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Abstract. To improve the evaluation of nuclear observables, refined models are to be used more and more as
underlying analysis tools. Fission is a complex process and is the less accurately described with current models.
Standard evaluation models rely on the Hill-Wheeler formalism for the fission transmission coefficient, which
in turns is based on phenomenological parameters “reflecting” the fission barrier heights and widths. To reduce
the weight of phenomenology in the evaluation process, nuclear structure models are expected to embed more
and more microscopic descriptions. As models are rarely exact, evaluators are often compelled to “tune” model
parameters so that observables can be properly reproduced. Related computation time can thus be a major
hindrance to the use of advanced models in evaluation as final adjustments are expected to remain necessary.
For this reason, a macroscopic-microscopic model has been selected to replace the current phenomenological
description of fission barriers. The Finite-Range Liquid-Drop Model (FRLDM) has been implemented in the
CONRAD evaluation code and its present implementation shows remarkable consistency with experimental
and published benchmark data. The CONRAD code can be used to provide expectation values but also related
uncertainties and covariance data. Sensitivity of FRLDM parameters and the correlation matrix between these
parameters have been obtained so that further uncertainty propagation on barrier heights can be carried out in
the near future.

1 Introduction and Motivations

Most of phenomenological models to evaluate fission
cross sections rely on the Hill-Wheeler expression for fis-
sion transmission coefficient [1]. For a compound nucleus
with excitation energy E∗ it reads

T HW
f (E∗) =

[
1 + exp

(
2π

Vf − E∗

~ω

)]−1

. (1)

In this model, the phenomenological parameters Vf and ~ω
are respectively associated to the fundamental fission bar-
rier height and curvature. Yet in practice these parameters
are adjusted so that evaluator can properly reproduce re-
quired observables – usually the fission cross section.

The use of such phenomenological parameters in the
evaluation process limits the possibility for evaluator to
predict observables for which no experimental data are
available. The general trend in the evaluation process thus
consists in involving more fundamental models that could
be used to provide such intermediate parameters.

The macroscopic-microscopic Finite-Range Liquid-
Drop Model [2] (FRLDM) is a good candidate to achieve
this goal as demonstrated by correct nucleus mass predic-
tions, i.e. the binding energy of atomic nuclei. As this
model can be used to calculate the nucleus energy as it de-
forms, it can be also used to obtain an estimation of fission
barrier heights Vf.
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Best estimate values are not the only required data
to perform a proper evaluation. Indeed evaluators must
also propagate uncertainties on model parameters to the
evaluated quantities. Therefore we have implemented the
FRLDM in the CONRAD evaluation code [3], as this
was designed to perform data assimilation and uncertainty
propagation. The proper method to propagate uncertain-
ties on fission barrier heights would consist in adjusting
model parameters for masses to obtain both central val-
ues and uncertainties on parameters. Yet as the experi-
mental precision on masses is very high, it is expected
that such an approach yields nonphysically small uncer-
tainty on parameters. This is an example of model-defect,
which is a wide issue in evaluation. Therefore we re-
strained the present study to sensitivities and correlation
matrix on model parameters. As all model parameters
have been considered, including microscopic parameters,
semi-analytical sensitivities have been derived and imple-
mented in the code. In this paper we summarize the model
parameters and provide semi-analytical sensitivities ex-
pressions. Finally, sensitivity results as well as a corre-
lation matrix are presented.

2 Macroscopic-Microscopic Model
The FRLDM is comprehensively described in Ref. [2], so
we recall here only the main lines to highlight the funda-
mental model parameters. For undefined quantities, the
reader should refer to Ref. [2].



2.1 Macroscopic Contribution

In the FRLDM, atomic mass for a nucleus with a shape ~q
contains a macroscopic term given by Eq. 2, in which the
13 parameters are highlighted in red color.

