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This paper introduces a new vision of data-driven structure computation taking advan-
tage of Material Science, especially for highly nonlinear and time-dependent material be-
haviours. Technical solutions are also derived, in order to build internal hidden variables 
defining the so-called “Experimental Constitutive Manifold”.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Data-driven structure calculation has recently become one of the issues impacted by the area of research linked to 
big data. The pioneering works were due to Ortiz and Chinesta and their teams [1–6], in which Material Science was 
either annihilated nor minimised. Several developments have followed, based on the same concepts, and one can cite for 
example [7–11]. However, as in [7] a pertinent material knowledge is added. These works provide original and very effective 
responses in some situations but they are limited to really specific material behaviours. It follows that the treatment of 
complex material behaviours, such as viscoplasticity with several internal variables, remains a real challenge.

The present work is a tentative answer for history-dependent material behaviours, such as viscoplasticity under small 
perturbation hypothesis, and especially a paradigm for the most complex behaviours [12,13]. The approach proposed herein 
is based, first of all, on the separation of the governing equations of the mechanical problem, defined over the space-time 
domain: equilibrium and compatibility equations in one hand and constitutive equations in the other hand. This separation 
is the basis of the LATIN solver, which will be the well-suited calculation method [14–17]. Moreover, this separation is 
also the basis of the Constitutive Relation Error method, developed for both validation and verification [14,18,17,19]. The 
first group of equations can be qualified as “exact”, in contrast to the constitutive equations that strongly depends on 
experimental data.

Only the material constitutive relations are impacted by the experimental data. In the future, these data will be capi-
talised and therefore will densely cover the area of interest. These experimental points define what we call the “Experimen-
tal Constitutive Manifold” (ECM) whose construction is not a triviality when one considers nonlinear and time-dependent 
behaviours. The data-driven computational approach that is proposed is based on the classical internal variable approach 
that is used today to describe the material state. However, here the internal hidden variables are not a priori known and 

* Corresponding author.
E-mail address: ladeveze@ens-paris-saclay.fr (P. Ladevèze).
https://doi.org/10.1016/j.crme.2019.11.008
1631-0721/© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).



JID:CRAS2B AID:3711 /SSU [m3G; v1.261; Prn:18/11/2019; 8:27] P.2 (1-14)

2 P. Ladevèze et al. / C. R. Mecanique ••• (••••) •••–•••
Fig. 1. The computational problem.

computation tools are introduced to determine them from raw experimental data. They are used to obtain the necessary 
structuring of the Experimental Constitutive Manifold.

This approach is a real challenge because its application requires an amount of experimental information that even if it is 
minimised, remains gigantic and therefore prohibitive. It is no longer a question of placing oneself beside the knowledge of 
Material Science accumulated for centuries and which continues to develop, but on the contrary, to exploit it, to incorporate 
it to try to do better, of course, with the methods developed in the field of big data. It is a change of philosophy when 
compared to the pioneering works.

The first part of the paper introduces the basic ideas of data-driven computation. In order to simplify the presentation, 
it will be applied to relatively simple material behaviours, even if it allows us to highlight the difficulties. Then, and this 
is the essence of this work, the data-driven computation will be extended to complex material behaviours. In particular, it 
will be shown that approximation computation does not lead to serious difficulties using the LATIN solver. Difficulties are 
elsewhere, in the construction of the Experimental Constitutive Manifold, for which several computational tools inspired 
from big data methods are given.

2. Basic ideas and difficulties

2.1. Today’s computational approach

Let us consider the quasi-static evolution of a structure � whose state is defined by its displacement field u, strain field 
ε and stress field σ . This structure is subjected to prescribed body forces f

d
, traction forces F d over a part ∂2� of the 

boundary, and displacements ud over the complementary part ∂1� (see Fig. 1). For the sake of simplicity, let us consider 
that the material behaviour can be described as nonlinear elastic.

