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Linear Camera Velocities and Point Feature Depth Estimation Using
Unknown Input Observer

R. Benyoucef, L. Nehaoua, H. Hadj-Abdelkader and H. Arioui

Abstract— In this paper, we propose a new approach to
estimate the missing 3D information of a point feature during
the camera motion and reconstruct the linear velocity of the
camera. This approach is intended to solve the problem of
relative localization and compute the distance between two
Unmanned Aerial Vehicles (UAV) within a formation. An
Unknown Input Observer is designed for the considered system
described by a quasi-linear parameter varying (qLPV) model
with unmeasurable variables to achieve kinematic from motion
estimation. An observability analysis is performed to ensure
the possibility of reconstructing the state variables. Sufficient
conditions to design the observer are derived in terms of
Linear Matrix Inequalities (LMIs) based on Lyapunov theory.
Simulation results are discussed to validate the proposed
approach.

Keywords: Nonlinear Observers, qLPV Systems, Feature
Depth Estimation, LMI constraints, Lyapunov Theory,
Kinematic from Motion.

I. INTRODUCTION

Many works have been conducted to solve the localization
problem when a team of robots cooperate with each other
to achieve some defined tasks. For example in [17], this
problem is solved for two terrestrial robots using exterocep-
tive sensors. Also In [18], a visual localization modules is
proposed to estimate the relative positions of agents within
a fleet of Unmanned Aerial Vehicles (UAVs).

The challenging problem of 3D structure estimation using
the visual information has attracted more interest recently,
we can find in literature various techniques to tackle this
problem which can refer to Simultaneous Localization And
Mapping (SLAM) in robotics [1] and Structure from Motion
(SfM) in computer vision [2] [19].

In earlier work, researchers have addressed this problem
using Stereo Vision Algorithms [3], which consists on re-
constructing the depth of a feature point from two images of
the same scene using triangulation. But later on, the idea of
using a single camera lead to multiple other approaches, one
can cite [4], where the observation of the point feature depth
is achieved using the persistency of excitation lemma that
results from the adaptive control theory [5], [6] and [7]. One
of the major disadvantage of all these cited works is the fact
that their analysis is based on the assumption of neglecting a
disturbance term which affects the dynamic behavior of the
system. Furthermore solutions based on Extended Kalman
Filter (EKF) have been proposed in [8] [9]. However the
main drawback of this approach is that they involve a certain
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degree of linearization which contradicts most of the studied
system dynamics. In the present paper, we achieve the
estimation of the 3D information of a feature point together
with recovering the linear velocity of the camera with respect
to x and y axis assuming a perfect knowledge of the angular
velocity of the camera and the linear velocity with respect to
its z axis. The system is described with qLPV representation
[13][14] and based on the new description of the system, An
unknown input observer (UIO) is designed, which allows
estimating the state of the system in presence of unknown
inputs.

Obtaining an accurate linear velocity have a significant
effect on the control of autonomous vehicles and drones.
The straight forward method to estimate the velocity is
to use data fusion [10] where Global Positioning System
(GPS) and Inertial Measurement Unit (IMU) are used for
this purpose. But this method fails when it comes to indoor
tasks or limited sensor resolution. Moreover, we can find
in literature some other approaches. For example in [11],
an Extended Kalman filter (EKF) is employed to estimate
linear and angular velocity of an object during its free flight,
on the other hand in [12], Riccati observer is used to solve
this problem. This work focuses on solving the relative
localization problem for coordination and control of multiple
autonomous aerial agents using the data provided by the on-
board cameras of the UAVs to estimate the relative distance
from the other agents with respect to its camera reference
frame and reconstruct the relative velocity of the camera.
This information is essential for data fusion or to give an
accurate estimate of the absolute velocity of the vehicle.

The main contribution of this work can be summarised in
two points the first one is introducing a novel description
of the relation between the variation of the feature extracted
from an image and the linear/angular velocities of the camera
using qLPV representation, based on which a nonlinear
observer is designed to estimate the depth, and the second
point consists on reconstructing the camera linear velocity
with respect to its x axis and y axis during its motion.

This paper is structured as follows: in section II, basic
definitions are highlighted and the nonlinear model of ca-
mera is described. In section III, the new description using
qLPV representation is explained for the nonlinear model of
camera. In Section IV the design of the nonlinear observer
is presented and the sufficient conditions are given in terms
of LMIs based on Lyapunov theory. Simulation tests are
conducted to discuss the performances of the proposed obser-
ver in section V. Finally, section VI draws some conclusions
regarding our work.



