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Abstract

The goal of this paper is to study computationally how blood vessels adapt when they
are exposed to a mechanobiological insult, namely a sudden change of their biomechanical
conditions such as proteolytic injuries or implantation. Adaptation occurs through
growth and remodeling (G&R), consisting in mass production or removal of structural
proteins, such as collagen, until restoring the initial homeostatic biomechanical conditions.
In some circumstances, the initial conditions can never be recovered and arteries evolve
towards unstable pathological conditions, such as aneurysms, which are responsible
for significant morbidity and mortality. Therefore, computational predictions of G&R
under different circumstances can be helpful in understanding fundamentally how arterial
pathologies progress. For that we have developed a low-cost open-source finite-element
2D axisymmetric shell model (FEM) of the arterial wall. The constitutive equations
for static equilibrium used to model the stress-strain behavior and the G&R response
are expressed within the homogenized constrained mixture theory. The originality is
to integrate the layer-specific behavior of both arterial layers (media and adventitia)
into the model. Considering different mechanobiological insults, our results show that
the resulting arterial dilatation is strongly correlated with the media thickness. The
adaptation to stent implantation is particularly interesting. For large stent over-sizing
ratios, the artery cannot recover from the mechanobiological insult and dilates forever,
whereas dilatation stabilizes after a transient period for more moderate oversizing ratios.
We also show that stent implantation induces a different response in an aneurysm or in
a healthy artery, the latter yielding more unstable G&R. Finally, our G&R model can
efficiently predict, with very low computational cost, fundamental aspects of arterial
adaptation induced by clinical procedures.

List of symbols

In following j ∈ {e, ci,m} and k ∈ {ci,m}
aaak0 The unit vector pointing direction of the kth fibre
BBBj Growth direction tensor of jth constituent
Ce Stress-like material parameter of elastin in neo-Hookean energy
Ck

1 Stress-like material parameter of kth fibre in Fung-type energy
Ck

2 Dimensionless material parameter of kth fibre in Fung-type energy
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CCCj
e Elastic right Cauchy-Green deformation tensor of the jth constituent

C Cauchy-Green deformation tensor of the mixture
Ce Second Piola-Kirchhoff stress tensor of elastin
Cci Second Piola-Kirchhoff stress tensor of ith collagen
Cm
pas Second Piola-Kirchhoff passive stress tensor of smooth muscle cells

Cm
act Second Piola-Kirchhoff active stress tensor of smooth muscle cells

ddd Vector of cross section direction of the shell in current coordinates on the mid-surface
Dmax Maximum damage

Ḋj Any additional mass deposition or degradation in jth constituent
DδWint Linearized internal virtual work
EEE Green-Lagrange strain tensor of the mixture
Ezr Green-Lagrange shear strain of the mixture between Z and R faces
FFF Total deformation gradient tensor of the mixture
FFF g Total growth deformation gradient tensor of the mixture
FFF j
e Elastic deformation gradient tensor of the jth constituent

FFF j
gr Inelastic deformation gradient tensor of the jth constituent

FFF j
g Growth deformation gradient tensor of the jth constituent

FFF j
r Remodeling deformation gradient tensor of the jth constituent

Ge
hz Axial deposition stretch of elastin

Ge
hθ Circumferential depostion stretch of elastin

Ge
hr Radial or thickness deposition stretch of elastin

Gk
h Fibre deposition stretch of kth fibre

ĠGG Growth-related deformation gradient rate tensor of the mixture

ĠGG
j

Growth-related deformation gradient rate tensor of jth constituent
h Temporal wall thickness
h0 Initial wall thickness
h∗ Thickness at the interface between the media and the adventitia
kjσ Gain parameter of jth constituent
Ls Stent length
Ldam Spacial damage spread
LLLjr Remodeling velocity gradient tensor of the jth constituent
NNN Vector on cross section direction of the shell in material coordinates on the mid-surface
p̂ Luminal reference pressure
R Material radial coordinate of shell element
Sactmax Maximal active Cauchy stress
SSS Second Piola-Kirchhoff stress tensor
SSSe Second Piola-Kirchhoff stress tensor of elastin
SSSci Second Piola-Kirchhoff stress tensor of ith collagen
SSSmpas Second Piola-Kirchhoff passive stress tensor of smooth muscle cells
SSSmact Second Piola-Kirchhoff active stress tensor of smooth muscle cells
SSSjpre Homeostatic second Piola-Kirchhoff stress tensor of jth constituent

SSSjt Temporal second Piola-Kirchhoff stress tensor of jth constituent
tdam Temporal damage spread
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T j Half-life of jth constituent
u Displacement parallel to the shell
uuu Displacement vector
w Displacement normal to the shell
WM Strain energy function per unit reference volume in Media
WA Strain energy function per unit reference volume in Adventitia
Z Material axial coordinate of shell
xxx Position of a particle in the current configuration
xxxM Position of a particle at mid-surface in the current configuration
XXX Position of a particle in material configuration
XXXM Position of a particle at mid-surface in the reference material configuration
αk The orientation of the kth fibre
β Bending angle of the shell
δWint Internal virtual work
ε Penalty of the shell element method
θ Orientation of the shell
λz Total axial stretch
λθ Total circumferential stretch
λr Total radial or thickness stretch
λez Elastic axial stretch of elastin
λeθ Elastic circumferential stretch of elastin
λer Elastic radial or thickness stretch of elastin
λk Total stretch of the kth fibre in its direction
λke Elastic stretch of the kth fibre in its direction
λkr Remodeling stretch of the k fibre in direction
λactmax Active stretch of the fibre
λm0 Zero active stretch of the fibre
λmmax Maximum active stretch of the fibre
ξ Thickness parametric coordinate
ρ0 Total mass density of the mixture (arterial wall) at t = 0
ρt Total mass density of the mixture (arterial wall)

