études et de Simulation du comportement des Combustibles