EFRLDM
macro (Z, A, ~q ) = MHZ + MnN − aV(1 − κVI2)A

+ aS(1 − κSI2)B1(a, r0, ~q )A2/3 + f (kFrp)
Z2

A
− ca(N − Z)

+ c1
Z2

A1/3 B3(aden, r0, ~q ) − c4
Z4/3

A1/3 + W
(
|I| +

1
A
δZNδZodd

)

+ a0 +


∆̄p + ∆̄n − δnp, Z & N odd
∆̄p, Z odd & N even
∆̄n, Z even & N odd
0, Z & N even

− aelZ2.39 , (2)

where c1, c4 and kF depend only on r0 according to

c1 =
3
5

e2

r0
, c4 =

5
4

c1

(
3

2π

)2/3

, kF =
1
r0

(
9πZ
4A

)1/3

, (3)

and where the macroscopic pairing energy is given by

∆̄n =
rmacBs(~q )

N1/3 , ∆̄p =
rmacBs(~q )

Z1/3 , δnp =
hA−2/3

Bs(~q )
. (4)

2.2 Microscopic Contribution

The microscopic contribution to the atomic mass consists
of a shell and a pairing corrections. Both of these are cal-
culated from the single-particles energies obtained from an
independent-particle model. The phenomenological mean
potentials of the model are given by

V̂N(~r1) = −
Vn/p

4πapot
3

∫
V

e−‖~r1−~r2‖/apot

‖~r1 − ~r2‖/apot
d3~r2 , (5)

V̂C(~r1) =
Ze2

4
3πR3

pot

∫
V

d3~r2

‖~r1 − ~r2‖
, (6)

V̂s.o. = −λn/p

(
~

2mc

)2
¯̄σ · ~∇VN ×

~p
~
, (7)

where the potential well depths Vn/p and spin-orbit cou-
pling strengths λn/p are given by

Vn = Vs − δ̄Va , Vp = Vs + δ̄Va ,
λn = knA + ln , λp = kpA + lp .

(8)

The surface containing the volume V in Eq. 8 corresponds
to an equivalent sphere of radius Rpot given by

Rpot = Aden + Rden −
Bden

Rden
, Rden = r0A1/3(1 + ε̄) . (9)

Finally, the two droplet-model quantities δ̄ and ε̄ are given
by

δ̄ =

(
I +

3
8

c1

Q
Z2

A5/3

) (
1 +

9
4

J
Q

A−1/3
)−1

, (10)

ε̄ =
1
K

(
−

2a2

A1/3 + Lδ̄2 + c1
Z2

A4/3

)
. (11)

The microscopic term thus involves 15 parameters. From
the single-particle energies calculated using the mean po-
tential of Eq. 8, shell and pairing corrections are calculated
using the Strutinsky and Lipkin-Nogami formalisms [2],
which involve two additional parameters, the Strutinsky
range coefficient Cs and the Lipkin-Nogami effective-
interaction pairing-gap constant rmic. Parameter rmac has
no impact on calculated masses as it is strictly compen-
sated in the pairing correction term. Finally, the zero-
vibration energy involves a last parameter R.

The FRLDM model has been implemented in CON-
RAD from scratch. Necessary verification against exper-
imental masses and published data showed satisfactory
consistency. This verification is illustrated in Fig. 1. The
upper part of the figure presents comparison with experi-
mental masses [2] whereas the lower part shows the dif-
ferences with the original implementation by Möller et
al. [2]. We chose to work with rather old evaluated masses
so that we can ensure consistency between model imple-
mentations. For the present purpose, which is to provide a
correlation matrix between model parameters, these con-
sistencies are satisfactory. The standard deviation with
experimental data is less than 0.769 MeV, which is only
15 keV different from the original implementation.
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Figure 1. Comparison between CONRAD theoretical masses
and experimental masses (upper part) and with previously pub-
lished values (lower part).