II. MATHEMATICAL BACKGROUND

In this section, we first provide some basic definitions
and lemmas needed for the development of the proposed
approach. Then, we recall the conventional camera model.

A. Notations and basic definitions

We represent matrices in upper case bold letters X and
vectors in lower case bold letters x otherwise, the remaining
notations represent scalars (x or X).
We recall in the following the theorems used in the analysis
of the observer convergence:

Theorem 1 (Strong Detectability Condition): For every
matrix A ∈ Rn×n, F ∈ Rn×q and C ∈ Rm×n. We consider
the following Linear Time Invariant (LTI) system:

{ ẋ(t) = Ax(t) +Fd(t)
y(t) = Cx(t) (1)

where x ∈ Rn, y ∈ Rm and d ∈ Rq are respectively the state
vector, the unknown input vector and the output vector. The
system (1) is strongly detectable if:

lim
t→∞ y(t) = 0⇒ lim

t→∞x(t) = 0 (2)

regardless of the input and the initial state. Algebraically this
is equivalent to:

rank(R(p)) = n + q (3)

where p represents the pole of the system and R denotes the
Rosenbrock matrix of system (1), given by:

R = [ pI −A −F
C 0

] (4)

Lemma 1: For every matrix G=GT > 0, X and Y with
appropriate dimensions, the property below holds:

XTY +YTX ≤ XTGX +YTG−1Y (5)

Lemma 2 (Schur complement lemma): Consider the fol-
lowing convex nonlinear inequalities:

R > 0, T − SR−1ST > 0 (6)

where the matrices T = TT , R = RT and S are of
appropriate dimension. Hence, the previous inequalities can
be written in the following form:

[ T S
ST R

] > 0 (7)

Note that the previous mathematical properties for the LTI
systems hold for the case of qLPV systems considering the
case of frozen parameter vectors.

B. Conventional camera model

Let p be a 3-D point of coordinates p = (X Y Z)⊺ defined
in the camera frame Fc. Its projection onto the image plane
is obtained through the well-known Pinhole model.
More precisely, the 3-D point p is projected in the image
as a 2-D point with homogeneous coordinates given by the
vector m as:

m = (x y 1)⊺ = 1

Z
p (8)

The velocity of the 3D point p is related to the camera special
velocity by:

ṗ = −υ + p × ω = (−I [p]×) u (9)

where []× refers to the skew-symmetric matrix of a given
vector, u = (υ⊺ ω⊺)⊺ is the spatial velocity of the camera
motion, with υ = (υx υy υz)⊺ and ω = (ωx ωy ωz)⊺ are
respectively, the instantaneous linear and angular velocities
of the camera frame. From (9), the dynamics of the inverse

of the depth
1

Z
is given by:

d

dt
( 1

Z
) = (0 0 − 1

Z2
− y
Z

x

Z
0) u (10)

The time derivative of the image point m is linked to the
camera spatial velocity u by the following interaction matrix
[13]:

ṁ = (−
1
Z

0 x
Z

xy −(1 + x2) y
0 − 1

Z
y
Z

(1 + y2) −xy −x) u (11)

Let us now define the state vector as X = (s⊺, χ) with s =
(x y)⊺ ∈ R2 is a measurable vector, and χ = 1

Z
∈ R is the

unmeasurable 3D data that we want to estimate. Using (11)
and (10), the dynamics of the state vector X is given by:

{ ṡ = fm(s,u) +ΩT(s,u) χ
χ̇ = fu(s, χ,u) (12)

where the vectors ΩT(s,u) ∈ R2, fm(s,u) ∈ R2 and
fu(s, χ,u) ∈ R are generic and sufficiently smooth w.r.t their
arguments and they are defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fm(s,u) = ( xy −(1 + x2) y
1 + y2 −xy −x)ω

Ω(s,u) = (−υx + xυz −υy + y υz)

fu(s, χ,u) = υzχ
2 + (y ωx − xωy)χ

(13)

In the upcoming sections, the dynamic model given in (12)
will be expressed in a qLPV form in order to design a
proper nonlinear Unknown Input (UI) Observer to estimate
the depth information χ and recover the linear velocities
with respect to the x and y axis of the camera.



