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ABSTRACT

This paper presents the problems and solutions addressed at the
JSALT workshop when using a single microphone for speaker detec-
tion in adverse scenarios. The main focus was to tackle a wide range
of conditions that go from meetings to wild speech. We describe the
research threads we explored and a set of modules that was success-
ful for these scenarios. The ultimate goal was to explore speaker
detection; but our first finding was that an e�ective diarization im-
proves detection, and not having a diarization stage impoverishes the
performance. All the di�erent configurations of our research agree
on this fact and follow a main backbone that includes diarization as
a previous stage. With this backbone, we analyzed the following
problems: voice activity detection, how to deal with noisy signals,
domain mismatch, how to improve the clustering; and the overall
impact of previous stages in the final speaker detection. In this pa-
per, we show partial results for speaker diarizarion to have a better
understanding of the problem and we present the final results for
speaker detection.

Index Terms— speaker detection, speaker diarization, voice ac-
tivity detection, speech enhancement, resegmentation.

1. INTRODUCTION

For the past years, speaker recognition research has mainly focused
on telephone and close-talk microphone applications with high
speech quality levels. However, far-field recordings have recently
emerged as an area of interest. This is due to new applications like
video annotation; home assistant devices which need to distinguish
between family members; and wearables that document our every-
day life. These applications provide a massive amount of data which

<The research reported here was conducted at the 2019 Frederick Jelinek
Memorial Summer Workshop on Speech and Language Technologies, hosted
at L’École de Technologie Supérieure (Montreal, Canada) and sponsored by
Johns Hopkins University with unrestricted gifts from Amazon, Facebook,
Google, and Microsoft.

requires automatic means of analysis. Furthermore, such devices are
often used in very challenging environments with multiple speakers,
and where the audio is a�ected by noise and reverberation. Most
devices use a single microphone and, therefore, multichannel signal
processing techniques (e.g., beamforming) cannot be applied to al-
leviate the impact of the real-life conditions. As reference, speaker
detection error rates of reverberant speech are 2 times worse than
close-talk speech in voices dataset [1]; internet videos with noise
and multi-speaker error multiplied by 6 in recent NIST SRE18 w.r.t.
clean videos [2]; and systematic evaluation of diarization (Dihard I
and Dihard II [3, 4]) in real-life domain shows diarization error rates
above 60% when all the stages are automatized [5].

Knowing that speaker diarization and detection require further
research, the aim of our workshop was to ivestigate, develop, and
benchmark speaker diarization and speaker recognition systems on
far-field speech using single microphones in realistic scenarios that
include background noises The key aspects that we found were fun-
damental to investigate are: voice activity detection, speech enhance-
ment, domain adaptation and improving clustering. Each part will be
explained briefly in the following paragraphs.

2. RESEARCH THREADS

2.1. Initial system: baseline

Our baseline follows a traditional diarization workflow connected to
a speaker detection branch (see Figure 1, solid line rectangles). For
diarization (who speaks when in a recording), the first stage is a voice
activity detection (VAD), followed by an acoustic feature extractor
and an embedding extractor. The embedding extractor uses a sliding
window to produce a sequence of speaker embeddings. The cluster-
ing block intends to group the sequence of embeddings into single
speaker clusters. A speaker label is created for each cluster. Thus,
the diarization output is a sequence of speaker labels with its corre-
sponding time marks. The speaker detection stage performs a verifi-
cation task, i.e., decide whether a known speaker is in the recording
or not. We are interested in an scenario where multiple speakers can



be present in the test recording; therefore, we apply diarization as a
first step. The diarization output is used to compute a speaker embed-
ding for each of the speakers identified in the diarization stage. Then
each test speaker embedding is compared against the enrollment em-
bedding. To compare two embeddings we usually employ probabilis-
tic linear discriminant analysis (PLDA), that outputs scores. When
we encounter a mismatch condition those scores should need cali-
bration. The metric employed for diarization is diarization error rate
(DER), which takes into account the false alarms, the misses (clas-
sifying speech as non-speech) and speaker confusion. The speaker
detection metrics are the EER, minimum and actual DCF.

To explore in detail the challenging conditions in far-field, we
analyzed the shaded rectangles blocks in Figure 1.
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Fig. 1. Speaker detection pipeline. ∏ is the baseline system, ’ are
the new parts that are included in the pipeline, shaded-∏ are the mod-
ules that were investigated.

