FROM RESEARCH TO INDUSTRY

Astrid

www.cea.fr

FUEL MELTING MARGIN ASSESSMENT OF FAST REACTOR OXIDE FUEL PINS USING A STATISTICAL APPROACH

Paper IAEA-CN-245-333

V. Blanc, V. Dupont, T. Beck, T. Lambert, E. Thebaud, F. Charollais, M. Pelletier, A. Bouloré, JC. Dumas, B. Michel, M. Lainet CEA Cadarache, DEN, France victor.blanc@cea.fr

FR17 | ADVANCED FAST REACTOR FUEL DEVELOPMENT II | JUNE 26, 2017

Oxide fuel :

Cylindrical annular pellets obtained by sintering of a mixture of UO₂ and PuO₂ powders

Cladding tube and spacer wire :

special austenitic steel cold-worked 15%Cr-15%Ni with Titanium (AIM1)

- Axially and radially heterogeneous core (CFV design)
 - Inner core : 20-cm fertile plate inside the fissile area

Design criterion 1: No melt of the fuel

 \rightarrow fuel melting <u>probability</u> P_{melt} < 1/10.000 in the ASTRID core

→Loadings, dimensions and properties have to be defined with their uncertainty

→uncertainty propagation method ?

- Old french SFR's : Gaussian hypothesis, variance sommation → conservative?
- ASTRID: new approach with Monte-Carlo method

Cea

CONTENTS

- Introduction
 - ASTRID fuel pin design
- Problem specification
 - Uncertain input data
 - Design computation tools
 - No-melt design criterion
- Probability distributions
- Uncertainty propagation
 - Metamodel calibration
 - Global sensitivity analysis
- Fuel Melting probability assessment
 - Monte-Carlo direct computation
 - FORM/SORM approximations
 - Local sensitivity analysis
 - Conclusion

A : PROBLEM SPECIFICATION

INPUTS/OUTPUTS ? MODEL ?

UNCERTAIN / FIXED INPUTS

- Uncertainty depending on manufacturing processes:
 - Fuel pellet inner and outer diameters
 - Cladding tube inner diameter
 - Fuel pellet central hole off-centering
 - Hour-glass shape of the pellet
 - _ Fuel pellet off-centering within the cladding tube
 - Porosity
 - Stoichiometry O/M
 - Plutonium content in the fuel
 - Pellet surface roughness
 - Initial helium fraction in the plenum
- Uncertainty in irradiation condition:
 - Linear Heat Rate (Neutron flux)
 - Duration of first power rise
 - Maximal clad temperature
- Uncertainty in material law:
 - Melting temperature \rightarrow T solidus (U,Pu)O₂
- Behaviour laws fixed :
 - Thermal conductivity fixed
 - Gap closure model fixed (cf. papers M. Lainet and B. Michel)
 - Etc.

 \rightarrow 3D defects

SFR FUEL PINS MODEL

- Simulation with GERMINAL V2 code (CEA SFR fuel code in PLEIADES)
 - 1,5 D model : radial FE computation in N slices
 - + axial gas balance + coolant channel temperature calculation

SFR FUEL PELLET DEFECTS MODEL

LICOS code : specific design tool code of CEA PLEIADES platform

- Each defect is modeled separately :
 - central hole off-centering (cho)/ fuel pellet off-centering (pco)/ pellet hourglass shape (hgs)

FR17 - IAEA-CN-245-333 - V.Blanc & al., 06/26/2017 | PAGE 7

B: QUANTIFICATION OF UNCERTAINTY SOURCES UNIFORM? GAUSSIAN? ...?

UNCERTAIN INPUT DATA MODEL

- URANIE CEA Simulation Platform is used to generate samples
- Choice of a distribution law for each input data
- Take into account manufacturing data, operating data from previous FBR...

Parameter	Type of distribution	8000
Fuel pellet outer diameter	Gaussian	
Cladding tube inner diameter	Uniform	dinig
Fuel pellet inner diameter	Gaussian	3000-
Fuel pellet off-centering within the cladding tube	Uniform	1000-
Fuel pellet central hole off-centering	Truncated Gaussian	
Hour-glass shape of the fuel pellet	Truncated Gaussian	drou_central
Plutonium content in fuel	Gaussian	9000 9000 9000
Stoichiometry	Truncated Gaussian	8000 8000 8000 8000
Fuel pellet porosity	Truncated Gaussian	ec
Fuel pellet surface roughness	Uniform	1000
Initial Helium fraction in the free volume of the pin	Uniform	10000
		2000
Parameter	Type of distribution	- Findenting and Andrews
Linear heat rate :		denste
- Neutronic uncertainty	Uniform	
- Equivalent Plutonium linear mass	Gaussian	
Duration of the first power rise	Uniform	
Maximal clad temperature	Uniform	

C: UNCERTAINTY PROPAGATION

- META-MODEL
- **PROPAGATION**
- GLOBAL SENSITIVITY ANALYSIS

Cea

META-MODEL OF MELTING MARGIN

- Melting probability $\sim 10^{-4} =>$ a sampling of at least 10^6 random points is necessary
- A meta-model will reduce computation time: $DT_{melting} = \hat{f}(u_i)$
- Non-linear evolution of $DT_{melting} =>$ Artificial Neural Network (ANN)
- Specific database of 10 000 random points chosen by importance sampling

