

Coupled first-principles and experimental positron annihilation study of defects in actinide mixed oxides

Gérald Jomard, I. Cheik Njifon, Ms. Talla-Noutack, M. Freyss, M. Bertolus,

Mf. Barthe

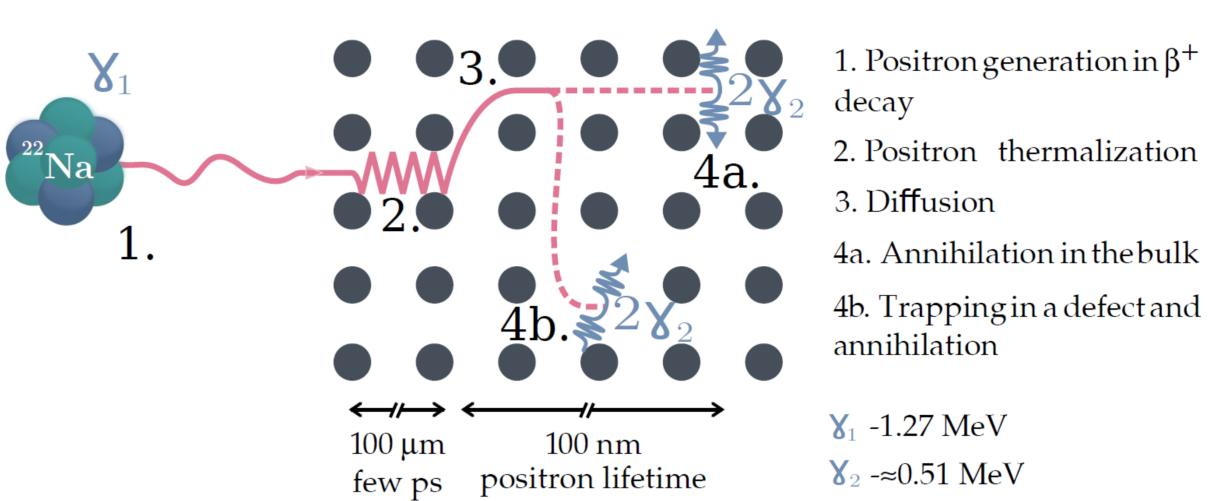
► To cite this version:

Gérald Jomard, I. Cheik Njifon, Ms. Talla-Noutack, M. Freyss, M. Bertolus, et al.. Coupled first-principles and experimental positron annihilation study of defects in actinide mixed oxides. AC-TINIDES 2017, Jul 2017, Sendai, Japan. ACTINIDES 2017, 2017. hal-02417746

HAL Id: hal-02417746 https://hal.science/hal-02417746

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

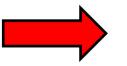

Coupled first-principles and experimental positron annihilation study of defects in actinide mixed oxides

Gérald Jomard^{1,*}, Ibrahim Cheik Njifon¹, Martin S. Talla Noutack¹, Michel Freyss¹, Marjorie Bertolus¹, Marie-France Barthe² ¹ CEA, DEN, DEC, Centre de Cadarache, 13108 Saint Paul Lez Durance, France ² CEMHTI, CNRS/UPR3079, 45071 Orléans, France

* gerald.jomard@cea.fr

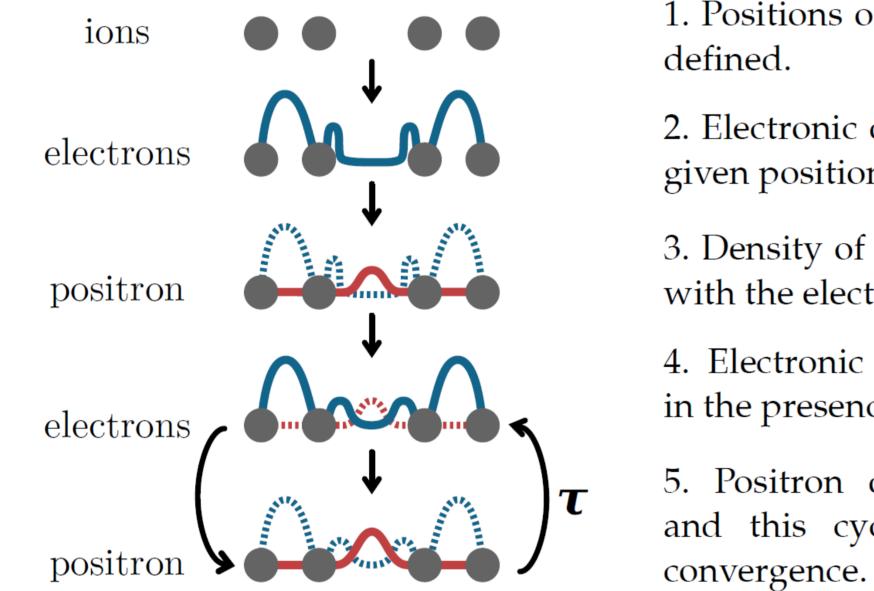
Context

- > Positron Annihilation Spectroscopy (PAS) is a powerful technique to detect vacancy-type defects in materials
- We demonstrated its capability to identify irradiation-induced defects in UO₂ by coupling experiments and ab initio calculations [1]
- MOX fuels (UPuO₂) will be the fuel of Gen IV reactors \triangleright
- MOX fuels fabricated from spent fuels \rightarrow contains few % of minor actinide \succ elements like Am
- Under irradiation, defects are created in the fuel and have strong impact \triangleright