2.2. Voice Activity Detection and Speaker Separation

Improving speaker separation and voice activity detection addresses
some of the key issues we had identified as being particularly prob-
lematic for our task. In this area, we explored three main routes.

The first one focuses on separating child and adult speech in re-
alistic conditions [6]. First, the method measures the speech dissim-
ilarities between children, babies and adults using i-vectors. Then,
it uses a model based on progressive learning to extract child speech
from simulated mixtures during training. The data from toddlers be-
tween 2 and 5 years is limited. Based on this constraint, a progressive
learning framework generates intermediate target outputs and stack
them together with the original limited-sized mixed input feature vec-
tors to increase the training samples. To boost the speech separation
we employed Multiple-target learning.

The second study addresses the overlap detection [7]. We hy-
pothesized that detecting regions of overlapped speech (two or more
speakers at the same time) is most e�ectively solved from the raw
waveform. This approach relies on two stacked bi-LSTM layers, two
feed-forward layers, and a final classification layer, fed into binary
cross-entropy loss. The input can be MFCCs or Sincnet [8].

The third approach combines the VAD and speaker type classifi-
cation in a multi-task learning set-up. We trained a system to diarize
five classes: key child (wearing a recorder), other child, male adult,
and female adult and speech, all of which could be active at the same
time. Silence is marked by the absence of activation in the classes.
The best architecture consisted of learning from the raw waveform
with the SincNet model followed by a LSTM and a fully connected
layer.

2.3. Dealing with noisy signals

We explored two main ideas to overcome the noisy signals in our
di�erent scenarios.

In the first approach, we built a SNR-progressive multi-target
learning based speech enhancement model for adverse acoustic en-
vironments. The progressive multi-targets (PMT) network is divided
into successively stacking blocks with one LSTM layer and one fully
connected layer via multi-targets learning per block. The fully con-
nected layer in every block (target layer) is designed to learn interme-
diate speech targets with a higher SNR than the targets of previous
target layers. A series of progressive ratio masks (PRM) are concate-
nated with the progressively enhanced log-power spectra (PELPS)
features together as the learning targets. At test time, we directly
feed the enhanced audios processed by our enhancement model to
the back-end systems, including speaker diarization and speaker de-
tection. More details about this approach are described in [9].

The second approach we explored is feature enhancement with
deep feature losses [10]. The main idea is to train a feature-domain
enhancer which can serve as a pre-processing module to the x-vector
system during inference. We develop on the ideas of perceptual
loss [11] and speech denoising work [12]. This approach requires a
pre-trained auxiliary network for loss estimation between enhanced
and clean samples. For the auxiliary network, we chose an x-vector
network based on ResNet-34 with LDE pooling and trained for
speaker classification using an Angular Softmax loss objective [13].
For the enhancement network, we design networks based on [14]
(Encoder-Decoder residual network) and [15] (Context Aggregation
Network). We obtained significant improvement on real datasets
using auxiliary x-vector network trained on clean speech. Using the
augmented x-vector auxiliary network, we observed slight improve-
ments on simulated noisy sets.

2.4. Domain Mismatch

We explored two ways to deal with domain mismatch between train-
ing and test data: domain adaptation in acoustic feature space and
domain adversarial training for VAD training.

In our first case, we examined how to train an unsupervised
speech enhancement system, which can be used as a front-end pre-
processing module to improve the quality of the features before they
are forward passed through the x-vector network. The details of
the procedure can be found in [16]. Simply put, the unsupervised
adaptation system is based on CycleGAN [17, 14]. We trained a
CycleGAN network using log-Mel filterbanks as input to each of
the generator network. During testing, we process the far-field test



data through the reverb to clean generator of CycleGAN. These en-
hanced acoustic features are then used to extract x-vectors. Though
CycleGAN network was trained for doing de-reverberation task,
we also tested it on noisy datasets to investigate its generalization
abiliy to unseen test conditions. We observed improvements on both
reverberant and noisy test datasets.

We also proposed domain-adversarial training for robust end-
to-end VAD [18]. On one branch an LSTM based end-to-end VAD
labels segments as speech or non-speech based. On a second branch,
a neural SincNet extracts filters that are the input to a domain-
adversarial multitask training. Those filters via the adversarial
process are forced to be domain independent. Each branch can per-
form its task independently, or they can be combined using gradient
reversal that give robustness to the VAD.