III. POLYTOPIC FORMULATION & DETECTABILITY
ANALYSIS

We express in this section, the vision system model
(13) into qLPV structure and analyze the existence of the
nonlinear UI observer.
The objective of this paper is to estimate the depth informa-

tion
1

Z
and reconstruct the linear velocities during the camera

motion using a nonlinear unknown input observer. For this
purpose, we represent the system (12) in a state space form
as follows:

{ Ẋ = A(X,u) X +B(y) ω +Fd
y = CX

(14)

where:

A(X,u) =
⎛
⎜⎜
⎝

0 0 xυz
0 0 yυz
yωx xωy χυz + ωxy − xωy

⎞
⎟⎟
⎠

B(y) =
⎛
⎜⎜
⎝

xy −(1 + x2) y
1 + y2 −xy −x
−xy −xy 0

⎞
⎟⎟
⎠

F =
⎛
⎜⎜
⎝

1 0
0 1
0 0

⎞
⎟⎟
⎠

d = (−χυx−χυy
)

and y represents the output of the system with:

C = (1 0 0
0 1 0

)

Using the sector nonlinearity approach, the previous system
(14) can be represented in the polytopic form as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ẋ =
r

∑
i=1
µi(X)(Ai X +B(y) ω +Fd)

y = CX
(15)

where Ai ∈ R3×3, B(y) ∈ R3×3 and µi, i = 1, . . . , r are the
weighting functions with r is the number of sub-models that
depends on the number of nonlinearities in the system (in our
case we have five nonlinearities). These weighting functions
satisfy the following convex sum property on the considered
compact bounds of the nonlinearities of the system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ⩽ µi ⩽ 1
r

∑
i=1
µi = 1

(16)

Note that in hereafter we are going to consider the discrete-
time form of the continuous-time system (15) represented
before and keep the same notations. Using Forward Euler
Approximation for state space models, the previous system
will have the following form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X(k + 1) =
r

∑
i=1
µi(X(k))(Ai X(k) +B(y(k))ω(k) +Fd(k))

y(k) =CX(k)
(17)

with k is the sampling instant.
The new description of the model enables us to synthesis
a proper nonlinear unknown input observer to estimate the
depth information and reconstruct the linear velocities. This
type of observer exists under the following conditions:

1) rank(CF) = rank(F).

2) the system (14) is strong detectable, that means, it
satisfies the condition stated in theorem (1)

After verifying the two conditions above, we can state that
the UI observer exists. In the next section, we discuss the
observer design.

IV. DESIGN OF THE UI OBSERVER

In this section we present the UI Observer design given
in the form:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z(k + 1) =
r

∑
i=1
µi(X̂(k))(NiZ(k) +Gi ω(k) +Li y(k))

X̂(k) = Z(k) −Ey(k)
(18)

where Z ∈ R3 is the state of the observer and X̂ ∈ R3 the
estimated state and the matrices Ni, Gi, Li and E are the
matrices gains to be computed such that the state estimation
error given by (19) converges to zero.

e(k) = X(k) − X̂(k)
= (I +EC) X̂(k) − Z(k) (19)

With T = I +EC, the error will be defined as:

e(k) = T X̂(k) − Z(k) (20)

For sake of simplicity, in what follows we put: e(k) = ek.
Thus, the expression of the estimation error is equivalent to:

ek+1 = T X̂k+1 − Zk+1 (21)

=
r

∑
i=1
µi(X̂k)(Niek + (TAi −KiC−

Ni) Xk +TFdk + (TBi −Gi)ωk) +∆

with ∆ = T (µi(Xk) − µi(X̂k))(Ai Xk +Bi ωk + Fdk) and
Ki = NiF −Li.
We assume that all the elements in ∆ are growth bounded
with respect to ek. Thus we can say that ∆ fulfills the
calmness property at the origin:

∆T∆ =∥(∆∥2 < α2∥X̂k − Xk∥
2 = α2∥ek∥2 (22)

The notation∥∥ represents the 2-norm and α2 > 0 is constant
of Lipschitz.

To ensure the stability of the error dynamics (21), the
following conditions must be satisfied ∀i = 1, . . . ,32:

1) The system defined by: Ni =
r

∑
i=1
µi(X̂k)Ni.

is stable where: ek+1 = Niek +∆.
2) TAi −KiC −Ni = 0

3) TBi −Gi = 0

4) TF = 0

The first condition implies that Ne is Hurwitz subject to a
vanishing disturbance ∆ i.e: ∆ → 0 when X̂ → X and to



demonstrate that [16] , we consider the following quadratic
Lyapunov function:

V = eTkPek P = PT > 0 (23)

It follows that:

Vk+1 − Vk = eTk+1Pek+1 − eTkPek (24)
= eTkN T

e PNeek +∆T
k (X, X̂)PNeek +

eTN T
e P∆ +∆TP∆

To ensure the stability of the system the time derivative of
the Lyapunov function must satisfy:

eT
k N T

e PNeek +∆T
k (X, X̂)PNeek + eT

k N T
e P∆+
∆TP∆ < 0 (25)

To attenuate the disturbance’s effect ∆ on the estimation
error ek in the L2-gain sense, we define:

sup
∥∆∥≠0

∥ek∥
∥∆∥ < γ2 (26)

which leads to the following inequality:

eTk ek − γ2∆T∆ < 0 (27)

This expression can be simplified using lemma 1, the resul-
ting inequality is given by:

∆TPNeek + eT
k N T

e P∆ < ε∆T∆ + 1

ε
eT
k N T

e PTPNeek (28)

Then the following inequality is deduced:

Vk+1 − Vk < eT
k (N T

e PNe −P + I +
1

ε
N T

e PTPNe)ek+

∆T (εI + γ2I +P)∆ (29)

It follows:

eT
k (N T

e PNe −P + I +
1

ε
eT
k N T

e PTPNe)ek+

∆T (εI − γ2I +P)∆ < 0 (30)

Taken into account the Lipschitz condition (22), the follo-
wing inequality holds:

eTk (N T
e PNe −P + I + 1

ε
eTkN T

e PTPNe+

αεI − α2γ2I + α2P)ek < 0 (31)

The inequality (31) holds if and only if:

N T
e PNe−P+I+ 1

ε
eTkN T

e PTPNe+α2εI−α2γ2I+α2P < 0

(32)
Using Schur lemma 2, the inequality (32) can be expressed
in an equivalent manner with the LMI constraints as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −P + α2εI − α2γ2I αP N T
e P N T

e P
αP P 0 0

PNe 0 −εI 0
PNe 0 0 −P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (33)

Substituting the term Ne in the previous equation (33) yields:

r

∑
1

µi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −P + α2εI − α2γ2I αP NT
i P NT

i P
αP P 0 0
PNi 0 −εI 0
PNi 0 0 −P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(34)
The inequality (34) is equivalent to following in more
conservative manner, for all i = 1, . . . ,32:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −P + α2εI − αγ2I αP NT
i P NT

i P
αP P 0 0
PNi 0 −εI 0
PNi 0 0 −P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (35)

From the second condition to ensure the stability of the
error dynamics, one can write: Ni = TAi − KiC. After
substituting Ni, We proceed to the following changing of
variables: λ̄ = α2γ2, η̄ = α2ε, Q = αP and Wi = PKi the
inequality (35) becomes:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −P + η̄I − λ̄I Q ΨTP ΨTP
Q −P 0 0

PΨ 0 εI 0
PΨ 0 0 −P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (36)

where Ψ = TAi +WiC.
Then the system (1) is stable if there exist a positive
definite symmetric matrices P ∈ R3×3, Q ∈ R3×3, matrices
Wi ∈ R3×2, positive scalars η̄ and λ̄ so that the LMIs in
(35) are satisfied and the resulting observer gains are given
by Ki = P−1Wi

Note that in order to have feasible solution of the LMIs,
the pair (TA,C) should be observable or at least detec-
table, we study the detectability of the system by analysing
the poles. As a consequence, to fulfil the requirement of
detectability the following condition must be satisfied:

y ωx + χυz − xωy + 1 < 0 (37)

To summarize, after ensuring the existence of the observer,
we proceed to its design according to the given steps below:

1) deduce E from the equation (4) Since the condition
rank(CF) = rank(F) holds.

2) calculate the matrix E, the matrix T is computed
directly from (3) as well as the matrices Gi from the
equation (2).

3) ensure that the pair (TA,C) is at least detectable
and solve the LMIs constraints (35) to get the gains
Ki = P−1Wi.

4) Finally, compute the gain matrices: Ni = TAi−KiC
and Li = Ki −NiE.

