Irène Durand
email: irene.durand@u-bordeaux.fr

Robert Strandh
email: robert.strandh@u-bordeaux.fr

Bootstrapping Common Lisp using Common Lisp

Keywords: Software and its engineering Compilers, Multi- paradigm languages, KEYWORDS CLOS, Common Lisp, Compilation, Bootstrapping 1

Some Common Lisp implementations evolve through careful modifications to an existing image. Most of the remaining implementations are bootstrapped using some lower-level language, typically C. As far as we know, only SBCL is bootstrapped from source code written mainly in Common Lisp. But, in most cases, there is no profound reason for using a language other than Common Lisp for creating a Common Lisp system, though there are some annoying details that have to be dealt with.

We describe the bootstrapping technique used with SICL 1 , a modern implementation of Common Lisp. Though both SICL and the bootstrapping procedure for creating it are still being worked on, they are sufficiently evolved that the big picture outlined in this paper will remain valid. Our technique uses first-class global environments to isolate the host environment from the environments required during the bootstrapping procedure. Contrary to SBCL, and implementations written in some other language, in SICL, we build the CLOS MOP 2 classes and generic functions first. This technique allows us to use the CLOS machinery for many other parts of the system, thereby decreasing the amount of special-purpose code, and improving maintainability of the system.

INTRODUCTION

In this paper, by bootstrapping a Common Lisp system we mean creating some target Common Lisp system by building it from its associated source code, using various tools and language processors to transform that source code into an executable file for some typical operating system such as GNU/Linux. The typical way of making such a target Common Lisp system evolve through maintenance, is to modify its source code and then restart the bootstrapping procedure to build an updated executable file.

Not all Common Lisp systems are created so that they can evolve this way. Some systems evolve by the careful modification of an existing executing image which is then saved as an executable file that can be executed as usual.

In this paper we will concentrate on the technique of bootstrapping.

Before we can start investigating different options for bootstrapping, we must deal with an annoying but crucial detail, namely the definition of source code. The Free Software Foundation defines it as "the preferred form of a work for making modifications to it". We agree completely with this definition. It excludes the use of code that was automatically produced. In practice, it also excludes code written directly in machine language and most code written in assembly language, with the exception of (a) small code fragments that can not be expressed easily in some other language, and (b) code fragments that are part of a code generator written in some higher-level language.

However, for it to be possible for the source code of a Common Lisp system to be turned into an executable file, there must be language processors (i.e., compilers and/or interpreters) available that can handle the languages that the source code is expressed in. The main debate when it comes to bootstrapping techniques seems to be what is meant by available in this context. A common definition seems to be something like whatever is available on a GNU/Linux system out of the box.

One of the consequences of such a definition of available is that, in order to write a Common Lisp system, one has to use some programming language considered lower level than Common Lisp itself. Typically, C plays this role.

In this paper, we argue that one of the main reasons of the creator(s) of a target Common Lisp system wanting such a system in the first place, is that they are convinced of the virtues of this language for writing programs. Furthermore, Common Lisp is uniquely well adapted to writing language processors. The obvious choice for a language for writing a Common Lisp system is therefore Common Lisp itself. Since there is now a multitude of good Common Lisp implementations available and easily installable on widely-used operating systems, we think that Common Lisp should be considered to be a language for which there are language processors available for bootstrapping.

PREVIOUS WORK 2.1 Overview of existing techniques

In his excellent paper describing how SBCL is bootstrapped [START_REF] Rhodes | Self-sustaining systems[END_REF], Rhodes gives an overview of how different existing Common Lisp systems are made to evolve. Below, we summarize the contents of that paper.

We can divide Common Lisp implementations into those that are mostly written in some other language, and those that are mostly written in Common Lisp.

In the first category, there are implementations that specifically cater to applications written in that other language and that need some scripting capabilities that are supplied by the Common Lisp implementation. Whether it is advantageous or not for these implementations to be written mainly in that other language is outside the scope of this paper.