Cemhti

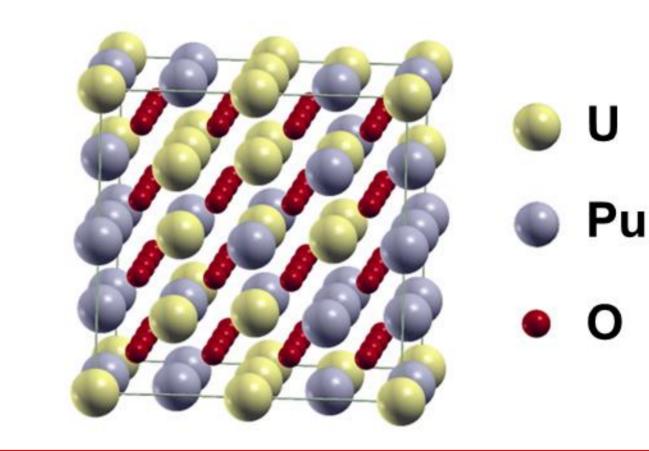
Scheme of the main positron-solid interactions



Strong interest in characterizing vacancy defects created in actinides mixed oxides

Methods

Positron lifetimes are computed using electronic structure calculations in the two component density functional theory (TCDFT) [2].


Self-consistent calculations are performed to obtain the electron and positron densities.

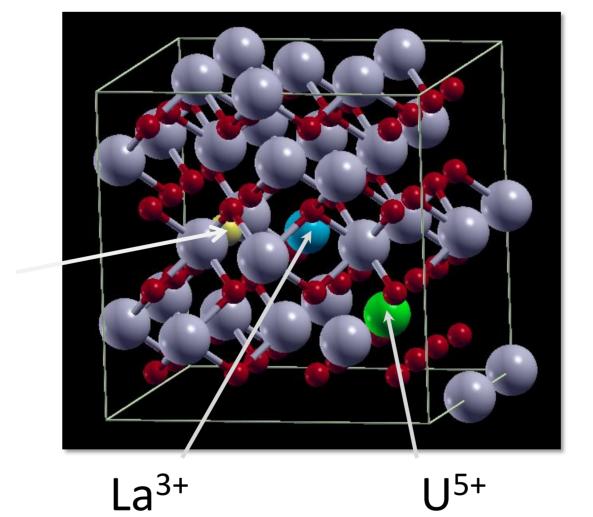
- 1. Positions of ions in the system are
- 2. Electronic density is calculated for given positions of ions.
- 3. Density of the positron interacting with the electrons is calculated.
- 4. Electronic density is recalculated in the presence of the positron.
- 5. Positron density is recalculated and this cycle is continued until

In our study the relaxation effect due to the vacancy creation and the positron localized in the defect is taken into account.

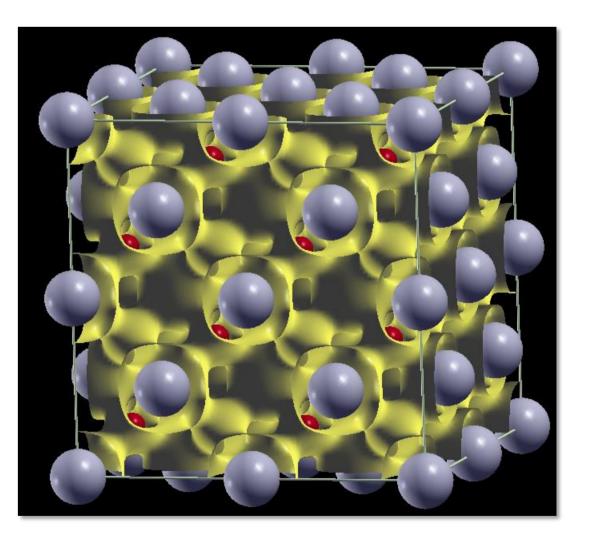
perfect crystal	unrelaxed vacancy	5	cy relaxed vacancy relaxed wards with a positron	
Calculations are performed with the ABINIT code [3] using 96 atom supercells. The DFT+ <i>U</i> [4] method is used to take into account the strong correlations between the 5 <i>f</i> electrons.				