2.5. Improving clustering

Knowing that clustering is a crucial stage in diarization, we examined
a set of ways to address the problem.

A first solution was to turn the problem into a supervised learning
task so that it considers the temporal information and optimization of
the DER as the main goal. The model input is the set of embeddings
from a recording with multiple speakers. This is an encoder-decoder
model, where the encoder converts the sequence of embeddings into a
context vector c. This vector contains information about the dialogue,
like the number of clusters (speakers), cluster centroids, etc. The
decoder compares embeddings from the input with a context vector
and assigns a cluster. Both encoder and decoder used a bi-directional
multi-layer RNN to deal with sequentiality.

A second approach was to refine the clustering by combining
the resegmentation with overlap detection (see Section 2.2) [7]. The
state-of-the-art method for the refinement is variational Bayes (VB)
HMM (Hidden Markov Model) resegmentation, studied in [19].VB-
HMM resegmentation computes a per-frame speaker posterior ma-
trix Q. Meanwhile, overlap detection provides the regions with two
or more speakers talking. We hypothesized two speaker labels in
those regions, i.e., take the two speaker with higher posterior in ma-
trix Q and continue the diarization process. The DER was reduced
considerably for all the cases by including the overlap assignment.

2.6. Speaker detection

We explore how to overcome the main sources of confusion in
speaker detection: overlap speech and the multiple speakers in the
same audio stream. Firstly, we compare two di�erent techniques
to create homogeneous segments, computing the diarization as in-
put to speaker detection and the sliding-window without knowledge
of the speaker labels. Secondly, we used the overlap regions (ex-
plained in Section 2.2) to remove them from the speaker detection
pipeline. The main conclusion of our experiments is that diarization
is still necessary for these type of environments, where the speech
of the speaker-of-interest is highly degraded by other sources of au-
dio. While there is a slight improvement in matching scenarios, the
speaker detector degrades dramatically when the overlap detector is
not trained within the same domain showing a clear problem with
the purification in mismatch data.

3. EXPERIMENTAL SETUP

3.1. Datasets

To study the main issues of the far-field scenario we built a dataset
that is summarized by the following four corpora:

• Meeting ( AMI [20]): with a setting of 3 di�erent meeting
rooms with 4 individual headset Microphones, 8 Multiple Dis-
tant Microphones forming a microphone array; 180 speakers
x 3.5 sessions per speaker (sps); suitable for diarization and
detection. Since we are exploring single microphones, we fo-
cused only on the mix Headset scenario.

• Indoor controlled ( SRI data [21]
1 ): with a setting of 23

di�erent microphones placed throughout 4 di�erent rooms;
controlled backgrounds, 30 speakers x 2 sessions and 40 h,
live speech along with background noises (TV, radio); suit-
able for detection (only reliable labeling of target speaker was
provided).

• Indoor not controlled ( CHiME5 [22] ): with a setting of
kitchen, dining, living room, 80 speakers, 50 h; 4 speakers
in two-hour recordings; 32 microphones per session; suitable
for diarization only (there are not enough impostor speakers
in di�erent sessions within the corpus)

• Wild ( BabyTrain
2 ): with an uncontrolled setting, 450 recur-

rent speakers, up to 40 sps (longitudinal), 225 h; suitable for
diarization and detection.

For speaker detection the enrollments were generated by accu-
mulating non-overlapping speech ( 5, 15 and 30s duration) of every
target speaker along one or multiple utterances. For the test, we cut
the audio into 60 second chunks. We do a Cartesian product between
the enrollments and the test segments to generate all possible trials.
Then based on conditions, some trials are filtered out. For example,
same session and same microphones are not allowed to produce a
target-trial pair.

3.2. System configuration

Our experimental setup is depicted in Figure 1. The dotted blocks are
the new approaches added to the pipeline. The underlined methods
along the text show the final combination of modules that obtained
e�ective results and that are part of the final code contribution in [24].
The definite pipeline follows:

1. Speech enhancement(Diar/SpkD): we used a 1000-hour
training set. The noisy mixtures are made at three SNR levels
(-5dB, 0dB and 5dB), and the progressive increasing SNR
between two adjacent targets is set to 10 dB. The audios are
sampled at 16 kHz rate and the frame length is 256 samples
(PELPS and the PRM are 257 dimension). During the testing
stage, we directly feed the enhanced audios processed by our
enhancement model to back-end systems.

