DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

3D SIMULATION IN THE PLEIADES SOFTWARE ENVIRONMENT FOR SODIUM FAST REACTOR FUEL PIN BEHAVIOR UNDER IRRADIATION

B. Michel¹, M. Temmar¹, M. Lainet¹, I. Ramière¹, M. Pelletier¹, JC. Dumas¹

¹ CEA Cadarache, DEN, DEC, F-13108 Saint-Paul-lez-Durance, France

FR17 YEKATERINBURG, RUSSIAN FEDERATION 26 – 29 JUNE 2017

Introduction

- 3D fuel pin model
- Radial fuel relocation and 3D results
- Conclusions

Safety assessment of Sodium Fast Reactor fuel pins

- Detailed understanding of the fuel element multi-physic behavior under irradiation
 - French and international experimental feedback and fuel modelling knowledge
 - ✓ GERMINAL V2 fuel performance code of PLEIADES software environment
- Basic design of ASTRID : Advanced Sodium Technological Reactor for Industrial Demonstration
 - New developments of GERMINAL V2 fuel performance code are in progress to improve fuel modelling and reduce uncertainties

Pellet-to-cladding gap closure mechanism

- Impact on the maximal fuel temperature under nominal irradiation and Pellet Cladding Mechanical Interaction under accidental conditions
- A 3D fuel pin model is needed to improve the one dimensional approach used in the GERMINAL V2 code
 - Development of a preliminary nonlinear thermo-mechanical computation scheme with the LICOS code of the PLEIADES platform
 - ✓ Chemo-physical state variables are pre-computed with the GERMINAL code

3D fuel pin model : Finite element mesh and boundary conditions

- One single pellet fragment model for a given axial position
 - > PCI model assumption for PWR [B Michel NuclTech 2012]
 - Pellet fragmentation under thermal stresses at the first power increase
- Symmetries
 - One fourth of the pellet fragment
- Mechanical interaction
 - Pellet cladding
 - Inter pellet plane
 - Inter fragment plane
- Fuel column reaction
 - Mid plane locking condition (pellet and cladding)
- Internal and external pressure
 - Stress boundary conditions

3D fuel pin model : Thermo-mechanical coupling formulation

Thermal model

Conduction	Pellet cladding gap heat exchange
$div(\lambda.gradT) + p_v = 0$	$\Phi = h(T). (T_{clad} - T_{pellet})$

Mechanical model

Multiphysic computation scheme

Thermo-mechanical coupling in LICOS

- Input loading data initialization at the end of the time step
- o Iterative computation of the thermomechanical solution
 - thermal computation
 - nonlinear mechanical computation
 - thermomechanical convergence test
- o Solution update for the next time step

Precomputed data from GERMINAL V2

gas content and pressure in the pellet-to-cladding gap
cladding external temperature
burnup in the pellet
mean pellet porosity
internal pellet hole size and associated fuel mass transfer
oxygen to metal ratio
fuel shrinkage and swelling under irradiation

Radial fuel relocation and 3D results

- Pellet fragment hourglass shape
 - Pellet fragmentation and thermal stresses
- Radial relocation displacement
 - > Gap closure at the inter pellet plane
 - > Gap reduction at the mid pellet plane (approximately 20% compare to an un-fragmented pellet)

Central hole formation and fuel mass transfer

vore

Mass transfer under vaporization-condensation mechanism

- Vapor mass transfer in porosities leads to central hole formation

Void fraction balance equation

Porosity velocity

$$\dot{f} = -div(\vec{u}_f.f)$$
 $\vec{u}_f = \frac{\Omega.D}{RT}.\vec{\nabla}T.\frac{\partial p}{\partial T}$

Central hole size after irradiation

- 80% of the central hole volume is linked to the free volume available in the fuel pin
- A simplified mechanism has been propose to simulate the mass transfer

PAGE 7

Fuel mass transfer and pellet radial displacement

Germinal results post processing

- The equivalent fuel filling density is derived from the results of the porosity diffusion model
- The fuel mass leaves the center of the pellet to reach intermediates radii between the central hole radius and the columnar grain zone radius

3D radial displacement computation

- The fuel mass transfer in the columnar zone region is considered as a volume expension in the pellet
- Inter fragment contact boundary condition leads to a radial displacement of the pellet – fragments

3D Simulation results

Impact of the fuel mass transfer for a full pellet under nominal irradiation

- A first 3D computation has been done without fuel mass transfer
- The fuel mass transfer leads to a significant pellet-cladding gap reduction after the central formation
- Consequently the maximal fuel temperature is reduced of approximately 25% after an irradiation period of 45 days

Maximal fuel temperature at mid pellet plane

Pellet- cladding gap at mid pellet plane

Conclusions-perspectives

Conclusions

- A 3D model has been proposed to study the pellet-cladding gap closure mechanism
- Two gap closure mechanisms have been considered
 - Hourglass shape of the fragmented fuel pellet under thermal gradient
 - Radial pellet fragment relocation due to the fuel mass transfer associated to the central hole formation
- Simulation results show a significant impact of the second mechanism after the first power increase (solid and annular pellets)

Perspectives

- On going activity
 - Extension of the post-processing 3D model studies : experimental validation, initial annular pellet, ...
 - Development of a fully coupled formulation between the porosity diffusion and the radial relocation displacement in the 1D computation scheme of GERMINAL
 - Further development : extension of the GERMINAL fuel performance code to the 3D simulation

THANK YOU FOR YOUR ATTENTION