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Fixed point iterations
acceleration



Fixed point problems

Fixed point iterations

Xn+1 = F (Xn), until ‖F (Xn)− Xn‖ ≤ ε

are still the most common approach to dealing with a variety of
numerical problems :

coupled problems : partitioning multi-physics, domain
decomposition, proper generalized decomposition,...
nonlinear problems : heat transfer, nonlinear mechanics, electronic
structure,...

, : generic, no a priori knowledge on F (derivative,...)
/ : often slow and poor (linear) convergence
↪→ acceleration methods (aka extrapolation methods) for sequence

convergence

Xn+1 = G(F (Xn),F (Xn−1), ..,Xn,Xn−1, ...), until ‖F (Xn)− Xn‖ ≤ ε

which aim to converge faster (in less iterations and computational cost)
to the solution X̄ .
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Scalar sequences acceleration

Most popular and efficient acceleration method for first order
sequences remains the ∆2 of Aitken (1926) :

Aitken ∆2-method (static sequence transformation)

Assuming xn+1 − x̄ = (λ+ εn)(xn − x̄), lim
n→∞

εn = 0

Then yn = xn −
(∆xn)2

∆2xn
with

{
∆xn = xn+1 − xn

∆2xn = ∆xn+1 −∆xn

Dynamic (/cycling/recursive) sequence transformations based on
the ∆2-method
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Most popular and efficient acceleration method for first order
sequences remains the ∆2 of Aitken (1926) :

Aitken ∆2-method (static sequence transformation)

Assuming xn+1 − x̄ = (λ+ εn)(xn − x̄), lim
n→∞

εn = 0

Then yn = xn −
(∆xn)2

∆2xn
with

{
∆xn = xn+1 − xn

∆2xn = ∆xn+1 −∆xn

Dynamic (/cycling/recursive) sequence transformations based on
the ∆2-method

Steffensen algorithm xn+1 = xn −
(f (xn)− xn)2

f (f (xn))− 2f (xn) + xn

two-steps method
second-order method
but efficacy index 1.4
converges even when the basic fixed point iterations diverge !
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Scalar sequences acceleration

Most popular and efficient acceleration method for first order
sequences remains the ∆2 of Aitken (1926) :

Aitken ∆2-method (static sequence transformation)

Assuming xn+1 − x̄ = (λ+ εn)(xn − x̄), lim
n→∞

εn = 0

Then yn = xn −
(∆xn)2

∆2xn
with

{
∆xn = xn+1 − xn

∆2xn = ∆xn+1 −∆xn

Dynamic (/cycling/recursive) sequence transformations based on
the ∆2-method

Secant method xn+1 = xn −
(xn − xn−1)(f (xn)− xn)

(f (xn)− xn)− (f (xn−1) + xn−1)

also called dynamic relaxation, Aitken relaxation,...
one-step method
order : (1 +

√
5)/2 ' 1.6

efficacy index 1.6 > Steffensen method

I. Ramière | Coupled Problems 2017 | 12-14 June 2017 | PAGE 3/14



Scalar sequences acceleration

Most popular and efficient acceleration method for first order
sequences remains the ∆2 of Aitken (1926) :

Aitken ∆2-method (static sequence transformation)
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with

{
∆xn = xn+1 − xn

∆2xn = ∆xn+1 −∆xn

Dynamic (/cycling/recursive) sequence transformations based on
the ∆2-method

Many other generalizations of the Aitken’s process : ε-algorithm,...
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Vector sequences acceleration

Correspond to the majority of the problems of interest
Generalization of scalar transformations to vector transformations
are non-unique (convergence properties ?...)
Extensively studied in the literature in the 60s and since the 90s.

I. Ramière | Coupled Problems 2017 | 12-14 June 2017 | PAGE 4/14



Vector sequences acceleration

Correspond to the majority of the problems of interest
Generalization of scalar transformations to vector transformations
are non-unique (convergence properties ?...)
Extensively studied in the literature in the 60s and since the 90s.

Most of them are scalar extension using

X−1 =
X
‖X‖2 or more generally X−1 =

Y
Y · X

Steffensen → Irons and Tuck, Lemaréchal, Graves-Morris,
A-algorithm, Jennings, Zienkiewicz and Lohner,...
Secant → many variant of the vector secant method, dynamic
relaxation method,...
ε-algorithm → vector ε-algorithm, topological ε-algorithm
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Vector sequences acceleration

Correspond to the majority of the problems of interest
Generalization of scalar transformations to vector transformations
are non-unique (convergence properties ?...)
Extensively studied in the literature in the 60s and since the 90s.

Other ones are directly dedicated to vector sequences and often
based on a minimization process (or projection)

Nonlinear hybrid procedure and the associated ∆k -method
Anderson method (equivalent to the interface quasi-Newton method),
Reduced rank extrapolation method, Minimal Polynomial extrapolation
method,...

These methods can generally reduce (for special choices of
parameters) in the scalar case to the Aitken ∆2 method.

↪→ Generalization of Aitken’s method for vector sequences.
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Vector sequences acceleration

Correspond to the majority of the problems of interest
Generalization of scalar transformations to vector transformations
are non-unique (convergence properties ?...)
Extensively studied in the literature in the 60s and since the 90s.

↪→We propose a common framework to build new vector
acceleration methods and to recover the most popular and efficient
extrapolation methods
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A generic
residual-based
acceleration method



Principle of the static method

A generic formalism for vector sequences

Residual-based acceleration method

Assuming • Yn = Xn −
∑M

i=1 λ
i
nZ i

n, lim
n→∞

Z i
n = 0, λi

n ∈ R

• Yn+1 = Xn+1 −
∑M

i=1 λ
i
nZ i

n+1

Then the minimization of δYn = Yn+1 − Yn gives λi
n and an

estimation of X̄
Yn = Xn − Zn(δZ T

n δZn)−1δZ T
n δXn

Generalization for M > 1 of the nonlinear hybrid procedure
Very close to the polynomial extrapolation formalism : reduced rank
extrapolation method recovered for Z i

n = δXn+i−1
For Z i

n = δXn−i : basic idea of Anderson method
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Two classes of dynamic methods

Iterative acceleration for fixed point iterations :
two sequences (Xn)n and (F (Xn))n are generated
two main formalisms of iterative residual-based methods are
available

One-step iterative methods (easily transportable to multi-step
methods)
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Two classes of dynamic methods

Iterative acceleration for fixed point iterations :
two sequences (Xn)n and (F (Xn))n are generated
two main formalisms of iterative residual-based methods are
available

One-step iterative methods (easily transportable to multi-step
methods)

Crossed sequences method

Yn = F (Xn−1)−
∑M

i=1 λ
i
nZ i

n

Yn+1 = F (Xn) −
∑M

i=1 λ
i
nZ i

n+1

Focus on the basic fixed point sequence (F (Xn))n
Take generally into account (Xn)n in the definition of Z i

n
For Z i

n = F (Xn−i )− Xn−i and M = 1 : standard vector secant
(dynamic relaxation) and Irons-Tuck if two-step method.
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Two classes of dynamic methods

Iterative acceleration for fixed point iterations :
two sequences (Xn)n and (F (Xn))n are generated
two main formalisms of iterative residual-based methods are
available

One-step iterative methods (easily transportable to multi-step
methods)

Alternate sequences method

Yn = Xn −
∑M

i=1 λ
i
nZ i

n

Yn+1 = F (Xn)−
∑M

i=1 λ
i
nZ i

n+1

Yn is only concerned by (Xn)n whereas Yn+1 depends on (F (Xn))n
Then δYn is a linear combination of fixed point residual (F (Xn)− Xn)
with the same coefficients than the sequence coefficients.
For Z i

n = Xn−i+1 − Xn−i and Z i
n+1 = F (Xn−i+1)− F (Xn−i ) : Anderson

method.
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Numerical
experiments



