Impact of gamma-irradiation on the palladium behaviour in the PUREX process
B. Simon, C. Bouyer, S. de Sio, N. Boubals, F. Miserque, C. Berthon, L. Berthon, A. Chagnes

To cite this version:
B. Simon, C. Bouyer, S. de Sio, N. Boubals, F. Miserque, et al.. Impact of gamma-irradiation on the palladium behaviour in the PUREX process. JSM (Journees scientifiques de Marcoule), Jun 2017, Bagnols Sur Ceze, France. JSM (Journees scientifiques de Marcoule), 2017. hal-02417799

HAL Id: hal-02417799
https://hal.science/hal-02417799
Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Impact of γ-irradiation on the palladium behaviour in the PUREX process

Context:
The PUREX process uses 30%$_{\text{MO}}$ tri-n-butylphosphate (TBP) diluted in TetraPropylen Hydrogen (TPH, an hydrocarbon diluent) to selectively extract uranium(VI) and plutonium(VI) towards fission products. During the different extraction cycles, solvent degradation products of the solvent are formed due to radiolysis. Very few studies report the impact of the radiolysis on the palladium behaviour. The aim of this work is to investigate the effect of the radiolysis on the Pd behaviour.

Bibliographic results on the impact of γ-irradiation of the TBP-alkane solvent:

Identification of degradation products (DP) [1]

<table>
<thead>
<tr>
<th>DP</th>
<th>Structure</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDBP</td>
<td>(HOCC-HOC)(HOCH$_2$PO)</td>
<td>Diluent DP</td>
</tr>
<tr>
<td>TBP DP</td>
<td>(C-HC)OP(C-HC)OP(C-HC)</td>
<td>mixture of TBP and diluent DP</td>
</tr>
</tbody>
</table>

Degradation products formed in the organic phase for a TBP-alkane / nitric acid aqueous solution system

Experiments: γ-irradiation of the solvent in presence of palladium:

TBP 30% - TPH / HNO$_3$ 1 and 3 mol/L Pd(NO$_3$)$_2$ ~ 2 – 10 g/L Irradiated mixture at 500 kGy

Characterizations of the precipitates:

Characterization of the solid

XRD analysis: powder pattern

![XRD pattern](image)

Powder pattern of the precipitated species is close to that of commercial compound Pd(CN)$_2$.

Characterization of the solid after solubilisation

RMN analysis

precipitate 4 partially dissolved in deuterated DMSO - 13C – H

-172 ppm -150 ppm

C=O C=N

![RMN spectrum](image)

Presence of C=O at -172 ppm

Presence of C=N at -150 ppm

Conclusions and Outlook:

- Presence of functions in the solids: cyanide (similarity with Pd(CN)$_2$), carboxylate and ammonium
- Isolation of different compounds present in the precipitate: selective dissolution
- Mechanism of formation of these precipitates

- CEA Marcoule, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes (DMRC/SPDS/LDPS), BP17171, 30207 Bagnols-sur-Cèze Cedex, France
- GéoRessources - UMR CNRS 7359-CREGU-Université de Lorraine, 2 Rue du Doyen Roubault 54518 Vandoeuvre les Nancy Cedex, France
- CEA Saclay, DEN, Physico-Chemical Department (DPC), 91191 Gif-sur-Yvette, France