Importance sampling → 2375 points lead to melting with ANN, 2359 points with the code
Dispersion~60 °C on DT_melting

Cea uncertainty propagation and sensitivity indices

- Latin Hypercube Sampling of 2.000.000 samples,
- Real probability distributions (≠ importance sampling)
- Gaussian shape of distribution of fuel melting margin in temperature
- URANIE computes first order Sobol sensitivity indices $S_i = \frac{Var(E(DT_{melt}|u_i))}{Var(DT_{melt})}$

 $\sum_{i=1}^{d} S_i = 0.986 \Rightarrow$ observation of higher-order indices S_{ij} is not necessary

With the probability distributions considered :

- linear heat rate and stoichiometry have the biggest impact on the melting margin
- Initial gap, porosity and pellet/clad off-centering come after

GLOBAL SENSITIVITY ANALYSIS

- Cobweb plot :
 - each broken line represents variables values associated to a sample point
 - 8 most impactfull uncertainty variables are presented
 - Blue broken lines represent fuel melting samples (DT <0)</p>

Melting occurs if:

- (LHR, gap,Pellet/Clad off-centering) are high
- (O/M, Density, melting point deviation, Pellet inner diam.) are low

MELTING PROBABILITY ASSESSMENT - MONTE-CARLO

- FORM/SORM
- LOCAL SENSITIVITY ANALYSIS

MELTING PROBABILITY ASSESSMENT

Latin Hypercube Sampling of 2.000.000 samples, unbiased probability distributions

87 melting cases / 2 10⁶ cases : $P_f = \frac{N_f}{N} \Rightarrow P_f = 4.3 \ 10^{-5}$ Confidence Interval $1 - 2\alpha$ is given by:

where
$$Var(P_f) = \frac{(1-P_f)*P_f}{N}$$
 $P_f \pm \sqrt{Var(P_f)}*\Phi^{-1}(\alpha)$

and Φ is the Gaussian probability density distribution

For example : CI= 95 %
$$\rightarrow P_f = 4.3 \ 10^{-5} \pm 21\%$$

N $\uparrow => Var(P_f) \downarrow \dots$

MELTING PROBABILITY METHODS COMPARISON

- Quasi-Monte-Carlo (LHS) result with 3D defects is considered as the reference
 - Comparison with First and Second order approximation methods FORM/SORM
 - 1- Off-centering defects with relative angles (ref)

2- Off-centering defects aligned

3- No off-centering, no hour-glass shape

- **Defects impact is significant** $(P_f * 3000)$
- Angle between offsets reduces P_f by a factor 3
- FORM systematically overestimates P_f
- SORM is close to the reference case, with a small number of computations (~500)

LOCAL SENSITIVITY ANALYSIS

Sensitivity around design point: $F_i = \alpha_i^2$ importance factor associated with variable u_i $\alpha_i = u_i / \beta_{HL} \sim \text{coordinates in a standard normal space}$

- Hierarchy of variables is changed / global sensitivity analysis :
 - Pellet outer diameter is now first (3rd)
 - Neutronic uncertainty is at 7th place (1st before)
 - Central hole off-centering becomes significant
 - Pellet/clad off-centering becomes not significant (opposite / global)

CONCLUSIONS

- On the sensitivity of the melting margins to loadings and manufacturing uncertainties:
 - LHR, O/M ratio and pellet/clad gap size are first order parameters
 - Porosity, pellet-clad offset, central hole offset and melting point deviation have a significant influence on melting probability
- On the effect of pellet 3D defects:
 - Influence of off-centering must be taken into account
 - Initial hour-glass shape effect is not significant
- The assessed melting probability respects ASTRID requirement
- On the melting probability assessment method:
 - **—** FORM approximation overestimates the probability by a factor of 6
 - SORM gives a good approximation of melting probability
 - =>Non-linearity of failure surface is strong
 - Computation costs of approximations are ridiculous / Monte-Carlo direct
 - Outlooks
 - Need to improve distribution of first order variables (O/M ratio, gap, Neutronic)
 - Taking into account correlations: porosity->LHR, shape \rightarrow Eq MassLinear Pu, etc.
 - Same approach to be done on transients tests of control rod withdrawal

Thank you for your attention

And ASTRID, PLEIADES and URANIE colleagues for contributions

Commissariat à l'énergie atomique et aux énergies alternatives	DE
Centre de Cadarache - 13115 Saint Paul Lez Durance Cedex	
T. +33 (0)4 42 25 38 77 F. +33 (0)4 42 25 48 58	SE
Etablissement public à caractère industriel et commercial LRCS Paris B 775 685 019	

APPENDIX A : FORM/SORM APPROXIMATION

- First and Second Order Reliability method :
 - Transformation of the random variables space in an standard normal space
 - Research of the design point U* by calling the code
 - Build a linear (FORM) or quadratic (SORM) approximation of the failure surface near the design point
 - Computation of failure probability using failure surface approx.

Reliability assessment with FORM/SORM methods [Devictor 04]

APPENDIX B: 3D DEFECTS META-MODEL

Closed gap

One meta-model is dedicated to each defect

-Modeling

LICOS points

1,2

1

0,8

0,4

0,2

0

0

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

 $\frac{\Delta T}{\Delta T max}$

APPENDIX C : THERMAL CONDUCTIVITY ANALYSIS

Conductivity law is fixed <u>BUT</u> a large dispersion is due to uncertainty on stoichiometry and porosity:

