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Some toy models of self-organized criticality in percolation

Raphaël Cerf∗† Nicolas Forien∗†‡

March 18, 2021

Abstract

We consider the Bernoulli percolation model in a finite box and we introduce an automatic control of
the percolation parameter, which is a function of the percolation configuration. For a suitable choice of this
automatic control, the model is self-critical, i.e., the percolation parameter converges to the critical point pc
when the size of the box tends to infinity. We study here three simple examples of such models, involving the
size of the largest cluster, the number of vertices connected to the boundary of the box, or the distribution of
the cluster sizes.

Keywords: percolation, criticality, self-organized criticality
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1 Introduction

1.1 Self-organized criticality
Many physical models present a phenomenon called phase transition: there is a critical point or a critical curve
in the parameter space separating two distinct regions characterized by very different macroscopic behaviours. In
such systems, the behaviour of the model at criticality is of particular interest and presents some general features
(e.g., fractal geometry or power-law temporal and spatial correlations) which are universal across a wide range of
systems and do not depend much on the microscopic details of the system. In their seminal paper [BTW87], the
physicists Bak, Tang and Wiesenfeld pointed out that these “critical features” are very common in nature, which
is rather surprising because it seems that the parameters need to be finely tuned for a system to be critical. To
explain this paradox, they showed that some systems tend to be naturally attracted by critical points, without
any fine tuning of the parameters. They call this phenomenon self-organized criticality.

To illustrate this idea, they defined a simple model inspired by the dynamics of a sandpile. The balance
between avalanches and accumulation of sand leads to a state where the system looks critical, with a self-similar
distribution of the sizes of the avalanches and the slope self-adjusting to the critical slope, which is the slope
at which large-scale avalanches appear. But despite a very simple dynamics, their model turns out to be very
difficult to analyze mathematically [Dha06, Jár18, Hut20].

In [CG16], Cerf and Gorny constructed a self-critical model as a variant of the generalized Ising-Curie-Weiss
model, by replacing the temperature with a function depending on the spin configuration. In this paper, we
implement the same principle of a feedback from the configuration to the parameter, but within the framework
of Bernoulli percolation. This technique to obtain self-organized criticality by “artificially” replacing the control
parameter with a feedback function depending on the state of the model, which is explained in section 15.4.2
of [Sor06], was implemented by physicists to imagine self-critical variants of percolation in [Sor92, SWdA+00].
However, the understanding of such models often relies on computer simulations and few models are amenable to
rigorous mathematical analysis.
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There have been several attempts to build models of self-organized criticality in the percolation setup. One
strategy consists in modifying a process of dynamical percolation in order to freeze or burn down the large
or infinite clusters. This approach was successfully implemented in the context of the Erdős-Rényi random
graphs [RT09] and in Bernoulli percolation on the lattice by [KMS15, vdBN17]. The resulting models are dy-
namical in nature, in accordance with the general paradigm of self-organized criticality. Another very interesting
model of self-organized criticality is invasion percolation [CCN87, HPS99, GPS18b, J0́3]. One starts directly
on the infinite lattice and one defines an exploration process with the help of a parameter which is adjusted
dynamically and ultimately converges towards the critical point. We present here a different approach, which is
conceptually simpler, in that we define directly a probability measure on the percolation configurations in a finite
box, which converges to the critical percolation as the size of the box tends to infinity. However, this somehow
simpler model is already challenging and it presents a phenomenon of self-organized criticality.

1.2 Construction of the model and convergence result
Let Λ(n) be the box of side n centered at 0 in Zd with d > 2, and let En be the set of edges between nearest
neighbours of Λ(n). Consider a sequence of increasing functions Fn : {0, 1}En → N and a parameter a > 0 and
set, for ω : En → {0, 1} a percolation configuration on the edges of the box,

pn(ω) = ϕn
(
Fn(ω)

)
where ϕn(x) = exp

(
− x

na

)
.

This function pn will be our automatic control of the percolation parameter, and in this paper we will study
three examples of such a control, involving different functions Fn. The model we consider is given by the
following probability distribution on the configurations, which is obtained by replacing the parameter p of Bernoulli
percolation with our feedback function pn, with the appropriate normalization. Let

µn : ω ∈ {0, 1}En 7−→ 1

Zn
Ppn(ω)(ω)

where
Zn =

∑
ω∈{0,1}En

Ppn(ω)(ω)

will be called the partition function, and Pp is the Bernoulli percolation measure with parameter p, namely

∀ω ∈ {0, 1}En Pp(ω) =
∏
e∈En

pω(e)(1− p)1−ω(e) .

For x ∈ Λ(n) and ω : En → {0, 1}, we write

C(x, ω) =
{
y ∈ Λ(n) : x

ω←→ y
}

for the open cluster of x in the configuration ω. We show the following convergence result, valid in any dimen-
sion d > 2. The critical point of the Bernoulli percolation model is denoted by pc.

Theorem 1. If Fn is one of the following sequences of functions:

• Fn : ω 7−→
∣∣Cmax(ω)

∣∣ = max
x∈Λ(n)

|C(x, ω)| with 0 < a < d ;

• Fn : ω 7−→
∣∣Mn(ω)

∣∣ =
∣∣∣{x ∈ Λ(n) : x

ω←→ ∂Λ(n)
}∣∣∣ with d− 1 < a < d ;

• Fn : ω 7−→
∣∣Bbn(ω)

∣∣ =
∣∣∣{x ∈ Λ(n) : |C(x, ω)| > nb

}∣∣∣ with 0 < b < a < d ,

then the law of pn under µn converges to δpc when n→∞, and we have the following control:

∀ε > 0 −∞ < lim inf
n→∞

1

(lnn)nv
lnµn

(
|pn − pc| > ε

)
6 lim sup

n→∞

1

nv
lnµn

(
|pn − pc| > ε

)
< 0 ,

2



where the (lnn) factor can be dropped in the case of the first model, and where the exponent v is given by
v = a ∧ (d− a

d ) if Fn = |Cmax| ;
v = d− 1 if Fn = |Mn| ;
v = a ∧

(
d− b

d

)
if Fn =

∣∣Bbn∣∣ .
Concerning the third model, an estimate on the convergence speed can be obtained, provided that we assume

the existence of the critical exponents β and γ. The existence of these exponents was proven for dimension 2 in
the case of the triangular lattice in [SW01], with β = 5/36 and γ = 43/18.

Theorem 2. Take Fn =
∣∣Bbn∣∣. Assume that there exist real constants β, γ > 0 such that

lim sup
p→pc
p>pc

ln θ(p)

ln(p− pc)
6 β and lim inf

p→pc
p<pc

lnχ(p)

ln(pc − p)
> −γ .

Then, for any real parameters a, b and c, we have

0 < b < a < d and c < min

(
b

2γ
,
a− b
2γ

,
d− a
β

,
d− bd− b

β

)
=⇒ nc(pn − pc)

L−→ 0 .

There, we do not believe the condition on c to be optimal, since the term (d− bd− b)/β comes from a quite
rough estimate (see lemma 19), and it does not allow to deal with b > d/(d+ 1). It may be possible to improve
our technique to get rid of this limitation, and to obtain a similar estimate on the convergence speed for the two
first models.

1.3 Motivation to consider this model
Let us explain the heuristics which lead to the choice of the sequences Fn. The function pn introduces a negative
feedback which assigns low values pn(ω)� pc to percolation configurations which are “typical” of the supercritical
phase p > pc, and high values pn(ω) � pc to configurations which are “typical” of the subcritical phase p < pc.
For example, if Fn = |Cmax|, a configuration ω with a largest cluster containing a number of vertices of order nd
will be assigned a very low value pn(ω) � pc. Yet, for this value of the parameter p in Bernoulli percolation, it
is very unlikely to have such a large cluster, which will give ω a very low weight in the measure µn. Indeed, we
will show that under µn, configurations which are either “typically subcritical” or “typically supercritical” have
a very low probability. Therefore, the mass of µn must concentrate on configurations ω with pn(ω) sufficiently
close to pc, hence the self-critical behaviour of our model.

Note that our parameter a does not need to be finely tuned for our result to hold, showing the robustness
of the construction. Indeed, one could expect a different behaviour depending on whether a is smaller or larger
than the so-called fractal dimension df of the incipient infinite cluster (see for example [BCKS01]), but pn tends
to pc regardless of a. In fact, one can conjecture that, if a > df , then our pn will tend to pc “from above”,
and the configurations in our model might look slightly supercritical, while they might look slightly subcritical
when a < df . This can be understood because the definition of our model more or less amounts to forcing the
size of the largest cluster (or |Mn|, or

∣∣Bbn∣∣) to be of order na.
Our list of three models is of course not comprehensive, since many variants could be defined using the same

approach. For example, the case of the largest cluster can be extended to the largest cluster in the torus, which
means we can set periodic boundary conditions on the box Λ(n). In the model defined with Bbn, one could consider
the distribution of the cluster diameters instead of the cluster sizes, by setting

B̃bn(ω) =
∣∣∣{x ∈ Λ(n) : diamC(x, ω) > nb

}∣∣∣ , (1)

which gives exactly the same convergence result, under the same conditions for a and b, and with a similar
estimate on the convergence speed.

3



1.4 Outline of the article
This article is organized as follows. First, we give some standard definitions and notations in section 2. We then
prove a general geometric inequality for finite subgraphs of Zd in section 3. The last three sections 4, 5 and 6 are
devoted to the proofs of the three cases of theorem 1, theorem 2 being proved at the end of section 6. In each of
these three sections, the convergence result of theorem 1 is obtained in two main steps, which we present here.