The linear velocities in the x and y directions of the camera
are expressed in the disturbance part of the system and they
can be recovered once the estimated states converge to the
real ones.

yk+1 = C
r

∑
i=1

µi(Xk)(Ai Xk +B(yk)ωk +Fdk) (38)



It follows that:

d̂k = (CF)−1 [yk+1 −C
r

∑
i=1
µi(X̂k)(Ai X̂k +B(yk)ωk) ]

(39)
The unknown input has the given form:

dk = (−χυx−χυy
) (40)

The estimate of linear velocity with respect to x and y axis
of the camera is obtained as follows:

(v̂x
v̂y

) = −d̂k χ̂
−1 (41)

V. SIMULATION RESULTS

In order to validate the proposed approach, we consider
two sets of synthetic images generated at a rate of 20fps
using a known camera motion. The real depth information
χ of the tracked point feature as well as the linear velocities
υx and υy are compared with the estimated ones and used
in the discussion of the observer performance.
The LMIs conditions derived previously are solved and
yield the following result:

ε = 2.7666, λ̄ = 4.5048, η̄ = 1.6908

P =
⎛
⎜⎜
⎝

2.1209 0 0
0 2.1209 0
0 0 1.1217

⎞
⎟⎟
⎠

Q = 10−11
⎛
⎜⎜
⎝

0.0093 0.1220 −0.0001
0.1220 0.0296 −0.0035
−0.0001 −0.0035 0

⎞
⎟⎟
⎠

The first set where original and final images are shown in
figure (1), is generated using the following linear/angular
velocities of the camera:

υx = 0.2 sin (πt) υy = −0.2 + 0.1t υz = −0.7

ωx = 0.1 ωy = −0.2 ωz = 0

The red dot in the images represents the tracked point that
we want to estimate its depth.

(a) (b)

Fig. 1: (a) the original and (b) the final images of the first
set of images.

To better verify the performance of the observer, we consider
now a second set of images where the original and final
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Fig. 2: (a) Estimation error (b) Real and estimated depths of
the selected image point.
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Fig. 3: Real an estimated linear velocities: (a) υx and (b) υy .

images are shown in figure (4). The set of images is
generated using the linear/angular velocities of the camera
defined below:

υx = 0.4 cos (2πt) υy = 0.5 cos (πt) υz = −0.7 cos (πt)−0.3

ωx = 0.1 ωy = −0.1 ωz = 0.1

(a) (b)

Fig. 4: (a) the original and (b) the final images of the second
set of images.

Note that the initial value of the estimated depth informa-
tion χ̂ is restricted by the Lipschitz condition (22). Therefore,
a close initial value to the real value of the depth is required
for the estimation as shown in figures (2b) and (5b).

It can be noticed from the evolution of the estimation error
for the first and the second set depicted in figures (2a) and
(5a) respectively, that the convergence is achieved within
approximately 2.5 sec.
Figures (3) and (6) highlight the reconstructed velocities
along the x and y axis respectively for both sets. From
the depicted figures one can see that the velocities are
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Fig. 5: (a) Estimation error (b) Real and estimated depths of
the selected image point.
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Fig. 6: Real an estimated linear velocities: (a) υx and (b) υy .

well recovered when the the estimated depth information χ̂
converges to the real value.

Note that, to correctly estimate the depth, the velocity
should be perfectly known however, In real experiments,
there are very few use cases where a perfect knowledge is
available, so it is required to have velocities measurements
close to accurate using different techniques of filtering or
data fusion for the approach to work. Usually standard tri-
angulation techniques used in computer vision don’t require
strong assumptions to recover the 3d structure but with the
proposed approach the linear velocity of the camera along
the x and y axis can be reconstructed while estimating the
depth.

VI. CONCLUSIONS

In the present paper, we have proposed a solution to
estimate the depth information of a feature point and to
recover the linear velocities of the camera with respect to x
and y axis. The nonlinear system describing the relationship
between the feature point time variation and the camera
spatial velocity has been represented by a discrete time
Takagi-sugeno model. An adequate Unknown Input Observer
has been designed to estimate the depth information and
reconstruct the camera velocities. The convergence of the
state estimation error has been analysed using the Lyapunov
theory and the convergence conditions have been formulated
as LMIs constraints. The performances of the proposed
observer have been validated using two sets of synthetic
images. Simulation results have shown the good convergence
of the observer.