Of the implementations in the second category that are currently actively used, Rhodes claims3 that Allegro, Lisp-Works, CMUCL, Scieneer, and CCL are only possible to build using older versions of the same system, and only using image-based techniques. Only SBCL can be bootstrapped using several other Common Lisp implementations.

Even a Common Lisp implementation that is largely written in Common Lisp such as SBCL has some amount of code written in other languages. In the case of SBCL, Rhodes gives the number 35 000 lines of C and assembly code "for services such as signal handling and garbage collection", of which 8 000 is for the garbage collector. The remaining lines can be summarized as around 2 000 lines per operating system supported. This is a very modest amount of code written in other languages.

Common Lisp systems in other languages

When a language such as C or C++ is used to implement a Common Lisp system, a small subset of the Common Lisp language is implemented this way. We call that subset the base language. The result of the initial bootstrapping procedure is typically an executable file containing the base system. Additional modules are then added to the base system to obtain a complete Common Lisp system. These additional modules must be implemented in the subset of Common Lisp defined by the base language and previously added modules.

There are several issues with this technique. For one thing, some major components that would be more easily expressed in Common Lisp must be written using the implementation language so that new modules can be added to the system, in particular a reader and an evaluator.

Another major issue has to do with maintenance. When one of the additional modules is modified, it is easy to forget exactly what subset of the Common Lisp language is allowed at that point in the bootstrapping procedure. The code for a particular module must often be expressed in some unidiomatic way and it is tempting to make the modified code more idiomatic, but doing so will then break the bootstrapping procedure.

Common Lisp systems in Common Lisp

Because of the way compilation is defined by the Common Lisp standard, there are some issues that need to be resolved in order for it to be possible for a target Common Lisp system to be bootstrapped on a host Common Lisp system. Since SBCL is very likely the only Common Lisp implementation written mostly in Common Lisp that can be built from an existing Common Lisp implementation, we describe how SBCL solves some of these issues.

Packages and environments. Most existing Common

Lisp systems have a single global environment that is used both as the compilation environment and as the run-time environment. Compiling Common Lisp source code requires the existence of definitions of macros, types, etc. in that environment, and when source code for a target Common Lisp system is compiled using a host Common Lisp system, these definitions must be those of the target system. However, with a single global environment there can only be one definition of these entities.

SBCL solves this problem by using different package names for the code of the host system and the target system. In a final step, the packages of the target system are then renamed to conform to the standard.

2.3.2

The compiler and CLOS. Some aspects of CLOS require the presence of the compiler, at least if the resulting code is required to have some reasonable performance. In particular, the compiler is required to create a discriminating function from the effective methods4 returned by compute-effective-method. For that reason, it becomes difficult to use generic functions and standard classes in the code of the compiler itself.

SBCL solves this issue by not using generic functions and standard classes in the code of the compiler. Thus, SBCL can load the compiler into a minimal running target system and then bootstrap CLOS afterwards. However, not using generic functions and standard classes in the compiler has some of the same problems as Common Lisp systems that are written in some other language, namely that care has to be taken to make sure the proper subset of the language is used when the code of the compiler is being worked on. Furthermore, generic functions and standard classes are great tools for structuring complex code, so not being able to use these tools in such a significant and complex part of a Common Lisp implementation negatively affects the clarity and maintainability of the code.

THE SICL SOURCE CODE

SICL is a system that is written entirely in Common Lisp. We decided to use the full language to implement the system so as to avoid having to define and remember what subset of the language is allowed for which modules. Thus, the compiler, called Cleavir5 , makes heavy use of generic functions and classes. By using these two types of objects, we can have a compiler that is adaptable to different Common Lisp implementations. It is currently used as the main compiler of Clasp6 , and recently, a Cleavir-based compiler has been written for CLISP 7 .

In addition to using the full language for the implementation of SICL, we want the code to be as idiomatic as possible. For example, our definition of the class t, looks like this:

(defclass t () () (:metaclass built-in-class))
This definition clearly expresses the characteristics of the class t. It has no superclasses because no superclasses are explicitly mentioned, and the metaclass built-in-class does not provide any default superclasses like standard-class and funcallable-standard-class do. While this definition of the class t is clear, it is not operational as is. The metaclass built-in-class is an indirect subclass of the class t, so the class t must exist in order for the class built-in-class to exist.

Our definitions of the classes class and standard-class look like this:8 (defclass class (specializer) ((%name :initform nil :initarg :name ...) ... (%direct-subclasses :initform '() ...)))

(defclass standard-class (class) (...))
Again, these definitions are clear. No metaclass option is given, so the metaclass defaults to standard-class. Like the defintion of t, these definitions are not operational as is, because the class standard-class must exist in order to be the metaclass of itself.

In a Common Lisp implementation that must bootstrap CLOS from a subset of the language that does not include CLOS, some other mechanism must be used. As an example of the consequences of the use of such a subset, consider the following definitions from ECL9 :

(defparameter +class-slots+ '(,@+specializer-slots+ (name :initarg :name :initform nil ...) ... (direct-subclasses :initform nil ...) ...)) (defparameter +standard-class-slots+ (append +class-slots+ '((optimize-slot-access) (forward)))) Here, two special variables are defined, each one containing the specifications of the direct slots of a class. These two definitions express the exact same information as two defclass forms defining the classes class and standard-class, respectively. However, because the defclass form can not be used at this stage of the bootstrapping procedure, a different mechanism must be used.

In addition to using the CLOS machinery for defining the classes defined by the metaobject protocol, we use the same machinery for defining system classes. For example, our definition of the class symbol looks like this:

(defclass symbol (t) ((%name :reader symbol-name) (%package :reader symbol-package)) (:metaclass built-in-class)) Not only is this definition clear, it is also operational. By using the CLOS machinery for definitions of system classes, we avoid having to use an additional, special, mechanism for this purpose.

In contrast, consider this definition of the system class symbol from SBCL: (define-primitive-object (symbol :lowtag other-pointer-lowtag :widetag symbol-header-widetag :alloc-trans %make-symbol :type symbol) ... (name :ref-trans symbol-name :init :arg) (package :ref-trans symbol-package :set-trans %set-symbol-package :init :null) ...) Again, a special mechanism must be used, since CLOS is not available when the type symbol must be defined.

The purpose of the SICL bootstrapping procedure is to make these idiomatic definitions operational in the host environment so as to create a graph of objects isomorphic to that of the target system, and then to create the target graph in an executable file.

By doing it this way, we simplify system maintenance. The bootstrapping procedure is able to work with the definitions of classes, generic functions, and methods using the standard macros defclass, defgeneric, and defmethod, even though these definitions would not be operational in a system that needs to build up functionality from a language subset that does not include CLOS. The SICL maintainer is thus free to alter definitions of core system objects, relying on the bootstrapping procedure to make those definitions operational and ultimately turning them into an executable system.

OUR TECHNIQUE 4.1 SICL object representation

A SICL object is represented in one of three different ways:

• As an immediate object where the object is stored in the pointer itself, with the appropriate tag bits. Fixnums, characters and single floats are represented this way. • As a two-word block. This is how cons cells are represented. • As a two-word block called a header where the first word points to a class object, and the second word points to a sequence of words, called the rack, that contains the slots of the object. All objects other than immediates and cons cells are represented this way.

We call this representation a general instance.

The first word of the rack contains a stamp which is a unique integer taken from the class when the instance was created. The stamps of the arguments to a generic function are used by the generic dispatch technique to determine which effective method to execute. The object representation and generic dispatch technique has been described in detail previously [START_REF] Strandh | Fast generic dispatch for common lisp[END_REF], but this short summary is sufficient to understand our bootstrapping technique.