Nonlinear mechanics test case

Point-wise solver used to perform nonlinear mechanical behaviour
unit testings : MTest (MFront) tool, developed in the PLEIADES
platform.
Solved by a quasi-Newton fixed point equation

Equilibrium resolution
Let X = E |t+∆t − E |t , then
solve R(X ) = Σ|t+∆t (X ,∆t ,V |t )− Σ|imp

t+∆t = 0
using

Xn+1 = Xn − H−1R(Xn)

with H : elastic operator

, : H easy to compute, symmetrical and definite positive and can be
factorized only once (or updated from time to time)

/ : Very slow fixed point linear convergence.
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Chaboche plastic behaviour

Fixed point iterations converge very slowly (' 1.000 iterations per
time-step)
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method - ε = 10−8
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Chaboche plastic behaviour

Fixed point iterations converge very slowly (' 1.000 iterations per
time-step)
Three iteration residual methods are not better than two iteration
methods : Alternate 2− δ ' Alternate secant.
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Chaboche plastic behaviour

Fixed point iterations converge very slowly (' 1.000 iterations per
time-step)
Three iteration residual methods are not better than two iteration
methods : Alternate 2− δ ' Alternate secant.
Crossed 2-δ method converges but not to the fixed point.
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Polycrystals test case

Fixed point iterations converge faster
Jacobian matrix unavailable⇒ no Newton method
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Partial conclusion

Performances of the acceleration method depend on the test case

Secant methods seem really efficient : they can concurrence the
second-order Newton method !

Alternate M − δ (≡ Anderson) methods seem the best M-iterates
methods.
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Multi-physics coupling

Neutronic

Thermic

Mechanics

Fission products

time t

time t + dt

T
im

e
 e

v
o

lu
ti

o
n

M
u
lt

i−
p
h
y
s
ic

s
 l

o
o
p

platform dedicated
to nuclear fuel behaviour simulation

Partitioning coupling

Gauss-Seidel multi-physics fixed point
iterations
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Crossed Secant

1 10 20 30 40 50 60 70 80 90 100
MP Iteration

0,57039

0,5704

0,57041

0,57042

0,57043

0,57044

0,57045

0,57046

0,57047

0,57048

F
u
e
l
 
d
i
a
m
e
t
e
r
 

 
(
c
m
)

Input value

Output value

Fixed point iterations

1 2 3 4 5 6
MP Iteration

0,57039

0,5704

0,57041

0,57042

0,57043

0,57044

0,57045

0,57046

0,57047

0,57048

F
u
e
l
 
D
i
a
m
e
t
e
r
 

 
(
c
m
)

Input value

Output value

Crossed secant (dynamic relaxation)

I. Ramière | Coupled Problems 2017 | 12-14 June 2017 | PAGE 12/14



Irons and Tuck method

Crossed secant (dynamic relaxation) not always converge in case
of fixed point iterations divergence
Irons and Tuck method seems always converge but sometimes
slower than the fixed point.
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Irons and Tuck method

Crossed secant (dynamic relaxation) not always converge in case
of fixed point iterations divergence
Irons and Tuck method seems always converge but sometimes
slower than the fixed point.
Currently trying alternate M − δ methods...
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Conclusions



Conclusions

A generic residual-based approach has been introduced to build
sequence acceleration processes

generalization of various existing vector acceleration methods
derived in two main classes of dynamic acceleration methods :
crossed and alternate approaches

A set of iterative acceleration approaches have been tested on
nonlinear mechanics resolution and multi-physics simulation

the crossed approach is only interesting in its secant (1− δXn)
version
in particular alternate M − δ (Anderson) approaches seem the most
efficient

This generic acceleration formalism has already been successfully
applied on other applications : FFT, PGD,...
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