2. Acoustic features(Diar/SpkD): 23 dimension MFCC for x-
vector systems based on Kaldi TDNN x-vectors; and 23 log-
Mel filter banks for ResNet based x-vectors. Features were
short-time centered before silence removal with a 3 seconds
sliding window.

3. Feature enhancement(Diar/SpkD): We use a SNR estima-
tion to select the 50% highest SNR signals of VoxCeleb [25]

1 This data was recorded by SRI international and was submitted to LDC
for publication

2 This data uses daylong recordings from Homebank [23], expected to be
public



AMI BabyTrain CHiME5
DER FA Miss Conf DER FA Miss Conf DER FA Miss Conf

Baseline 49.25 4.46 35.41 9.38 85.38 46.67 8.03 30.68 69.22 38.36 11.45 19.41
+ E2E VAD 36.41 2.98 21.04 12.39 50.63 8.88 14.82 26.93 70.68 32.02 11.22 27.44
+ Enhanc 36.17 2.98 21.04 12.15 49.67 8.95 14.82 25.9 66.13 32.02 11.22 22.89
+ VB reseg 34.86 2.97 21.06 10.83 48.49 8.9 14.88 24.71 63.03 32.02 11.21 19.8
+ Overlap Assign 30.76 3.73 13.64 13.39 47.49 8.9 14.88 23.71 58.59 23.08 13.15 22.36

Table 1. DER % for di�erent subdatasets and modules.

AMI BabyTrain SRI data
EER minDCF ActDCF EER minDCF ActDCF EER minDCF ActDCF

. Baseline with Diar 17.08 0.58 0.65 14.34 0.68 0.69 21.07 0.81 0.88
+ Enhanc 16.13 0.56 0.62 10.55 0.48 0.53 19.9 0.80 0.83
+ xvec aug 12.85 0.44 0.58 9.93 0.42 0.52 16.86 0.62 0.62
+ PLDA aug 12.89 0.44 0.58 9.28 0.37 0.6 16.37 0.63 0.63

Table 2. Detection EER %, minDCF and actDCF for di�erent subdatasets and modules.

as clean data. For the auxiliary network, we choose ResNet-
34 x-vector network to filter VoxCeleb set. For the enhance-
ment network, we use a ConvGenNet and a network we design
based on CAN.

4. Voice activity detection(Diar/SPkD): Trained on 2s audio
chunks for each corpora, with trainable SincNet features (us-
ing the configuration [14]). Features are feed into BiLSTM
network with binary output (speech/non-speech).

5. Overlap detection(Diar): Follows the same architecture as
the VAD where output classes are single/multiple speakers.

6. Embedding extraction(Diar/SpkD): We used an extended
TDNN architecture (E-TDNN) presented in [26].

7. Clustering(Diar): the system employs an Agglomerative Hi-
erarchical Clustering (AHC) to compute the speaker labels in
a recording. PLDA models were trained on VoxCeleb [25] and
adapted to each domain using a small amount of in-domain
training data.

8. Resegmentation and overlap assignment (Diar):We first
perform resegmentation using HMM-VB resegmentation
module. We used the labels from the clustering and the 400
dimensional i-vectors. We use a single VB inference iteration
in accordance with [17]. The most likely speaker is assigned
to frames detected as speech by the voice activity detector.
A second most likely speaker is only assigned for frames
detected as overlapped speech.

9. Traditional speaker detection pipeline: Includes the speech/feature
enhancement, the automatic segmentation obtained from the
diarization stage, the shared embedding extractor and PLDA
(both with augmentation), and a calibration stage.

We employed Kaldi [27] as our primary toolkit to develop our
pipeline. For specific parts, such as VAD and overlap detection we
used pyannote [28]. For speech and feature enhancement we imple-
mented the algorithms in a combination of PyTorch and Kaldi.

4. RESULTS

We built a robust system that can be useful for the research com-
munity3. We followed the same pipeline for the corpora, meaning
that we achieved some degree of generalization in the models for the

3Some of the research threads are on-going but with good perspectives of
further improvements.

VAD and overlap detection, speech and feature enhancement, and
the embedding training. The PLDAs are treated separately and are
corpus dependant. Diarization provides the first evidence for an ef-
fective speaker detection. Table 1 shows the DER by adding a mod-
ule starting from the single baseline. We can observe improvements
for the three sub-datasets. We emphasize the DER relative improve-
ment of 37%, 44% and 15% for AMI, BabyTrain and CHiME5 re-
spectively. One of our main findings was that an enhancement phase,
either speech or feature, is necessary when dealing with adverse sce-
narios. The VB-HMM resegmentation gives some improvement, but
the improvement is increased when combined with the overlap detec-
tor.