In the description of our technique, we use the word class in a general way, as an object that can be used as a model for the creation of instances. Thus the word class does not imply that it is a class in the sense of the host Common Lisp implementation. While this usage of the word class may seem odd, recall that a class is just an ordinary Common Lisp object that is passed as an argument to make-instance and other functions called by it which then returns a different object. We exploit this idea by supplying our own definition of make-instance in different phases of the bootstrapping procedure.

Similarly, we use the word generic function in a general way, as an object that can be executed and that can have methods associated with it, providing partial implementations of the generic function. Again, while this usage of the word generic function may seem odd, recall that a generic function is simply an ordinary Common Lisp object of type funcallable-standard-object for which the ultimate definition (called the discriminating function) is computed by combining partial definitions (the methods) associated with it. We exploit this fact by providing different representations of generic functions in different phases of the bootstrapping procedure, and by supplying different versions of compute-discriminating-function adapted to each phase. Thus, a generic function is not a generic function in the sense of the host Common Lisp implementation. However, during the bootstrapping procedure, these objects are executable in the host system, because they are instances of the host class funcallable-standard-object.

Environments for bootstrapping

Our technique uses several first-class global environments [START_REF] Strandh | First-class global environments in common lisp[END_REF] to create a graph of objects that is isomorphic to the graph of objects to be written to the executable file instantiating the target Common Lisp implementation. By using firstclass global environments, we avoid the problems related to packages and environments cited in Section 2.3.1. The main feature of our technique, though, is that we create the generic functions and classes of the metaobject protocol first.

The environments are filled with definitions mainly as a result of loading files containing production SICL code, though some code specific to bootstrapping is required as discussed at the end of this section. This loading procedure uses the Eclector10 reader and the Cleavir compiler to produce intermediate code in the form of a fairly conventional flow graph of instructions. The Cleavir compiler takes a first-class global environment as an argument, and uses this environment to search for definitions of macros, classes, types, etc. The resulting intermediate code is then translated in two different ways:

(1) Native target code is generated from it, and attached to host objects representing executable target objects such as ordinary functions, generic functions, and methods.11 (2) It is translated to a simple subset of Common Lisp code that accesses that same environment for definitions of functions and other objects. This Common Lisp code is then compiled using the host compiler in order to make it executable in the host. The remainder of this section is concerned with how the host-executable code is used in order to determine the graph of target objects represented as an isomorphic graph of host objects.

Definitions

In preparation for the bootstrapping procedure, several firstclass global environments are created and filled with definitions of SICL macros. The definitions of those macros reside in production SICL files. Little or no special code is required for those definitions.

A number of host object types are used during bootstrapping, in particular symbols, packages, cons cells, and integers. However, when such an object is used as an argument to a SICL generic function, a special version of class-of assigns a SICL class object as its type. Some of the host functions operating on these kinds of objects are imported to our environments in preparation for the bootstrapping procedure.

To facilitate the description of our technique, we need some definitions: Definition 4.4. A host method is a method created by the host macro defmethod, so it is a host instance of the host class method. The class specializers of such a method are host classes. Definition 4.5. A simple host instance is a host instance that is neither a host class nor a host generic function. Definition 4.6. An ersatz instance is a target general instance (as defined in Section 4.1) represented as a host data structure, using a host standard object to represent the header and a host simple vector to represent the rack. In fact, in order for the ersatz instance to be callable as a function in the host system, the header is an instance of the host class funcallable-standard-object. Definition 4.7. An ersatz instance is said to be pure if the class slot of the header is also an ersatz instance. An ersatz instance is said to be impure if it is not pure. See below for more information on impure ersatz instances. Definition 4.8. An ersatz class is an ersatz instance that can be instantiated to obtain another ersatz instance. Definition 4.9. An ersatz generic function is an ersatz instance that is also a generic function. It is possible for an ersatz generic function to be executed in the host system because the header object is an instance of the host class funcallable-standard-object. The methods on an ersatz generic function are ersatz methods. Definition 4.10. An ersatz method is an ersatz instance that is also a method. Definition 4.12. A bridge generic function is a representation of a target generic function as a simple host instance, though in order for it to be executed by the host, it is an instance of the host function funcallable-standard-object.

Arguments to a bridge generic function are ersatz instances. The bridge generic function dispatches on the stamp (See Section 4.1.) of its required arguments.

The methods on a bridge generic function are bridge methods. Definition 4.13. A bridge method is a target method represented as a simple host instance. The class specializers of such a method are bridge classes. The method function of a bridge method is an ordinary host function.

Bootstrapping phases

The essence of our technique consists of four phases (1 to 4), using six first-class global environments. An initial phase 0 imports host classes to environment 𝐸0. Only classes that are required in phase 1 are imported. Classes standard-method, standard-generic-function, and the class used to represent slots standard-direct-slot-definition are imported with the same. Classes standard-class, built-in-class, and funcallable-standard-class in environment 𝐸0 all refer to one and the same host class, namely a subclass of the host class funcallable-standard-class.

In each phase 𝑖 > 0, three first-class global environments are involved, 𝐸𝑖-1, 𝐸𝑖, and 𝐸𝑖+1. Before phase 𝑖 starts, 𝐸𝑖-1 contains classes to be instantiated during phase 𝑖, and 𝐸𝑖 contains generic functions that are not involved in phase 𝑖, but that will be used in phase 𝑖 + 1 to operate on the instances of the classes in 𝐸𝑖-1. Some of the generic functions in 𝐸𝑖 are accessor functions containing methods that were automatically added as a result of the classes in 𝐸𝑖-1 being defined. Others are higher-level functions that call those accessors to accomplish tasks such as initialization of various metaobjects, class finalization, creation of effective methods, and creation of discriminating functions.

A phase 𝑖 has two main steps: (1) Accessor generic functions are created in 𝐸𝑖+1 by loading SICL production code containing defgeneric forms. These generic functions are accessor functions for MOP classes and MOP generic functions. These functions are created in 𝐸𝑖+1 rather than in 𝐸𝑖 so as to protect the existing functions in 𝐸𝑖 that are needed later. (2) Classes are created in 𝐸𝑖 by loading SICL production code containing defclass forms. As a result of the creation of these classes, methods are automatically added to the corresponding accessor generic functions in 𝐸𝑖+1.

Depending on the phase, SICL production code might be loaded before the first step, between the two steps, or after the last step.

Four phases accomplish the creation of a number of objects, ending with a complete set of ersatz objects. The result if each phase is illustrated by a separate figure. In these figures, the shape of each object illustrates its type as shown in Figure 2.

The four phases accomplish this following results:

(1) Host classes and host class metaclasses in 𝐸0 are used to create host generic functions in 𝐸2 and host classes in 𝐸1. The result of this phase is illustrated in Figure 3. The result of these phases is that the impure ersatz generic functions in environment 𝐸4 can operate on the pure ersatz generic function in environment 𝐸5 and on the pure ersatz classes in 𝐸4. But they can also operate on impure ersatz objects, provided their call caches contain entries for the corresponding stamps. Filling the call caches is the purpose of our satiation technique [START_REF] Strandh | Resolving metastability issues during bootstrapping[END_REF].

Tying the knot

At the end of these four phases, we have fully functional impure ersatz generic functions in environment 𝐸4, and fully functional impure classes in environment 𝐸3. But we still do not have the cyclic graph of metaobjects that a functioning CLOS system requires. Furthermore, there are still bridge generic functions that might be called in order to operate on our impure ersatz metaobjects.

To accomplish the conversion of this hierarchy of objects to a cyclic graph, we need to modify the class slot of the headers of each impure metaobject so that instead of referring to a bridge class, it refers to an impure ersatz class. This operation will transform every impure ersatz metaobject into a pure ersatz metaobject. However, there are a few more operations required to completely remove all references to bridge metaobjects:

• Each ersatz metaobject contains a list of the effective slot definition metaobjects of its class as the second word of the rack. In an impure ersatz metaobject, those effective slot definitions are bridge objects. Once the class field of the impure ersatz metaobject has been updated, this list must be updated to contain a reference to the list of the ersatz effective slot definitions from the new ersatz class. • Each ersatz generic function contains a slot containing the method class of the methods on this generic function. In an impure ersatz generic function, this slot refers to a bridge class, so it must also be updated.

We must still find and update all impure ersatz metaobjects in the system. For classes and generic functions, this is trivial, as they are all reachable from the first-class global environment they are defined in. For other object types such as methods, slot-definitions, and method combinations, this is not the case. They must be found by a traversal of the class or generic function metaobject that they are part of. Such a traversal is straightforward.

Before the cyclic graph can be traversed and an isomorphic graph be generated in a native executable file, additional definitions must be loaded:

• Standard classes that are needed in order for the resulting native executable to be viable must be loaded.

In particular, definitions of classes such as symbol, package, cons, sequence, list, null, number, rational, integer, and fixnum are needed in order for it to be possible to load compiled code into the executing image. • Many standard functions are also needed, such as functions on packages, lists, hash tables, etc. Functions that operate on first-class global environments are needed as well.

• A simple version of the compiler must be loaded so that the resulting executable image can construct discriminating functions when definitions of generic functions and methods are loaded.

On the other hand, the garbage collector may not be needed in the initial executable image, though the data structures that the garbage collector works with must of course be present so that objects can be laid out in memory.

BENEFITS OF OUR TECHNIQUE

Appendix C of "The Art of the Metaobject Protocol" [START_REF] Kiczales | The Art of the Metaobject Protocol[END_REF] (Living with Circularity) cites a number of ways in which their system handles circularity and avoids bootstrapping and metastability issues.

Bootstrapping benefits

The first bootstrapping problem that is mentioned is the fact that standard-class must exist before it can be created. Their solution is to create this class using some special-case mechanism. Our technique uses the version of standard-class in the preceding environment, so this problem is avoided altogether. As a result, we can freely modify the definition of standard-class and rerun the bootstrapping procedure. No special case has to be considered.

The second bootstrapping problem mentioned is that generic functions are used for method lookup, but these generic functions can not exist until a significant part of the protocol has been implemented. As an example, take the call to ensure-class made as a result of executing the expansion of a defclass form. By having ensure-class check for the special case when the argument is standard-class and by supplying a special function for creating instances of standard-class they avoid bootstrapping issues, simply because during bootstrapping, all classes created will be instances of standard-class. They also supply a special version of finalize-inheritance that checks for the metaclass standard-class and calls special-purpose code in this case. With our technique, no such special case is needed. All classes that are instantiated are fully operational in the preceding environment, as is the finalize-inheritance generic function.

Metastability benefits

The first example of a metastability problem mentioned in the book is that slot-value calls slot-value-using-class which then calls slot-location which in turn recursively calls slot-value on the class metaobject to access the slot metaobjects of the class. The authors propose to solve this problem by arranging for the function slot-location to check for the special argument effective-slots and return a predefined location. Our technique does not need this kind of special case, because the function class-slots does not call slot-value at all. It accesses the effective-slots slot directly, using its location. This location has been compiled in during the creation of the effective method and discriminating function for class-slots.

The final issue discussed in the book arises because the function compute-discriminating-function is also a generic function that can not be called with itself as an argument when a method has been added or removed from it. Again they solve the issue by a special case whereby a test is made to see whether the argument is a standard generic function (i.e. an instance of standard-generic-function) and if so, a special version of compute-discriminating-function which is not a generic function is called instead. With our technique, every generic function, compute-discriminating-function included, has a call cache that includes an effective method that is able to handle arguments that are direct instances of standard-generic-function. That call cache entry is not invalidated when compute-discriminating-function has new methods added to it, at least not when the methods added respect the restrictions of the metaobject protocol, i.e. that user code is not allowed to add methods that are applicable when given only standard objects as arguments.