ρjt Mass density of the jth constituent

ρ̇jt Mass turnover of the jth constituent

σjt Temporal Cauchy stress of the jth constituent
σjpre Homeostatic Cauchy stress of the jth constituent
φeM Mass fraction of the elastin in the media
φkM Mass fraction of the kth fibre in the media
φeA Mass fraction of the elastin in the adventitia
φkA Mass fraction of kth fibre in the adventitia
Ψe Strain energy function per unit reference mass of elastin
Ψci Strain energy function per unit reference mass of ith collagen fibre
Ψm
pas Passive strain energy function per unit reference mass of smooth muscle cells

Ψm
act Active strain energy function per unit reference mass of smooth muscle cells

Ωr Reference configuration
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1 Introduction

Vascular tissues, as other biological tissues, commonly maintain homeostatic conditions during
routine function and therefore, they continually adapt to any mechanical and biochemical
alteration in their surrounding. Any factor disturbing the preferred homeostatic state of
arterial wall, such as permanent hypertension or disruption of elastin fibers [1], may induce
vascular growth and remodeling (G&R) which is a vital process to maintain vessel function. At
the tissue scale, this manifests through continuous mass changes of the existent components in
the extracellular matrix (ECM) such as collagen, elastin and proteoglycans [2], [3]. When the
arterial wall is unable to recover its homeostatic conditions through G&R, arterial dysfunction
may arise and end up with, for instance, an aneurysm, which is a permanent, degenerative
and localized expansion of the arterial diameter. An aneurysm can lead to a wall dissection
and rupture and potentially be a life-threatening condition.
In the past two decades, different computational approaches were developed to model G&R of
load–bearing soft tissues. These methods can be grouped in two major mathematical theories:
a constrained mixture theory (CMT) determining the rates of mass removal and production
of individual constituents within stressed configurations or a kinematic theory specifying an
evolution equation for the stress-free configuration of the tissue as a whole. Although the latter
is popular and conceptually more simple, it relies largely on heuristic definitions of growth [2].
Kinematic growth theories commonly split multiplicatively the total deformation gradient into
elastic and inelastic parts, where the inelastic one is related to growth [4]. This theory has
been widely used for single-constituent solid continuum [5], [6] as well as for homogenized [2],
[7] and non–homogenized [8]–[11] constrained mixture models (CMMs). For example, Valent́ın
et al [11], [12] modelled arterial wall adaptation and maladaptation to different cases, such as
loss of smooth muscle cells (SMCs), elastin degradation and changes in fiber orientations and
quantities. Watton et al [13], [14] quantified the interaction between collagen microstructure
and mechanical stretch to model the growth of an abdominal aortic aneurysm (AAA). They
introduced variables for the recruitment of collagen fibers to account for microstructural
changes leading to the formation of an aneurysm. Watton et al [13] introduced the first
bi-layered G&R approach using a membrane model. Cyron et al [15] employed the CMT to
capture G&R of soft tissues due to altered mechanobiological stimuli. Moreover, Wilson et
al [16] investigated the effects of collagen turnover and elastin loss on the formation of AAAs
in a parametric study. Their results showed that a number of variables play a substantial
role on radial dilatation and axial expansion of AAAs, including wall thickness, fiber stretch,
maximum wall stress and evolving material properties.
Despite extensive endeavor to establish G&R models, significant efforts are still needed to
develop reliable models of aneurysm evolution. Moreover, adaptation after endovascular
aneurysm repair has never been modelled so far. Therefore, there is still an important potential
for G&R models to understand the adaptation of arteries before or after different clinical
treatments.
In this work, our contribution was twofold. First, it was computational: we implemented
an original layer-specific homogenized CMT-based finite element (FE) shell model to study
transient G&R effects of different clinically-relevant cases related to aneurysm growth and
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repair. Second it was physiological: we predicted the adaptation of an artery after stent
implantation and showed the major effect of oversizing on the post-surgery outcomes.