In future works, the proposed technique will be used to
compute the relative distance between the considered UAV
and the other flying robots with respect to its camera refe-
rence frame in a group formation, as well as to reconstruct
the linear velocities of the UAV.

REFERENCES

[1] Egodagamage, R., & Tuceryan, M. (2017). Distributed monocular
SLAM for indoor map building. Journal of Sensors, 2017.

[2] Spica, R., & Giordano, P. R. (2013, December). A framework for
active estimation: Application to structure from motion. In 52nd IEEE
conference on decision and control (pp. 7647-7653). IEEE.

[3] Nalpantidis, L., & Gasteratos, A. (2012). Stereo vision depth estima-
tion methods for robotic applications. In Depth Map and 3D Imaging
Applications: Algorithms and Technologies (pp. 397-417). IGI global.

[4] De Luca, A., Oriolo, G., & Robuffo Giordano, P. (2008). Feature depth
observation for image-based visual servoing: Theory and experiments.
The International Journal of Robotics Research, 27(10), 1093-1116.

[5] Marino, R., & Tomei, P. (1995). Nonlinear control design: geometric,
adaptive and robust (Vol. 136). London: Prentice Hall.

[6] Spica, R., & Giordano, P. R. (2013, December). A framework for
active estimation: Application to structure from motion. In 52nd IEEE
conference on decision and control (pp. 7647-7653). IEEE.

[7] Spica, R., Giordano, P. R., & Chaumette, F. (2014). Active structure
from motion: Application to point, sphere, and cylinder. IEEE Tran-
sactions on Robotics, 30(6), 1499-1513.

[8] Guerreiro, B. J., Batista, P., Silvestre, C., & Oliveira, P. (2013).
Globally asymptotically stable sensor-based simultaneous localization
and mapping. IEEE Transactions on Robotics, 29(6), 1380-1395.

[9] Omari, S., & Ducard, G. (2013, July). Metric visual-inertial navigation
system using single optical flow feature. In 2013 European Control
Conference (ECC) (pp. 1310-1316). IEEE.

[10] Skog, I. (2007). GNSS-aided INS for land vehicle positioning and
navigation (Doctoral dissertation, KTH).

[11] Jia, Y. (2017). Estimating the Linear and Angular Velocities of a Free-
Flying Object.

[12] Hua, M. D., & Allibert, G. (2018, August). Riccati Observer Design
for Pose, Linear Velocity and Gravity Direction Estimation using
Landmark Position and IMU Measurements. In 2018 IEEE Conference
on Control Technology and Applications (CCTA) (pp. 1313-1318).
IEEE.

[13] Blanchini, F., & Miani, S. (2003). Stabilization of LPV systems: state
feedback, state estimation, and duality. SIAM journal on control and
optimization, 42(1), 76-97.

[14] Chesi, G., Garulli, A., Tesi, A., & Vicino, A. (2009). Homogeneous
polynomial forms for robustness analysis of uncertain systems (Vol.
390). Springer Science & Business Media.

[15] Rosinová, D., & Valach, P. (2014, May). Switched system robust
control: Pole-placement LMI based approach. In Proceedings of the
2014 15th International Carpathian Control Conference (ICCC) (pp.
491-496). IEEE.

[16] Bergsten, P. , & Palm, R. (2000). Thau-Luenberger observers for
TS fuzzy systems. In Ninth IEEE International Conference on Fuzzy
Systems. FUZZ- IEEE, 2, pp. 671-676.

[17] Martinelli, A., & Siegwart, R. (2005, August). Observability analysis
for mobile robot localization. In 2005 IEEE/RSJ International Confe-
rence on Intelligent Robots and Systems (pp. 1471-1476). IEEE.

[18] Saska, M. (2015, June). MAV-swarms: unmanned aerial vehicles
stabilized along a given path using onboard relative localization.
In 2015 International Conference on Unmanned Aircraft Systems
(ICUAS) (pp. 894-903). IEEE.

[19] Benyoucef, R., Nehaoua, L., Hadj-Abdelkader, H., & Arioui, H. (2019,
December). Depth Estimation for a Point Feature: Structure from
motion . In IEEE CONFERENCE ON DECISION AND CONTROL
(To appear). IEEE ; 2019.


	INTRODUCTION
	Mathematical Background
	Notations and basic definitions
	Conventional camera model

	Polytopic Formulation & Detectability Analysis 
	Design of the UI Observer
	SIMULATION RESULTS
	CONCLUSIONS
	References