Other benefits

In addition to solving the bootstrapping issues and the metastability issues given in the "The Art of the Metaobject Protocol" book, our technique has several additional benefits.

Since we begin the bootstrapping procedure by defining the classes and generic functions specified by the metaobject protocol, we are able to use the CLOS machinery to define system classes. In a system where CLOS is added late, many system classes must be defined using some other mechanism.

Furthermore, as already mentioned, our technique has great advantages to maintenance. There are no dependencies between CLOS code and other code that require duplication of information that must be kept synchronized when some code is modified.

CONCLUSIONS AND FUTURE WORK

We have described a technique for bootstrapping a Common Lisp system using an existing conforming Common Lisp system that is also supported by the library closer-mop. To our knowledge, no existing Common Lisp system is bootstrapped this way.

There are several advantages to our technique:

• The full Common Lisp language can be used in order to implement the system, including the compiler, thereby making the code more maintainable. • By bootstrapping the MOP generic functions and the hierarchy of classes first, we eliminate the bootstrapping problems and metastability problems cited by the AMOP book [START_REF] Kiczales | The Art of the Metaobject Protocol[END_REF]. • Also, by bootstrapping the MOP machinery first, we take advantage of it by using it to define all the standard system classes, thereby eliminating the need for special mechanisms for this purpose. • The absence of special mechanisms that are needed in existing implementations for defining many aspects of the system itself, further contributes to the maintainability of our code. Even though the technique outlined in this paper is known to work, many more aspects of the system need further work, including the bootstrapping technique itself, in order for a native executable to be generated:

• We must supply a (simple) code generator that translates intermediate code to native code. The amount of work required is fairly modest, and mainly consists of creating native code for memory operations such as car and standard-instance-access, for object allocation, and for simple arithmetic on fixnums. • Interface code to the operating system must be supplied, in particular for input/output operations. • We have yet to write the code that translates the host representation of the object graph into a native representation. Special care must be taken for object types that are imported from the host during bootstrapping, such as symbols, numbers, and cons cells. However, we are in no hurry to create a native executable system. The moment we do, we lose a fairly good environment (namely the host Common Lisp system) for debugging our code. Instead, we plan to use the host environment for testing as many aspects of SICL as possible, and for creating support for better debugging capabilities, and only later create a native executable.

In terms of future work, there are still several optimization techniques that need to be implemented for the Cleavir compiler framework.

Definition 4 . 1 .

 41 A host class is a class in the host system. If it is an instance of the host class standard-class, then it is typically created by the host macro defclass. Definition 4.2. A host instance is an instance of a host class. If it is an instance of the host class standard-object, then it is typically created by a call to the host function make-instance using a host class or the name of a host class. Definition 4.3. A host generic function is a generic function created by the host macro defgeneric, so it is a host instance of the host class generic-function. Arguments to the discriminating function of such a generic function are host instances. The host function class-of is called on some required arguments in order to determine what methods to call.

Definition 4 .Figure 1 :

 41 Figure 1: Simplified diagram of MOP classes.

Figure 2 :Figure 3 :

 23 Figure 2: Objects in different phases.

(2)Figure 6 :

 26 Figure 4: Phase 2.

For the commercial Common Lisp implementations cited in the paper by Rhodes, he includes a disclaimer that only anecdotal evidence for this information is available.

Recall that the result of a call to compute-effective-method is a lambda expression. This lambda expression must be turned into something that is executable, hence the need for an evaluator.

Cleavir resides in the SICL repository on GitHub.

https://github.com/clasp-developers

https://clisp.sourceforge.io/

In reality, there are intermediate classes between class and standard-class that are not shown here.

https://common-lisp.net/project/ecl/

https://github.com/robert-strandh/Eclector

We do not yet have a code generator for native executable code, so currently this part of the bootstrapping procedure is omitted.

ACKNOWLEDGMENTS

We would like to thank David Murray for providing valuable feedback on early versions of this paper.

https://github.com/