In order to get closer to the formulation used in the data-driven computational approach, the computational problem 
that must be solved consists in finding the strain-stress pair s = (ε, σ ) ∈ L2(�)12 , which satisfies:

(Ad) :
{

compatibility equation: ε = ε(u), with u ∈ U ad

equilibrium equation: σ ∈ Sad

(�) : constitutive relations: σ =K : ε(u) over �,

where K is the elasticity tensor.
The first important point is to see the first group of equations as “exact”, in contrast to the second group, which strongly 

depends on experimental data. Such splitting is not new, it is the starting point of the “Constitutive Relation Error” (CRE) 
[19,18,14] and also of the LATIN-PGD [17,16]. To go further, one introduces an abstract geometrical scheme, as illustrated 
in Fig. 2. In this scheme, the “exact” solution lies at the intersection of the manifold (�) and the “exact” admissible space 
(Ad). It is also the admissible point s that minimises the distance to the manifold (�). Today, Material Science is used to 
construct this manifold (�). From experimental observations, an analytical material model is proposed, whose parameters 
are identified through several experimental tests.

2.2. Data-driven computation

Ideal situation — The only change consists in replacing manifold (�) by experimental points. This discrete manifold is then 
named “Experimental Constitutive Manifold” (ECM). The geometrical interpretation of the problem that must be solved is 
then described in Fig. 3.

Exact solution and approximations — The exact solution is still the admissible point that minimises the distance to the man-
ifold (ECM). Concerning the practical computation, the natural way is to use the solver LATIN, which separates the exact 
equations from the experimental data-dependent equations. More details will be given later in this article, but at the point, 
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Fig. 2. A geometrical scheme of the computation method.

Fig. 3. The data-driven computational approach.

Fig. 4. Approximation scheme.

let us note that it is an iterative algorithm that consists in solving alternatively the two groups of equations. An illustration 
of the iterative solver is represented in Fig. 4.

An illustration — Here, we consider the 2D example given in [5], where the experimental data are simulated for a nonlinear 
elastic material model. The loading and boundary conditions are illustrated in Fig. 5. 10 loading directions and 10 increments 
of loading amplitude are considered, leading to 100 different loading scenarios. The experimental data taken into account 
are the displacement of 11 points equally distributed on the upper side of the specimen and that are supposed to be 
experimentally accessible. The ECM can then be computed under the assumption of a homogeneous specimen. In the last 
step, a dimensionality reduction is done using the kPCA method. The final results are represented in Fig. 6, the ECM being 
represented in a 2D space. Two remarks shall be addressed, which both emphasise the necessity to work in synergy with 
Material Science.

Remarks — Firstly, 2D ECM obtained in [5] is only one part of the complete one, as Material Science points out that the ECM 
dimension is greater or equal to the number of the strain components, i.e. three here. Therefore, additional “tests” have 
been performed to fully compute the ECM, which is represented in Fig. 7. Secondly, it must be noted that the number of 
coordinates obtained through kernel-PCA method can be larger than three. If it is the case, this means that the behaviour 
cannot be seen as nonlinear elastic. One should, therefore, turn toward Material Science to know exactly what to perform 
in terms of observations and additional tests.
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Fig. 5. Illustration from [5]: loading cases.

Fig. 6. Final ECM (from [5]).

Fig. 7. The complete ECM.

2.3. Data-driven computation: a general approach

Main lines — First, we consider that it is not possible today to get enough experimental points in order to properly describe 
the material behaviour, due to the “holes” between experimental points. Consequently, we propose to first construct from 
available experimental points our reference, the discrete ECM. Its dimension can be reduced through big data methods. In 
addition, extrapolation techniques based on Material Science knowledge and observations should be used.

Interest — The main interest of this data-driven computational approach is the easy comparison between calculated points 
and experimental ones. In particular, the coincidence of those points is the best criterion one can have in terms of validation. 
In practice, the comparison is done using “experimental proximity indicators” that point out when additional tests are 
required. Based on this synergy between data and Material Science, one can think that a new generation of ECM descriptors 
can be proposed and solve several open questions in today’s Material Science (e.g. anisotropy in viscoplasticity, ageing, 
fatigue, etc).
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3. Extension to complex behaviours

3.1. Today’s computational approach

Let us consider again the quasi-static evolution over time interval [0, T ] of a structure �, subjected to prescribed body 
forces f

d
, traction forces F d over a part ∂2� of the boundary, and displacements ud over the complementary part ∂1� (see 

Fig. 1). The state is assumed to be defined by s = (ε̇p, σ ) where ε̇p designates the inelastic strain rate and σ the stress. 
Assuming the elasticity operator to be known, the problem is defined as: Find s = (ε̇p, σ ) ∈ s[0,T ] such that:

(Ad) :
{

compatibility equation: εp = ε(u) − K−1σ , with u ∈ U [0,T ]
ad

equilibrium equation: σ , with σ ∈ S [0,T ]
ad

(�) : constitutive relations over � × [0, T ]
Again, we see the first group of equations as “exact”, in contrast to the second group of equations, which strongly 

depends on experimental data. Let us recall that such a splitting is not new, it is also the basic step of the Constitutive 
Relation Error [14,18,19], and also of the LATIN-PGD method [15–17] for complex behaviour. To describe the material, 
Material Science proposes two approaches. The first one is the so-called “Functional Approach” where the stress at a given 
time t is a functional of the strain history until this time t . Its identification needs all possible experimental stress-strain 
histories, which is far from being easy. Today, one prefers the second approach name “Internal Variable Approach,” for 
which identification needs much less data. With this approach, the state of the material at time t , which depends on the 
material history, is completely defined by the values at time t of the inelastic strain rate / stress pair (ε̇p, σ ), and of several 
internal (hidden) variables (Ẋ, Y ). One can say that the Functional Approach is an Internal Variable Approach with an 
infinite number of hidden variables. Precisely, the Internal Variables Approach used here leads to a state defined by:

(ε̇p, Ẋ,σ , Y ) (1)

where (X, Y ) are additional internal variables. X is the kinematic one and Y its associated force. X and Y have the same 
dimension. The constitutive relations can be split into:

• state equation:

Y = �(X) (2)

• state evolution laws:[
ε̇p

−Ẋ

]
= B

([σ

Y

])
, with εp, X = 0 at t = 0

A fundamental simplification comes from [16,20]. Additional internal (hidden) variables are not intrinsic and thus, an 
internal variables transformation can be done. A remarkable choice is the so-called “normal formulation,” for which

X = Y (3)

It follows that the only part of the constitutive relation depending on experimental data are the state evolution laws. 
Finally, the problem to solve can be defined by the following abstract geometrical sketch (Fig. 8). Again, the exact solution 
is the admissible point that lies at the minimum distance with the manifold (�). Material Science is also used to identify 
the manifold (�) from experimental data.

Remark — Of course, the two principles of Thermodynamics are satisfied. Moreover, the particular family of the so-called 
“standard materials” is defined by the energy and an additional potential.

3.2. Data-driven computation

The ideal situation is described in Fig. 9, in which experimental points cover (�), which is now named Experimental 
Constitutive Manifold (ECM).

3.2.1. Exact solution and approximation
The exact solution is also here the admissible point that minimises its distance with the ECM. Approximations can be 

easily computed thanks to the LATIN method (see Fig. 10). The interested reader can refer to [15] to find more details on 
the method and, in particular, on the PGD usage. The linear stage ŝn+1/2 → sn+1 does not lead to any difficulty.
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Fig. 8. Today’s computational approach: a geometrical sketch.

Fig. 9. The data-driven computational approach.

Fig. 10. The LATIN solver.

Fig. 11. The LATIN local stage.
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Let us consider only the local stage sn → ŝn+1/2 illustrated in Fig. 11. Here, solution ŝn+1/2 is find by minimizing the 
residual R i associated with ŝi ∈ (ECM):

R i = ( ˆ̇εi
p,n+1/2 − ε̇i

p,n) + H(σ̂ i
n+1/2 − σ i

n) (4)

In the case where the dispersion is large, one can consider the barycentric manifold associated with (ECM) and thus:

ŝn+1/2 =
∑
i∈N

pi ŝi (5)

with 
∑

i∈N pi = 1, pi = γi/(
∑

j∈N γ j) and γi = exp(−β|Ri |2), where β is a positive parameter. To summarise, one can say 
that approximation computation does not lead to serious difficulties. Difficulties are in the ECM construction.

3.3. The ECM construction

Raw experimental data — We suppose that the following quantities are known:

• the elasticity tensor K,
• a set of time-histories of inelastic strain rate / stress pair,

si = (ε̇i
p,σ i), i ∈ N̄ (6)

The si(t), i ∈ N̄ are rewritten in terms of “material time” thanks to the cumulated inelastic strain, that is:

pi =
ᵀ∫

0

|ε̇i
p|dt (7)

Consequently, available data are:

si(p) = (εi
p,p,σ i, ṗi)(p), i ∈ N̄(p) (8)

Finally, ECM is defined as:

ECM = {�p | p ∈ [0, p̄]} (9)

with

�p = {si(p) |i ∈ N̄} (10)

Structured ECM — ECM without its additional hidden variable structuring cannot be used in the general case. This structuring 
for one additional hidden variable X is the following:

εp,p = g(σ , X, p) ṗ > 0 sub-manifold (G(p)) (11)

X ,p = h(σ , X, p) ṗ > 0 sub-manifold (H(p)) (12)

ṗ = f (σ , X, p) ṗ � 0 sub-manifold (F(p)) (13)

with X = 0 and εp = 0 at t = 0. Moreover, functions g, h, f are single-valued. Building X and the associated sub-manifolds 
is named the “central problem”. In the next paragraph, specific tools inspired by classical big data methods are derived.

Remarks — It is assumed, as usual, that ṗ = 0 implies Ẋ = 0. Moreover, the previous formulation is not restricted to “normal” 
material (see section 3.1).

3.4. The ECM central problem

3.4.1. Basic tools
The problem model — To introduce the different tools, let us consider the following central problem where the raw experi-
mental data are:

� = {(A, B)i | A, B ∈Rn, i ∈N} (14)

where Ai = α(B i, C i), C i being a hidden variable. The central problem is then:
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Fig. 12. The function I.

Find C = {C i | i ∈N} such that function f is single valued:

f : (B i, C i) −→ Ai, ∀i ∈ N (15)

�B × �C �A

Separator P — This operator is classical. It makes it possible to separate B i and its close neighbours from the rest of the 
points:

Pi, j = P(B i, B j) = �i, j∑
j∈N

�i, j
(16)

with

�i, j = exp
(

− ||B i − B j||2
b2ε2

)
(17)

where b is a normalisation constant and ε a small parameter. One has:⎧⎨
⎩

||B i − B j||
b

= O (ε) ⇔Pi, j = O (1)

otherwise Pi, j ≈ 0
(18)

The univocity indicator — Let us introduce the function I, which is a variant of the Kullback–Leibler divergence. I plotted in 
Fig. 12 has for expression:

I(α) = (exp(−α) − 1)(−α), α ∈ ] − ∞,+∞[ (19)

The univocity indicator is then defined by:

U (B; A) =
∑
i∈N

∑
j∈N

uij, (20)

with

uij = P(B i, B j)I(αi j), (21)

αi, j = 1

ε2

[
||B i − B j||2

b2
− ||Ai − A j||2

a2

]
(22)

and where ε is a small parameter, whereas a, b are normalisation constants. Its interpretation comes from the U i j contri-
bution:⎧⎪⎨

⎪⎩
if ||B i − B j|| > O (ε) � uij ≈ 0

if ||B i − B j|| = O (ε)

{
if ||Ai − A j|| = O (ε)

if ||Ai − A j|| 	= O (ε)

� uij = O (1)

� uij >> 1

(23)

Function f introduced previously is singular-valued if the manifold 
 satisfies to the following criterion:
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U (B; A) <
∑
i∈N

∑
j∈N

P(B i, B j)I
(

k
||B i − B j||2

b2ε2

)
, k = O (1) (24)

where k is a parameter. Otherwise, one internal hidden variable should be added to get a single-valued function f . Un-
knowns are C and 
C . The separator P and the univocity indicator U are extended to take into account the variable C . 
Therefore, C is defined modulo a B-function according to:

C =arg min[U (B, C ′; A)] (25)

C ′ ∈ [Rn]N

Therefore, to get a unique solution, additional constraints are added through the potential s(B, C). They are related to 
material symmetries, B/C non correlation, etc. The potential associated with the B/C non correlation is:

s(B, C) = δ
[∑

i∈N

∑
j∈N

P(B i, B j)(B i − B j)C iᵀ
]2

(26)

where δ is a positive constant. Finally, one can give an explicit solution to the model of the problem model:

C i = Ai −
∑
j∈N

Pi j(B i, B j)A j (27)

3.4.2. Application to the ECM
Let us consider the situation where the ECM to be structured needs one additional hidden variable X ∈ [Rn]N̄ , N̄ being 

the total number of experimental points and p̄ being the final value of the cumulated inelastic strain. Introducing the 
following univocity indicators:

Ū (σ , X;εp,p) =
p̄∫

0

dp γ (p) U (σ , X;εp,p)

Ū (σ , X; X ,p) =
p̄∫

0

dp γ (p) U (σ , X; X ,p), γ (p) = 1 − exp
(−ṗ

ε

)

Ū (σ , X; ṗ) =
p̄∫

0

dp U (σ , X; ṗ) (28)

with ε being a positive parameter and γ (p) allowing a smooth separation of the domains ṗ > 0 and ṗ = 0, and additional 
constraints, such as the non correlation between σ and X :

s̄(σ , X) =
p̄∫

0

dp s(σ , X) (29)

the X-solution is defined as:

X = arg min[Ū (σ , X ′;εp,p) + Ū (σ , X ′; X ′
,p) + Ū (σ , X ′; ṗ) + s̄(σ , X ′)]

X ′ ∈ [Rn]N (30)

Additional properties, especially on X are welcome.

3.5. The extended ECM

The data-driven computational approach needs to extend ECM to any ε̇p history (Fig. 13). That is done in two stages:
ECM construction — ECM is defined by the raw experimental data and its associated internal hidden variables obtained from 
the solving of the central problem. The last step is to reduce its dimensionality using a big data method.
Extended ECM — ECM is completed through extrapolation, for which observations and Material Science are absolutely essen-
tial. To manipulate ECM, the analytical model can be used (polynomial, FE, Material Science). Pointwise description can be 
also used.
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Fig. 13. The true data-driven computational approach.

Fig. 14. Deformation trajectories.

3.6. ECM identification

A remark should be addressed, concerning the identification of ECM, which will be the subject of a companion paper. 
Large amount of data can be obtained today thanks to new experimental methods [21]. Data for the experimental test T(k), 
k ∈N are defined by the admissible manifold (Ad

k), k ∈N . Consequently, ECM is determined by:

ECM = arg min

[ ∑
k∈Z

min
∫
�k d2 (sa,ECM

′
) d�

]
ECM

′ ∈ {ECM} sa ∈ Ak
d

(31)

A large literature is devoted to such an identification problem, which is basically ill-posed. Iterative process can be proposed 
such that

ECMn+1 = ECMn + �ECMn+1 (32)

The resulting ECM describes the material behaviour through the experimental tests, observations and Material Science. The 
number of its hidden internal variables increases with the degree of complexity of the considered material’s histories.

Important remark — “Experimental” points can be obtained from microstructure simulations related to a defined class of 
time-history loadings. Here, the proposed data-driven computational approach gives a new answer to the construction of 
homogenized constitutive relation in nonlinear mechanics from a known microstructure.

3.7. A first illustration

Here, one studies a viscoplastic material under the plane strain assumption.