2 Material and methods

2.1 Strain Energy Function

The homogenized CMT was employed as an hybrid approach to consider G&R in the arterial
wall [3]. Let us assume a material point of a mixture in the Ωr domain, represented by its
position vector X in the reference configuration and by its position vector x = χ(X) in the
deformed configuration. The total deformation gradient tensor can be defined by

FFF = ∇xxx (1)

where∇ is the gradient operator. For a bi-layered shell element without any shear in cylindrical
coordinates the total deformation gradient can be written as F = diag[λz λθ λr]. Noting that
λz, λθ and λr are the total stretches in axial, circumferential and radial directions, respectively.
Based on the CMT, we split the strain energy function of the wall, W , into contributions of
elastin, collagen fiber families and SMCs. We assumed that SMCs are present only in the
media layer and are aligned along the circumferential direction. They have both an active,
(•)act, and a passive, (•)pas, behavior. We modeled the collagen by four fiber families aligned in
circumferential, longitudinal and two diagonal directions respectively. We assumed the same
strain energy functions for each constituent in the media and in the adventitia while their mass
fraction were different in each layer and even between each collagen fiber family. Assuming
Ψj, j ∈ {e,m, ci}, is the strain energy density function of each constituent, the total strain
energy density function in the media, WM , and in the adventitia, WA, layers were respectively
calculated by

WM = ρt(φ
e
MΨe + φmM(Ψm

pas + Ψm
act) +

4∑
i=1

φciMΨci) (2)

WA = ρt(φ
e
AΨe + φmA (Ψm

pas + Ψm
act) +

4∑
i=1

φciAΨci) (3)

where ρt is the total density and φjM and φjA denote mass fractions of each jth constituent
in the media and in the adventitia, respectively. For each component, we assumed a strain
energy density function to represent the corresponding hyperelastic behavior. We modeled
the elastin behavior with a Neo-Hookean hyperelastic model as in [17], [18]

Ψe =
Ce

2

(
λez

2 + λeθ
2 + λer

2 − 3
)

(4)

where Ce is a stress-like material parameter while λez, λ
e
θ and λer are stretches of the elastin

component in axial, circumferential and radial directions, respectively. In the CMT, these
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stretches are calculated by considering the elastin deposition stretch, GGGe
h = diag[Ge

hz G
e
hθG

e
hr],

such as [17], [18]
λez = Ge

hzλz , λeθ = Ge
hθλθ , λer = Ge

hrλr (5)

we modeled the Collagen fiber families by an anisotropic Fung-type exponential function such
as

Ψci =
Cci

1

4Cci
2

(
exp(Cci

2 (λcie
2 − 1)2)− 1

)
(6)

where Cci
1 and Cci

2 are a stress–like and dimensionless material parameters, respectively, while
λcie is the elastic contribution of the collagen fiber stretch obtained as

λcie =
λci

λcir
withλci = Gci

h

√
λ2z cos2 αci + λ2θ sin2 αci (7)

where λci , λcir , Gci
h and αci are the total stretch, remodeling stretch (cf. 13), deposition

stretches and orientation angles of the different collagen fiber families, respectively. We also
modeled the passive behavior of SMCs by an anisotropic Fung–type exponential function such
as

Ψm
pas =

Cm
1

4Cm
2

(
exp(Cm

2 (λme
2 − 1)2)− 1

)
(8)

while we modeled its active behavior according to Braeu et al [7],

Ψm
act =

σactmax
ρ0

(
λact +

(λmmax − λact)3

3(λmmax − λm0 )2

)
(9)

where Cm
1 and Cm

2 are stress–like and dimension–less material parameters, respectively, σactmax
is the maximal active Cauchy stress, λact is the active stretch in the fiber direction, λm0 and
λmmax are the zero and maximum active stretches and ρ0 denotes the total mixture density in
the reference configuration; λme is the elastic contribution of SMCs calculated such as

λme =
λm

λmr
withλm = Gm

h

√
λ2z cos2 αm + λ2θ sin2 αm (10)

where λm, λmr and Gm
h are the total stretch, remodeling stretch (cf. 13), deposition stretch

and orientation angle of SMCs, respectively.
Given the strain energy function, the second Piola-Kirchoff stress tensor and the fourth order
elasticity tensor of the mixture were obtained as

SSS = 2
∂W

∂CCC
= SSSe +SSSmpas +SSSmact +

4∑
i=1

SSSci (11)

C = 2
∂SSS

∂CCC
= Ce + Cm

pas + Cm
act +

4∑
i=1

Cci (12)

where we included the penalty term of incompressibility into the expressions of stress and
elasticity tensor of elastin. We considered a bi-layer arterial wall assuming that the media
is mainly occupied by elastin and SMCs while the adventitia is mainly composed of collagen
fibers.
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2.2 Growth and remodeling

Similarly to classical G&R studies [2], [4], we split the total deformation gradient of each
constituent into an elastic FFF j

e and an inelastic FFF j
gr contribution such as

FFF j = FFF j
eFFF

j
gr. (13)

The idea of the homogenized CMT is to pool all the sequential mass additions within one single
constituent using temporal homogenization. To do so, three assumptions are made: (i) the
mechanical properties are changed by G&R, (ii) survival mass (mass turnover) functions are
exponential and (iii) inelastic deformations, FFF j

gr = FFF j
gFFF

j
r, are in turn decomposed into growth-

related, FFF j
g, and remodeling-related (turnover-related), FFF j

r, contributions. In this model, a
single average inelastic deformation gradient FFF j

gr is defined. The growth-based part captures
the changes of the differential volume element due to mass variations. The model can handle
isotropic or anisotropic growth, the latter being more relevant for arteries and manifesting
with thickening or thinning effects [19].
We assumed that G&R is a stress mediated process which tends to minimize deviations
between the current stresses and a reference stress metrics named homeostatic stress. Therefore,
the rate of mass degradation and deposition at time t for the jth constituent were expressed
as

ρ̇jt = ρjtk
j
σ

σjt − σ
j
h

σjh
+ Ḋj (14)

where ρjt is the mass density of the jth constituent at time t and kjσ denotes a growth parameter
while σjt and σjh (σjh = (aaaj0 ⊗ aaa

j
0) : σσσjh) are the current and homeostatic stresses, respectively.

Ḋj includes any additional mass deposition or degradation governed by non-mechanical effects
(for instance effect of a drug). A more general form of this equation is presented by Braeu et
al [7], using a tensorial representation and possibly considering wall shear stress stimuli [20],
[21]. The wall shear stress effects induced by the blood flow are neglected in our work here.
Therefore, due to continuous mass deposition and removal, the traction–free configuration
changed during G&R, even if there is a balance between mass deposition and removal (ρjt = 0).
Mass deposition or removal occurred with a prestress which is different from the current stress
at which mass is removed. Altogether this leads to changes of tissue microstructure referred as
remodeling. Therefore, assuming that remodeling occurs at a constant volume, the evolution
of the inelastic remodeling deformation gradient of the jth constituent at time t was expressed
such as [2] (

ρ̇jt

ρjt
+

1

T j

)(
SSSjt −SSSjpre

)
=

(
2
∂SSSj

∂CCCj
e

: (CCCj
eLLL

j
r)

)
withLLLjr = ḞFF

j

rFFF
j
r

−1
(15)

where SSSj is the second Piola–Kirchhoff while subscript ”pre” indicates prestress. LLLjr denotes
the remodeling velocity gradient and T j is the average turnover time during which old mass
increment is degraded and replaced by a new mass increment. Prestress σipre is equal to the
homeostatic stress σih, according to proposition 1 from Cyron and Humphrey [22]. On the
other hand, the growth deformation gradient captures any local change of volume induced by
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mass variations of each constituent. Following Braeu et al [7], we assumed that all components
of the mixture shared the same growth deformation gradient: FFF j

g = FFF g obtained by summing

the growth rate of each constituent: ĠGG =
∑n

j=1 ĠGG
j
, where n is number of constituents in the

mixture. Following [7] the mass density in the current spatial configuration was related to the
mass density in the reference configuration by

det(FFF g) =
ρt
ρ0

(16)

Differentiating both sides and recalling that J = det(FFF ) = det(FFF j
e) det(FFF j

r) det(FFF j
g) = det(FFF j

g),
after some arrangement the rate of the growth deformation gradient for the jth constituent
was obtained by

ĠGG
j

=
ρ̇jt

ρt(FFF
j
g)−T : BBBj

BBBj (17)

Note here that GGGj is the growth rate tensor and it should not be confused with GGGj
h which is

the deposition stretch tensor.

Assuming anisotropic growth normal to the arterial wall and to fibers (thinning or thickening
effects) and considering the through-thickness homogenization (J = λzλθλr, with λr = h

h0
),

the current thickness (h) was derived as

h =
h0
λθλz

ρt
ρ0

(18)

where h0 is the initial thickness, λθ and λz are the circumferential and axial stretches, ρt and
ρ0 are the time density and the initial density. Also we simplified the equations for remodeling
15 and growth 17 to the following expressions

λ̇jr =

(
ρ̇jt

ρjt
+

1

T j

)
λj

(λje)2
1

ρtφj

(
∂Ψj

∂λje
+ λje

∂2Ψj

(∂λje)2

)−1
×
(
σjt − σjpre

)
(19)

Ġj
r =

ρ̇jt
ρt

(20)

where the remodeling stretch (λjr) was along the fiber direction (aaaj0), growth (ĠGG
j
) is along the

thickness direction (eeer), and σj is the Cauchy stress. Then, we wrote the following expressions
for inelastic deformation gradients FFF j

r and FFF j
g,

FFF j
r = λjraaa

j
0 ⊗ aaa

j
0 +

1√
λjr

(III − aaaj0 ⊗ aaa
j
0) (21)

FFF j
g = III +

ρt
ρ0
aaaj⊥0 ⊗ aaa

j⊥
0 − aaa

j⊥
0 ⊗ aaa

j⊥
0 (22)

where III is the identity second order tensor, aaaj0 are vectors of the fiber directions and aaaj⊥0
are the vectors normal to the fibers (thickness direction). Finally, the inelastic deformation
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gradient was derived from (21) and (22), yielding

FFF j
gr = λjraaa

j
0 ⊗ aaa

j
0 +

1√
λjr

(III − aaaj0 ⊗ aaa
j
0 +

ρt
ρ0
aaaj⊥0 ⊗ aaa

j⊥
0 − aaa

j⊥
0 ⊗ aaa

j⊥
0 ) =⇒ FFF j

gr · aaa
j
0 = λjraaa

j
0 (23)

To calculate the G&R deformation gradient over time we solved the system composed of Eqs.
14, 15 and 17 by performing explicit temporal integration. It was assumed that elastin cannot
be produced during adulthood, it even undergoes a slow degradation with a half–life time of
several decades. Therefore, elastin evolution was basically calculated based on its degradation
rate. Moreover, it was assumed that SMCs do not experience any mass turnover, however
they undergo remodeling due to collagen and elastin mass evolutions.

2.3 Adaptation to axisymmetric shell formulation

In the current work, we implemented the G&R model described in the previous subsection in
axisymmetric shell elements. This subsection introduces the axisymmetric shell element with
an overview of its kinematics and of the principle of virtual work (for more details we suggest
[23], [24]).
Consistently with the kinematics of axisymmetric shell elements, we assumed that coordinates
of a material point in the reference configuraton, denoted XXX in the shell space, can be
expressed by the position of the shell mid–surface,XXXM , and by their local thickness parametric
coordinate ξ as

XXX =

[
Z
R

]
︸ ︷︷ ︸
XXXM

+ξ

[
− cos θ
sin θ

]
︸ ︷︷ ︸

NNN

(24)

where NNN is a unit normal vector. Similarly for the position in the deformed configuration,
denoted xxx, it can be written

xxx =

[
Z + u sin θ − w cos θ
R + u cos θ + w sin θ

]
︸ ︷︷ ︸

xxxM

+ξ

[
cos(θ − β)
sin(θ − β)

]
︸ ︷︷ ︸

ddd

(25)

with xxxM being the position of the deformed shell mid–surface and ddd being a vector describing
the rotation of the cross section with respect to the mid–surface. Assuming plane stress, the
deformation gradient is reduced to

FFF =

[
λz 0
0 λθ

]
(26)

With the aim to solve the mechanical equilibrium by the principle of virtual work, the work
due to the intenal and external forces is developed here. The internal virtual work is split
along the shell thickness to define different properties for the media and the adventitia layers
(bi-layered arterial wall). Let h0 and h∗ be the total wall thickness and the media thickness,
respectively. ξ being the radial position, inequalities −h0/2 ≤ ξ ≤ h∗ and h∗ ≤ ξ ≤ h0/2
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define the media and the adventitia layers, respectively. The radial integral was derived by
applying the principle of virtual work such as

δWint(uuu, δuuu) = 2π

∫
L

(∫ h∗

−h0/2
SSS · δEEERdξ +

∫ h0/2

h∗
SSS · δEEERdξ + εh0EzrδEzrR

)
ds (27)

Then it is linearized as

DδWint(uuu, δuuu) ·∆uuu = 2π

∫
L

(∫ h∗

−h0/2
(δEEE · C ·∆EEE +SSS ·∆δEEE)Rdξ

+

∫ h0/2

h∗
(δEEE · C ·∆EEE +SSS ·∆δEEE)Rdξ

+ εh0 (δEzr∆Ezr + Ezr∆δEzr)R) ds (28)

where ε is a penalty related to the shear strain Ezr constraining the rotation of the cross
section [25].
The external virtual work comes from a follower load. In this case the load could be an internal
pressure due to the blood in the artery or a force due to the stent pushing onto the artery.

δWext(uuu, δuuu) = 2π

∫ +1

−1
δuuu · p̂(−eeeθ × xxx,ξ )rdη (29)

Then it is linearized as

DδWext(uuu, δuuu) ·∆uuu = 2π

∫ +1

−1
δuuu · {∆p̂(−eeeθ × xxx,ξ )r − p̂(eeeθ ×∆uuu,ξ )r − p̂(eeeθ × xxx,ξ )∆w} dη

(30)
where p̂ is the load due to an internal pressure p̂ = Pi or a stent (Fig. 2) p̂ = CNδ. ∆p̂ is the
variation of the load along the element, ∆p̂ = 0 for blood pressure or ∆p̂ = −CN∆w for the
stent. In equation 30 we consider the term ∆p̂ for possible variations of the load, in order to
incorporate the force of the stent onto the arterial wall.
Finally, the Newton’s method is used to solve the mechanical equilibrium, yielding the following
system

(DδWint −DδWext) ·∆uuu+ (δWint − δWext) = 0 (29)

Following Voigt’s notation [23] we reduced the order of stress, strain and elasticity tensors as
below

SSS =

[
Sz
Sθ

]
, EEE =

[
Ez
Eθ

]
, C =

[
Cz Czθ
Cθz Cθ

]
(30)

2.4 Finite element implementation

The model was implemented in an in-house code for axisymmetric shell elements (section
2.3) using FORTRAN programming language along with implementation of the homogenized
CMT of G&R. A simplified arterial model was defined as a shell cylinder (thin-walled) of
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length L = 100[mm], mean radius R = 10[mm] and wall thickness h0 = 1.41[mm]. The
cylinder was discretized with 2-node shell elements in 35 elements along the axial direction.
A luminal reference pressure Pi = 100[mm] was assigned. In some cases we considered a stent
into the artery with length Ls = 40[mm], as shown in Fig. 2. The long time term problem was
solved by a forward Euler time integration scheme with a time step of 30 days. The spatial
and time discretization was chosen based in a convergence study.

3 Numerical experiments

3.1 Comparison with an existing G&R model

First we considered an axisymmetric single-layer cylindrical shell wall as previously studied
by Cyron et al [2]. Using the algorithm presented by Mousavi and Avril [17], the reference
configuration was defined in such a way to ensure that the circumferential component of elastin
deposition stretch was mechanically in equilibrium with the reference pressure. Following
the first example of Braeu et al [7], the arterial wall underwent elastin degradation varying
temporally and spatially across the arterial wall with the following rate:

Ḋe(XXX, t) = −ρ
e(XXX, t)

T e
− Dmax

tdam
ρe(XXX, 0)e

−0.5
(

Z
Ldam

)2
− t

tdam (31)

where tdam and Ldam are the temporal and the spatial damage distribution parameters,
respectively. Z is the material position in the axial direction of the cylinder and Dmax is
the maximum damage. The first term in Eq. 31 refers to a normal elastin degradation by
age while the second one is related to a sudden and abnormal local damage starting at t = 0
with maximum value at the center of the cylinder (Z = 0) and fading at Z = L

2
. The results

obtained with the present model were compared with the corresponding results of Cyron et al
[2] for different growth parameters, k

cj
σ . Material parameters are listed in Table 2.

3.2 Applications of the model

After verification of the model on a single layer arterial wall, three different G&R cases were
considered for a bi-layered cylindrical artery:

1. a benchmark case was considered first with a regional and sharp degradation rate of
elastin in the arterial wall to develop an aneurysm (case I).

2. a stent of length Ls was deployed in the artery as shown in Fig. 2 and the induced G&R
undergone by the artery was predicted (case II).

3. after developing an aneurysm for several months due to elastin degradation (as in the
first case), the implantation of a stent graft of length Ls was modeled and the induced
G&R undergone by the artery was predicted (case III).
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The geometrical characteristics and boundary conditions of the different cases are shown in
Fig. 2 and material parameters are summarized in Table 2. For each case, we performed
different sensitivity analyses on parameters such as the effect of the G&R rate, the penalty in
the shell element formulation, the media thickness, the stent over-sizing ratio (ratio between
the radius of the stent at equilibrium stress-free conditions and the radius of the artery just
before stent implantation) and the normal and tangential friction coefficient between the stent
and the arterial wall. Those parameters are reported in Table 1.

Parameter Values Case
Gain parameter {0.01; 0.02; 0.03; 0.04} 1○ 2○ 3○
Over-sizing {5%; 10%; 15%; 20%} 2○ 3○
Media thickness ratio {0.15; 0.50; 0.85} 1○ 2○ 3○
Shell penalty {105; 107; 109} 1○ 2○ 3○
Normal Coefficient {25MPa; 50MPa; 75MPa} 2○ 3○

Table 1: Sensitivity Analysis

4 Results

4.1 Comparison with an existing G&R model

Aneurysm growth predicted by our model was compared against the corresponding results
from Cyron et al [2] in Fig. 3. As expected, the single-layer cylindrical artery underwent
excessive and unstable dilatation for small growth parameters while it recovered its stability
after a transient period of growth for larger growth parameters. Elastin loss is responsible
for altering the stress field, leading subsequently to the deposition of new collagen fibers.
Therefore, stability (large kcσ) or instability (small kcσ) of the aneurysm growth is governed by
the balance between elastin loss and new collagen production.

4.2 Case I: benchmark case of a bi-layer arterial wall

The degradation of elastin changed the stiffness at the center (Z = 0). From this imbalance,
the G&R model predicted an adaptation of the artery by collagen deposition, until reaching
equilibrium again, 14. The turnover of collagen was directly proportional to the gain parameter
(kcσ), so for small gain parameters the arterial wall did not recover homeostasis (stability) and
a bulge grew from this instabiblity as shown in Fig. 4 and 6 a. Herein the simulation with
kcσ = 0.01/T c lead to a 18.2mm radius whereas the simulation with kcσ = 0.04/T c lead to a
13.4mm radius after 200 months of G&R.
The turnover of collagen also depended on the previous amount of collagen as shown in
equation 14. Then for arteries with less initial collagen, it was difficult to recover homeostasis.
A similar effect was observed with arteries having a thick media, see for instance the case with
85% media shown in Fig. 6 b. Penalties also had some effect (Fig. 6 c) with smaller radius
reached for ε = 1× 109 (Fig. A.1 in supplemental materials).
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Material parameters
Ce elastin neo-hookean parameter 72[J/kg]
Cci

1 Collagen: Fung exponential parameters 1136[J/kg]
Cci

2 11.2
Cm

1 Smooth muscle: passive contribution 15.2[J/kg]
Cm

2 11.4
Sactmax Smooth muscle: active contribution 54[kPa]
λm0 0.8
λmmax 1.4
λact 1.0
ρ0 Total initial density 1050[kg/m3]

Media fraction mass
φeM Elastin 40%
φmM Smooth muscle 40%
φc1M Collagen: axial 1%
φc4M Collagen: circumferential 18%

φc2M = φc3M Collagen: diagonal 0.5%
Adventitia fraction mass

φeA Elastin 5%
φmA Smooth muscle 0%
φc1A Collagen: axial 10%
φc4A Collagen: circumferential 5%

φc2A = φc3A Collagen: diagonal 40%
Deposition Stretch
Ge
hz Elastin: axial 1.25

Ge
hθ Elastin: circumferential 1.34

Gm
h Smooth muscle 1.1

Gci
h Collagen 1.062

Growth and Remodeling parameters
T ci = Tm Collagen/Smooth muscle: turnover time 101[days]

T e Elastin: mean life time 101[years]

Table 2: Material parameters
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4.3 Case II: adaptation after stent implantation

In this case, the mechanobiological insult applied to the artery was the radial force of a stent.
The stent also stretched the artery during its deployment as shown in Fig. 5 b, depending
on the over-sizing ratio. But the stress decreased quickly during the first 30 months due to
G&R, until reaching nearly homeostasis. The time to recover homeostasis was shorter for 5%
over-sizing than for 20% over-sizing, kcσ = 0.02/T c (Fig. 5 c).
However, homeostasis was never reached everywhere along the artery. A residual radius
increase was systematically obtained at the edge of the stent. This dilatation was bigger
for small gain parameters as shown in Fig. A.3 (supplemental material), for larger over-sizing
ratios, for large stent stiffness (Fig. 7) and for thicker media (Fig. A.5).

4.4 Case III: stent implantation after several years of aneurysm
development G&R

In this case, the central radius obtained after several months of adaptation did not depend
either on the gain parameters or on the media thickness (Fig. 8 a and b). The stent over-sizing
and the stent stiffness had a small but significant effect (Fig. 8 c and d).
However the major effects were on the stress obtained in the wall, which depended significantly
on the gain parameters as shown in Fig. 9 b and c, Fig. A.10. After stent implantation, the
artery had a fast adaptation (20 months) in the stent segment. As in case II, a residual radius
increase developed at the edge of the stent, with significant effects of the gain and of the media
thickness (Fig. A.10 and A.12).

4.5 Computational details

The simulations were performed in a Workstation Dell Precision 3620 (Intel Core i5-7500
3.40GHz, 16.4 GB RAM) with Linux OS. The code was compiled with GNU gfortran compiler
on same machine. The time spent by simulation are shown in Table 3.

CPU Time [s] Clock Time [s]
Case I (200 G&R steps) 0.972 0.977
Case I (180 G&R steps) 0.872 0.877
Case II (180 G&R steps) 0.876 0.885
Case III (80 G&R steps and 100 G&R steps) 1.088 1.108

Table 3: Computational costs time of every simulation.

5 Discussion

In this work, a new open-source FE model of vascular adaptation, with low computational
cost, was introduced and applied to model aneurysm growth and stent implantation. We used
a layer-specific shell model for the arterial wall. Although previous simulations used membrane
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models [2], [14], [16], [26], [27] and hexaedra elements [7], [8], shell models appear as very well
adapted to modeling the deformations of the aorta and its G&R behavior [14]. Moreover, the
ratio between thickness and diameter, which has to be at least of 1 to 10 for a shell, evolves
favorably as the aneurysm grows. On top of that, remodeling tends to naturally maintain a
uniform stress field across the thickness.
A 2D axisymmetric membrane model has two degrees of freedom (DOF), while a shell model
has at least three DOF, depending on the number of extra constraints [23], [24]. In our model,
the third DOF is the bending angle and we added the shear strain as an extra constraint.
Thanks to the latter, we used a penalty (ε) [25] to zero the through-thickness shear strain. Our
simulations showed that high penalty coefficients, ε = 1 × 109, can affect arterial adaptation
and even induce instabilities in G&R due to shear locking effects [23]. We found that the
optimal penalty factor was ε = 1 × 105, as it permitted a good compromise between shear
strains, and displacements. However, after tuning the different parameters, differences remain
between our results and the results from Cyron et al [2]. These differences may be attributed to
the contribution of the bending behavior in our model, whereas Cyron et al [2] used membrane
elements. The main argument for this interpretation is that the differences depend significantly
on the penalty factor we use in our model to account for the through-thickness shear stiffness
of the shell.
The simplification we have done in the fibre families enforce incompressiblity for elastic
and remodeling deformation gradients and reduces the amount of unknowns to be solved
at each time step. The assumption of anisotropic growth was shown to be more relevant
to model adaptation after elastin degradation [7], [28]. Eriksson [28] even showed that
inapropriate growth models could possibly induce counter-expected results such as arterial
diameter shrinking.
An interesting feature of our model is the layer-specific implementation which allow to use
different mass of constituents (elastin, collagen and SMC) in the mixture by layer and employ
the G&R separately. Indeed, there are mechanical differences between the media and the
adventitia in the arterial wall due to the amount of constituents in each layer [29]. Then, it
was assumed that homeostatic stresses are different in the media and in the adventitia, as they
harbor different cell phenotypes (contractile smooth muscle cells in the media and fibroblasts
in the adventitia). For instance, Bellini et al [30] also considered different stress distributions
in the media and in the adventitia and showed that their model is well suited to predict
the results of open angle experiments. The first bi-layered models of arterial wall in finite
elasticity were proposed by Von Maltzahn et al [31] who reported discontinuous circumferential
and axial stresses at the interface between the media and the adventitia. Different material
parameters for the media and the adventitia permitted to reach nearly uniform, layer-specific
circumferential stresses under physiologic conditions of pressure and axial stretch. Latorre and
Humphrey [32] proposed a bi-layered model with a time-independent CMT approach. G&R
simulations with bi-layered models were performed using time-independent Rachev [33] and
time-dependent Taber and Humphrey [34] approach. Both were based on the assumption that
circumferential stress should be restored to their normal initial value. Taber and Humphrey
[34] suggested that transmural differences in material properties were needed to predict the
same opening angles as the ones observed experimentally. Finally this heterogeneity of material
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properties contributed to reach more uniform transmural distributions of stresses and to
account for residual stresses. Herein, we proposed a bi-layered model for time-dependent
G&R. We defined layer-specific mass fractions of each constituent. Even if in both layers each
constituent has the same strain energy density (per unit mass), each layer has a different strain
energy density (per unit volume) due to the different mass fractions.
Following Wilson et al [35] and Braeu et al [7], elastin degradation was assumed to be the
mechanobiological insult initiating G&R simulations. Consistently with Wilson et al [16],
it appeared that collagen production tends to compensate for the loss of elastin. Results
demonstrated that the gain parameter, kσ, has a key effect on collagen production and
expansion rate, (Fig. 3) consistently with other studies [2], [26]. Nonetheless, the gain
parameter was assumed to be fixed during the evolution of aneurysm in our model, whereas in
an actual aneurysms gain may change during aneurysm growth due to pathological changes [27]
affecting mechanosensing and mechanotransduction. The simulation showed that kσ = 0.09
provides almost a linear growth. With kσ < 0.05 the lesion enlarged continuously implying
that the stress-mediated collagen turnover was not enough to return to the homeostatic stress.
Another important factor in collagen production is the existing mass of collagen [16]. The
initial collagen mass related to the initial thickness of adventitia, which has the larger mass
fraction of collagen [36]. Simulations showed that only small dilatation were reached in 200
months (16.5 years) for hM = 0.15h0 , whereas large lesions were obtained with hM = 0.85h0,
due to the insufficient collagen turnover.
Aortic aneurysms can be repaired using stent-grafts [37], [38]. The stress distribution obtained
after implanting a stent (we neglected the mechanical effect of the graft) in a bi-layer arterial
wall has been studied extensively using the finite-element method [39]. However, the further
adaptation had never been simulated using the CMT approach. Our results showed that
G&R induced an effect on the arterial wall similar to a stress relaxation effect at the long
term [2]. This stress relaxation was dependent on the over-sizing ratio, see Fig. 5, with a
possible instability occurring at the edge of the stent. The relaxation also affected the radius,
see Fig. 9(c,f,i) and Fig. 5(c). Turnover (gain and existing mass) of collagen had no significant
transient effects along the stent segment, see Fig. A.3 and Fig. A.5, but was responsible for
the dilatation developed at the stent edge. We also showed in case III that the aneurysm
diameter decreased after stent-graft implantation.
Furthermore, clinical evidence suggests the existence of issues after stenting, such as restenosis,
stent thrombosis and arterial injuries. Kitahara et al [40] studied the impact of stent oversizing,
concluding that aggressive oversizing may not lead to vascular injuries at the stent edge, as
arteries with siginificant stent oversizing reach better apposition without increasing the amount
of dissection at the stent egde. However, Chamie et al [41] concluded that the overstretching
of the arterial wall due to an oversized stent was an important factor of dissection at stent
edges. They also observed that the arterial wall responds to the injury through neointimal
proliferation and vessel remodeling, then leading to restenosis around the stent. Finally,
Garćıa-Garćıa [42] reported expansive vascular remodeling at the stent edge, which is also in
agreement with our model prediction.
Finally, we emphasize that the model considered herein only simulates fusiform aneurysms as
proposed by Baek et al [26] and Wilson et al [35]. Other limitations of this work are related
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to the contact between the artery and the stent, which is simply modeled by springs pushing
the shell elements at its nodes. Additionally, intraluminal thrombus [27], [35], which often
has an important role in the growth of aortic aneurysm, was neglected in our models. Further
extension of our shell formulation to 3D is expected to address these limitations.

6 Conclusions

In this work, we implemented a low-cost open-source finite-element 2D axisymmetric shell
model (FEM) of the arterial wall for simulating layer-specific growth and remodeling using the
homogenized constrained mixture theory. After testing the reliability of the implementation,
we used the model to evaluate the long-term mechanobiological adaptation after stent implantation.
Two types of regime were found: either the artery recovered its initial homeostatic stress state
after some months of adaptation (stable regime), or the artery dilated locally at the edge of
the stent without recovering homeostasis (unstable regime). The main results are that the
ratio between the media and the adventitia thicknesses and the gain parameters are the major
parameters determining the type of adaptation regime undergone by the aorta after stent
implantation. It will be essential to estimate their patient-specific values for real patient-
specific applications.
Although our model was limited to axisymmetric examples with 2D shell elements, its main
advantage was the computational time, which was extremely low, while still capturing the
main aspects of G&R. Further extension to 3D geometries of this shell formulation is expected
to address more realistic cases.
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