3 Parameter Sensitivity

3.1 Macroscopic Model Parameters

Data analysis requires to know how model parameters im-
pact theoretical values. CONRAD needs then to compute
sensitivities i.e. derivatives of theoretical values Mth with
respect of model parameters. The code offers two pos-
sibilities; it can perform numerical derivatives using the
model as a black-box (readily available for all new mod-
els), or one can bypass this calculation by implementing
analytical derivatives if available. In the present case, we
used this latter solution as single-particle energies com-
putation takes significant amount of time. A first sim-
plification is to avoid single-particle energies computa-
tions whenever macroscopic parameters pmacro are varied,
∂Mth/∂pmacro = ∂EFRLDM

macro /∂pmacro. This can be further
improved as most macroscopic-parameters derivatives are
straightforward, as long as no shape variation is assumed.
Namely:

∂Mth

∂aV
=−(1 − κVI2)A ,

∂Mth

∂κV
=aVI2A ,

∂Mth

∂aS
= (1 − κSI2)B1A2/3 ,

∂Mth

∂κS
=−aSI2B1A2/3,

∂Mth

∂W
= |I| +

1
A
δZNδZodd ,

∂Mth

∂ca
=Z − N ,

∂Mth

∂rmac
= Bs

(
δZodd

Z1/3 +
δNodd

N1/3

)
,
∂Mth

∂a0
=1 ,

∂Mth

∂h
=−

δZoddδNodd

A2/3Bs
,

∂Mth

∂ael
=−Z2.39 .

(12)

For derivatives with respect of a and aden, we perform nu-
merical derivatives for the B1 and B3 terms respectively,
and we use

∂Mth

∂a
= aS(1−κSI2)A2/3 ∂B1

∂a
,
∂Mth

∂aden
=c1

Z2

A1/3

∂B3

∂aden
, (13)

∂Mth

∂rp
=
−e2rpZ2

8r3
0A

(
145
24
−

327
720

k2
Fr2

p +
1527

201600
k4

Fr4
p

)
. (14)

Finally for r0, the corresponding derivative is

∂Mth

∂r0
=

Z2r2
pe2

8r4
0A

(
145
16
−

327
576

k2
Fr2

p +
1527

172800
k4

Fr4
p

)
+

c4Z4/3

r0A1/3

−aS
a
r0

∂B1

∂a
(1 − κSI2)A2/3−

c1Z2

A1/3r0

(
aden

∂B3

∂aden
+B3

)
. (15)

3.2 Microscopic Model Parameters

Microscopic parameters derivatives are more complex to
evaluate as analytical derivatives are not available. Yet the
number of full single-particle calculations can be reduced.
In section 2.2, we can identify 15 parameters involved in
the single-particle energies computations: apot, Vs, Va, kn,
kp, ln, lp, Aden, Bden, r0, Q, J, K, a2, L, which would re-
quire at least 16 single-particle energies computations to
get all numerical derivatives. This can be reduced by a
factor of 3 noticing that single-particles energies only de-
pend on 6 parameters, namely Vn,Vp, λn, λp,Rpot, apot. The
derivatives with respect of each the 15 parameters can be

deduced from the derivatives of these 6 parameters. We
notice here that the microscopic corrections are computed
separately for proton and neutron, and will be called Emic

p

and Emic
n respectively. Therefore we can obtain the impact

of varying for instance Vn and Vp separately in a single
calculation. In the following, we note Emic = Emic

p + Emic
n

and we consider that the following derivatives can be com-
puted numerically:

∂Emic

∂Rpot
,
∂Emic

n

∂λn
,
∂Emic

p

∂λp
,
∂Emic

n

∂Vn
,
∂Emic

p

∂Vp
. (16)

From the definitions in section 2.2, one can derive the fol-
lowing relations for the spin-orbit terms:

∂Emic
n

∂ln
=
∂Emic

n

∂λn
,

∂Emic
n

∂kn
= A

∂Emic
n

∂λn
, (17)

with a similar expression for the corresponding protons-
related quantities. For the mean potential well depths:

∂Emic

∂Vs
=
∂En

∂Vn

mic

+
∂Ep

∂Vp

mic

,
∂Emic

∂Va
= δ̄

∂Ep

∂Vp

mic

−
∂En

∂Vn

mic . (18)

For the spherical equivalent radius:

∂Emic

∂Aden
=
∂Emic

∂Rpot
,

∂Emic

∂Bden
= −

1
Rden

∂Emic

∂Rpot
. (19)

Then for the droplet quantities:

∂Emic

∂L
=
∂Emic

∂Rpot

1 +
Bden

R2
den

 r0A1/3 δ̄
2

K
,

∂Emic

∂a2
= −2

∂Emic

∂Rpot

1 +
Bden

R2
den

 r0

K
,

∂Emic

∂K
= −

∂Emic

∂Rpot

1 +
Bden

R2
den

 r0A1/3 ε̄

K
,

∂Emic

∂J
= −9

∂Emic

∂δ̄
δ̄
(
4QA1/3 + 9J

)−1
,

∂Emic

∂Q
=

6
A
∂Emic

∂δ̄

6IJA4/3 − c1Z2(
4QA1/3+9J

)2 .