Data: experimental points — “Experimental” points are generated using the classical Chaboche viscoplastic model with linear 
kinematic hardening. A set of triaxial deformation cyclic loadings is applied, proportional to the one described on Fig. 14
(spherical envelope). It is parametrised with two angular parameters. The loading amplitude evolution is represented on 
Fig. 15. A total of 1,296 tests are done. The p-interval is discretised with 300 points for both the ṗ > 0 and ṗ = 0 domains. 
For a given p, the ECM is defined by the following amount of experimental points:



JID:CRAS2B AID:3711 /SSU [m3G; v1.261; Prn:18/11/2019; 8:27] P.11 (1-14)

P. Ladevèze et al. / C. R. Mecanique ••• (••••) •••–••• 11
Fig. 15. Loading amplitude evolution.

Fig. 16. Potential U as a function of λ, for 3 values of the parameter ε .

for ṗ > 0, Np = 1,296 (33)

for ṗ = 0, Np ≈ 100

For the domain ṗ = 0, the amount of points is variable for a given p.
The total amount of ‘experimental” points resulting is 388,800 for the domain ṗ > 0 and ≈ 30, 000 for the domain ṗ = 0.

Hidden variable computation — The total potential associated with the raw ECM is defined as

Ūtotal = Ū(σ ;εp,p) + Ū(σ ; ṗ) (34)

Its value is ≈ 3 · 108, which must be compared to the criterion value of 0.44 (see Equation (24) with the field σ here 
instead of B). The parameters values are k = 1 and ε = 0.06. Therefore, it is necessary to introduce one hidden variable, 
which can be a scalar, a vector, etc.
The total potential without the 4th potential s̄(σ , X) is defined as

Ūtotal = Ū(σ ,X;εp,p) + Ū(σ ,X;X,p) + Ū(σ ,X; ṗ) (35)

It should be minimised in order to get the new hidden internal variable X. The algorithm necessary to obtain such solution 
will be developed in a companion paper. Here, the aim is to show that a clear minimum exists. For such a purpose, one 
introduces a perturbation to the “exact” X,p , which is random at any value of p:

X̃,p = X,p + λ · X,p (36)

where X,p = X,p − r · X,p , r is a field of random values in [0.8, 1.2], λ ∈ [−10, 10]. Fig. 16 and its zoom for small values 
of λ Fig. 17 show the behaviour of the potential in terms of the perturbation. It exhibits a clear minimum for the exact 
solution.
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Fig. 17. Potential U for a restricted interval of λ.

Fig. 18. Normalised kPCA eigenvalues for the sub-manifolds G(p).

Fig. 19. Normalised kPCA eigenvalues for the sub-manifold H(p).

Geometric representation of the sub-manifolds G(p), H(p) and F(p) — The kPCA method is applied to reduce the dimensionality 
of the sub-manifolds G(p) and H(p). It happens that they are independent of p, and Figs. 18 and 19 show that their 
dimension is 2 with a very good accuracy. Figs. 20 and 21 show the sub-manifolds G(p) and H(p). The sub-manifold F(p)

depends on p. Its extension {F(p)| p ∈ [0, p̄]} is considered here. The kPCA applied to this extension is represented on 
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Fig. 20. Sub-manifold G(p).

Fig. 21. Sub-manifold H(p).

Fig. 22. Sub-manifold F(p).

Fig. 23. Normalised kPCA eigenvalues for the sub-manifold F(p).

Fig. 22. Fig. 23 shows that its dimension is also 2 with a very good accuracy. Consequently, the material behaviour is 
completely defined by the 2D sub-manifolds G(p), H(p) and F(p), described in Figs. 20, 21, and 22.
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4. Conclusion

Data-driven computation is a promising approach, and certainly the future of simulation in nonlinear solid mechanics. 
The vision developed in this paper for complex material behaviours is based on the synergy between data and Material 
Science. The key is validation tools that allow us to characterise the proximity of calculation points to experimental ones. 
Indeed, if the calculation points are too far from the experimental ones, additional tests must be carried out. It would 
also put into question the actual ECM, for which new hidden internal variables should also be added. This approach is 
accompanied by many scientific challenges, such as the extension to multiscale experimental data. Taking into account 
material variability and the different errors is also an important research issue.
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