Table 2 presents the results for speaker detection. For the pur-
pose of this paper, we selected a combination of 30s enrollments and
above 5s trials. Other combinations are also possible, but they fol-
low the same trend. An automatic segmentation, i.e., an automatic
diarization, was performed previously to label the speakers in the
recording. We observe the EER relative improvement of 24%, 35%
and 22% for AMI, BabyTrain and SRI data. The enhancement pro-
vided improvements on the three scenarios. To improve the robust-
ness of the system we used augmentation to train the embedding (x-
vector) and for the back-end (PLDA).

5. CONCLUSIONS

In this paper we presented our contribution to the JSALT Workshop
2019. We showed which aspects of the pipeline are most influential in
challenging scenarios. The very first finding was that speaker detec-
tion depends on a previous diarization stage to obtain successful re-
sults. Hence, we showed the necessary elements that have to be com-
petitive on their own in the diarization pipeline: VAD, overlap detec-
tion, speech/feature enhancement, embedding extractor, clustering
with resegmentation, and overlap assignment based on resegmenta-
tion. Once we tune this diarization stage, the output can be connected
to the detection phase, which is basically a speaker verification sys-
tem. The speech enhancement, the embedding and PLDA augmen-
tation gave the most improvements. There are open research threads
that will require further study such as: customization of speech en-
hancement for a dataset, exploration of other architectures for feature
enhancement, how to handle domain mismatch, unsupervised adap-
tation in the clustering, and how to highlight the speaker of inter-
est in the detection, among others. As we have shown, the diariza-
tion/detection problem is far from being solved in adverse scenarios.



6. REFERENCES

[1] Colleen Richey, Maria A Barrios, Zeb Armstrong, Chris Bar-
tels, Horacio Franco, Martin Graciarena, Aaron Lawson, Ma-
hesh Kumar Nandwana, Allen Stau�er, Julien van Hout, et al.,
“Voices obscured in complex environmental settings (voices)
corpus,” arXiv preprint arXiv:1804.05053, 2018.

[2] Seyed Omid Sadjadi, Craig S Greenberg, Elliot Singer, Dou-
glas A Reynolds, Lisa P Mason, and Jaime Hernandez-Cordero,
“The 2018 nist speaker recognition evaluation.,” in Interspeech,
2019.

[3] Neville Ryant, Kenneth Church, Christopher Cieri, Alejandrina
Cristia, Jun Du, Sriram Ganapathy, and Mark Liberman, “Sec-
ond dihard challenge evaluation plan,” Linguistic Data Con-
sortium, Tech. Rep, 2019.

[4] Neville Ryant, Kenneth Church, Christopher Cieri, Alejandrina
Cristia, Jun Du, Sriram Ganapathy, and Mark Liberman, “First
dihard challenge evaluation plan,” 2018.

[5] Gregory Sell, David Snyder, Alan McCree, Daniel Garcia-
Romero, Jesús Villalba, Matthew Maciejewski, Vimal
Manohar, Najim Dehak, Daniel Povey, Shinji Watanabe,
et al., “Diarization is hard: Some experiences and lessons
learned for the jhu team in the inaugural dihard challenge.,” in
Interspeech, 2018, pp. 2808–2812.

[6] Xin Wang, Jun Du, Alejandrina Cristia, Lei Sun, and Chin-Hui
Lee, “A study of child speech extraction using joint speech
enhancement and separation in realistic conditions,” submitted
to ICASSP 2020.

[7] Latané Bullock, Hervé Bredin, and Paola Garcia-Perera,
“Overlap-aware resegmentation for speaker diarization,” sub-
mitted to ICASSP 2020.

[8] Mirco Ravanelli and Yoshua Bengio, “Speaker recognition
from raw waveform with sincnet,” in Proc. SLT 2018, 2018.

[9] Lei Sun, Jun Du, Xueyang Zhang, Tian Gao, Xin Fang, and
Chin-Hui Lee, “Progressive multi-target network based speech
enhancement with snr-preselection for robust speaker diariza-
tion,” submitted to ICASSP 2020.