Mixed oxides supercell are

Positron lifetime calculation scheme


simulated using the SQS method.

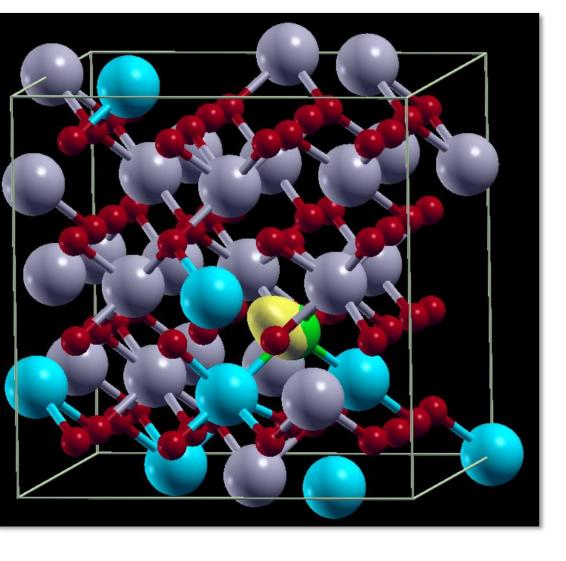
Preliminary results : unexpected localization of positron in bulk actinide oxides 4 compounds investigated : UCeO₂, UPuO₂, UAmO₂ and ULaO₂


For pure tri-valent elements, bulk lifetime within the GGGC-GGA scheme is much higher than expected.

compounds	τ _{GGGC-GGA} (ps)	τ _{conv-gga} (ps)
ULaO ₂ 3,125 at%	199	168
ULaO ₂ 6,25 at%	201	168
ULaO ₂ 12,5 at%	202	168
ULaO ₂ 25 at%	206	168
ULaO ₂ 50 at%	211	168
U Am O ₂ 6,25 at%	200	168
UCeO ₂ 25 at%	168	168
UPuO ₂ 6,25 at%	168	168
$UO_2 \tau_{exp} = 169 \pm 1ps$	168	168

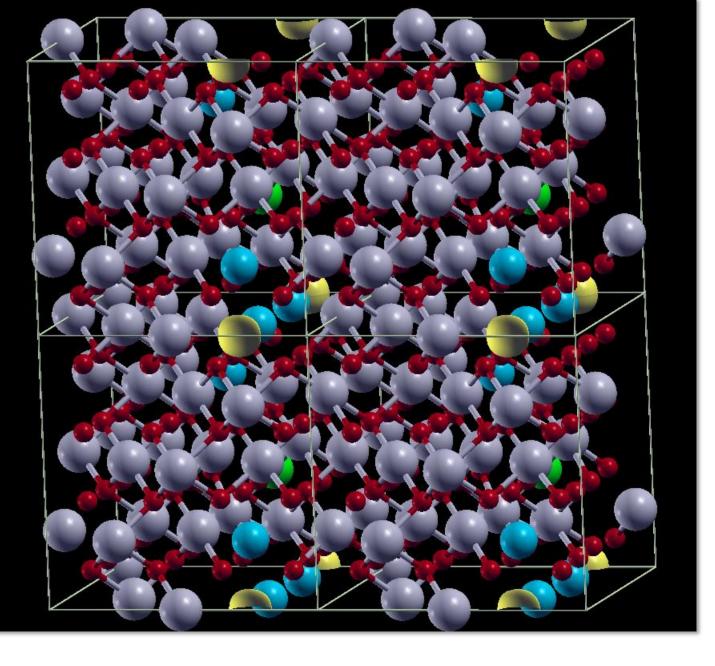
localized positron

In ULaO₂ and UAmO₂, positron localized in the vicinity of La³⁺ and Am³⁺ respectively.


Delocalized positron in bulk UO_2 , UCeO₂ and UPuO₂.

$UO_2 \tau_{exp} = 169 \pm 1ps$

For oxygen mono-vacancy :


Positron localization in the vacancy for UCeO₂ and UPuO₂

 $\tau_{V_O^{-UCeO_2}} = 227 ps$

Same positron localization as in the bulk for ULaO₂ and UAmO₂

 $\tau_{V_O^{-ULaO_2}} = 202 ps$

Experimental work in progress on UCeO₂ and ULaO₂ at CNRS/CEMHTI : DFT predictions soon confirmed?

<u>**References:**</u> [1] J. Wiktor, G. Jomard, M. Torrent et al., Phys. Rev. B 90, 184101 (2014) [3] X. Gonze et al., CPC 205 (2016) 106

[2] R. M. Nieminen, E. Boronski and L. J. Lantto, Phys. Rev. B 32, 1377 (1985) [4] B. Dorado, B. Amadon, M. Freyss and M. Bertolus, Phys. Rev. B 79, 235125 (2009)