(20)

where

∂E
∂δ̄

mic

=
∂Emic

∂Rpot

1+
Bden

R2
den

 r0A1/3 2Lδ̄
K

+Va

∂Ep

∂Vp

mic

−
∂En

∂Vn

mic .
(21)Finally for r0:

∂Emic

∂r0
=
∂Emic

∂Rpot

1 +
Bden

R2
den

 A1/3
(
1 + ε̄ + r0

∂ε̄

∂r0

)
+ Va

∂Emic
p

∂Vp
−
∂Emic

n

∂Vn

 ∂δ̄∂r0
, (22)

where
∂δ̄

∂r0
= −

3c1

2r0
Z2A−4/3

(
4QA1/3 + 9J

)−1
,

∂ε̄

∂r0
= −

c1

Kr0

Z2

A4/3

(
3Lδ̄

4QA1/3 + 9J
+ 1

)
.

(23)

The derivative of Emic with respect to apot is obtained
separately. The derivatives of Emic with respect to both Cs
and rmic are obtained without additional computation of
single-particle energies. Using these expressions instead
of using standard (but readily available) CONRAD “black
box” numerical derivatives makes the analysis about 12
times faster. Related quantities can also be derived for the
zero-vibration energy contribution, they are not reported
here but are included in our calculations.



4 Sensitivity Analysis

The sensitivity analysis shows that FRLDM parameters
can be gathered into three groups of parameters according
to their sensitivity weight. The group of the most sensi-
tive parameters contains aV, r0, aS, κV, κS, aden, a and rp.
The group of second-order sensitive parameters contains
Vs, W, apot, ln, lp, ca, Aden, Cs, rmic and R. Then parameters
ael, Va, kp, a2, h, Bden, J, Q, kn, K and L have a limited
impact on calculated masses. The present analysis focus
on sensitivities on masses. In this case the most sensitive
parameters have very simple A–Z structure as can be seen
for the most sensitive parameter aV in Fig. 2.
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Figure 2. Mass sensitivity with respect to the most sensitive
macroscopic parameter aV.

The most sensitive parameters are also mainly shape-
independent and thus will have no impact on fission bar-
rier. Therefore it is expected that second-order parame-
ters for masses become more important for fission barrier
heights. They also show more complex structures related
to the nuclei internal microscopic configuration. An ex-
ample of such finely structured sensitivities can be seen in
Fig. 3 for the most sensitive microscopic parameter Vs.
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Figure 3. Mass sensitivity with respect to the most sensitive mi-
croscopic parameter Vs.

Sensitivity with respect to the zero-vibration energy
parameter R is also shown in Fig. 4 as it presents simi-
larities in the region (Z = 70, N = 110) with residual dis-
crepancy against experimental data that are shown in the
upper part of Fig. 1.

This is consistent with the fact that the most recent up-
grade of the FRLDM [4], which mostly implies modifi-

cations of the zero-vibration energy calculation, reduces
discrepancy with experimental data.
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Figure 4. Mass sensitivity with respect to the zero-vibration en-
ergy parameter R.

Finally, the CONRAD analysis methods can be used
to provide correlation data between model parameters, see
Fig. 5. The parameters correlation matrix shows that the
most sensitive (macroscopic) shape-independent parame-
ters are strongly correlated. Yet, less sensitive and shape-
dependent parameters are not completely independent and
thus must be properly considered while addressing uncer-
tainty on fission barrier heights.
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Figure 5. Full correlation matrix between FRLDM parameters.
Parameter names are alternately placed on both sides.
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