[10] Saurabh Kataria, Phani Sankar Nidadavolu, Jesús Villalba,
Nanxin Chen, Paola Garcia-Perera, and Najim Dehak, “Feature
enhancement with deep feature losses for speaker verification,”
submitted to ICASSP 2020.

[11] Justin Johnson, Alexandre Alahi, and Li Fei-Fei, “Percep-
tual losses for real-time style transfer and super-resolution,” in
European conference on computer vision. Springer, 2016, pp.
694–711.

[12] Francois G Germain, Qifeng Chen, and Vladlen Koltun,
“Speech denoising with deep feature losses,” arXiv preprint
arXiv:1806.10522, 2018.

[13] Jesús Villalba, Nanxin Chen, David Snyder, Daniel Garcia-
Romero, Alan McCree, Gregory Sell, Jonas Borgstrom, Fred
Richardson, Suwon Shon, François Grondin, et al., “The jhu-
mit system description for nist sre18,” Johns Hopkins Univer-
sity, Baltimore, MD, Tech. Rep, 2018.

[14] Phani Sankar Nidadavolu, Jesús Villalba, and Najim Dehak,
“Cycle-gans for domain adaptation of acoustic features for
speaker recognition,” in ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 6206–6210.

[15] Fisher Yu and Vladlen Koltun, “Multi-scale context
aggregation by dilated convolutions,” arXiv preprint
arXiv:1511.07122, 2015.

[16] Phani Sankar Nidadavolu, Saurabh Kataria, Jesús Villalba Vil-
lalba, Paola Garcia-Perera, and Najim Dehak, “Unsupervised
feature enhancement for speaker verification,” submitted to
ICASSP 2020.

[17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros,
“Unpaired image-to-image translation using cycle-consistent
adversarial networks,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2017, pp. 2223–2232.

[18] Marvin Lavechin, Marie-Philippe Gill, Ruben Bousbib, Hervé
Bredin, and Paola Garcia-Perera, “End-to-end domain-
adversarial voice activity detection,” submitted to ICASSP
2020.

[19] Mireia Diez, Lukás Burget, and Pavel Matejka, “Speaker di-
arization based on bayesian hmm with eigenvoice priors.,” in
Odyssey, 2018, pp. 147–154.

[20] Iain McCowan, Jean Carletta, Wessel Kraaij, Simone Ashby,
S Bourban, M Flynn, M Guillemot, Thomas Hain, J Kadlec,
Vasilis Karaiskos, et al., “The ami meeting corpus,” in Pro-
ceedings of the 5th International Conference on Methods and
Techniques in Behavioral Research, 2005, vol. 88, p. 100.

[21] Diego Castán et al., “Ldc2019e60, distant microphone conver-
sational speech in noisy environments,” Private communication
in support of the 2019 JHU/CLSP Summer Workshop, 2019.

[22] Jon Barker, Shinji Watanabe, Emmanuel Vincent, and Jan Tr-
mal, “The fifth CHiME speech separation and recognition chal-
lenge: Dataset, task and baselines,” Interspeech 2018 - 19th
Annual Conference of the International Speech Communication
Association, 2018.

[23] Mark VanDam, Anne S Warlaumont, Elika Bergelson, Alejan-
drina Cristia, Melanie Soderstrom, Paul De Palma, and Brian
MacWhinney, “Homebank: An online repository of daylong
child-centered audio recordings,” in Seminars in speech and
language. Thieme Medical Publishers, 2016, vol. 37, pp. 128–
142.

[24] JSALT Speaker Detection in Adverse Scenarios with
Single microphone contributors, “jsalt2019-diadet,”
https://github.com/jsalt2019-diadet/
jsalt2019-diadet, 2019, [Online].

[25] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman,
“Voxceleb: a large-scale speaker identification dataset,” arXiv
preprint arXiv:1706.08612, 2017.

[26] David Snyder, Daniel Garcia-Romero, Gregory Sell, Alan Mc-
Cree, Daniel Povey, and Sanjeev Khudanpur, “Speaker recog-
nition for multi-speaker conversations using x-vectors,” in
ICASSP 2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.
5796–5800.

[27] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, et al., “The kaldi speech
recognition toolkit,” Tech. Rep., IEEE Signal Processing Soci-
ety, 2011.

[28] pyannote.audio contributors, “pyannote.audio: Neural Build-
ing Blocks for Speaker Diarization,” Submitted to ICASSP
2020.