1.4.1 Exponential decay estimates in the subcritical and supercritical phases

Let ε be such that 0 < ε < min(pc, 1 − pc). We start with an upper bound on the left tail of the law of pn. To
this end, we define

t+n =
⌈
na
(
− ln(pc + ε)

)⌉
. (2)

Grouping the configurations according to the value of Fn, we can write

µn
(
pn > pc + ε

)
=

1

Zn

∑
ω∈{0,1}En

1{pn(ω)>pc+ε}Ppn(ω)(ω) =
1

Zn

∑
ω∈{0,1}En

1{Fn(ω)<t+n}Ppn(ω)(ω)

=
1

Zn

t+n−1∑
t=0

∑
ω∈{0,1}En

1{Fn(ω)=t}Ppn(ω)(ω) =
1

Zn

t+n−1∑
t=0

Pϕn(t)

(
Fn = t

)
(3)

6
1

Zn

t+n−1∑
t=0

Pϕn(t)

(
Fn < t+n

)
.

Yet, the variables Fn are increasing, whence

µn
(
pn > pc + ε

)
6

nd

Zn
Ppc+ε

(
Fn <

(
− ln(pc + ε)

)
na
)
. (4)

Similarly, we can show that

µn
(
pn < pc − ε

)
6

nd

Zn
Ppc−ε

(
Fn >

(
− ln(pc − ε)

)
na
)
. (5)

Therefore, the first step is to show exponential decay estimates for

Ppc+ε

(
Fn <

(
− ln(pc + ε)

)
na
)

and Ppc−ε
(
Fn >

(
− ln(pc − ε)

)
na
)

(6)

with ε > 0 fixed. This is done in subsections 4.1 and 4.2 in the case of Fn = |Cmax|, 5.1 and 5.2 for Fn = |Mn|
and 6.1 and 6.2 with Fn = Bbn. The estimates we obtain there are quite standard and follow from classical results
in the literature about the behaviour of Cmax andMn in the subcritical and supercritical phases.

1.4.2 The key ingredient : a lower bound on the partition function

The second step, which is the crucial and more interesting step, is to obtain a lower bound on the partition
function Zn. Indeed, to show that (4) and (5) tend to 0 as n tends to infinity, one must not only show that the
two terms in (6) are small enough, but also that Zn is not too small. To obtain this lower bound, we rewrite the
partition function as

Zn =
∑

ω∈{0,1}En

Ppn(ω)(ω) =

nd∑
t=0

∑
ω∈{0,1}En

Fn(ω)=t

Pϕn(t)(ω) =

nd∑
t=0

Pϕn(t)

(
Fn = t

)
.
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nd
Fn
(
ω(t)

)

nd
t

• • •

•

• •

•

F n
( ω(t)) =

t

•
Fn > t but “close” to t

t = T

Figure 1: The partition function Zn may be expressed as the probability that the random function t 7→ Fn
(
ω(t)

)
admits a fixed point. This allows for the construction of a scenario where we can force such a fixed point to
appear, with a reasonable probabilistic cost.

To make this expression more concrete, we construct a decreasing coupling ω(0) > ω(1) > · · · > ω(nd) of
percolation configurations, such that for every t ∈

{
0, . . . , nd

}
, we have ω(t) ∼ Pϕn(t). Then Zn rewrites as

Zn =

nd∑
t=0

P
(
Fn
(
ω(t)

)
= t
)

= P
(
∃t ∈

{
0, . . . , nd

}
Fn
(
ω(t)

)
= t
)
. (7)

Hence, the partition function Zn is equal to the probability that the random non-increasing function t 7→ Fn
(
ω(t)

)
admits a fixed point. This leads us to build the coupling step by step, and to consider a (random) stopping time T
situated just before this function goes under the first bisector (see figure 1). We then show a lower bound on the
probability that the next steps of the coupling lead to a fixed point.

Because this instant T when we try to force a fixed point corresponds to a percolation parameter close to pc,
the classical estimates available in subcritical or supercritical percolation are of no use. Indeed, we need to study
the behaviour of Fn as p decreases towards pc, and to show that Fn does not vary too abruptly close to the critical
point. Our problem is therefore closely related to the study of finite-size scaling, i.e., the behaviour of the model
when one takes n→∞ and p→ pc simultaneously (see [BCKS01, GPS18a]).

Yet, we are able to bypass the use of (unproven) scaling laws thanks to the geometric argument of section 3,
which is more general and does not rely on the near-critical behaviour of Fn. Roughly speaking, this geomet-
ric result indicates that to cut a piece of a precise size out of a subgraph of Zd of size N , one only needs to
close O(N (d−1)/d) edges. This geometric argument allows us to implement a surgery procedure on the configu-
ration ω(T ) which leads to a fixed point by forcing a reasonable number of edges to be closed in the following
steps of the coupling. The surgery procedure is different for each of the three considered models, but the core
ingredient is always this graph separation result.

1.4.3 Adapting our technique to the random-cluster model?

An important goal is to build a similar model of self-organized criticality associated with the Ising model. A
natural strategy consists in adapting the results presented here to the FK percolation model. However, a major
complication arises with the FK model. Indeed, in a dynamical coupling of the FK processes, there is already
a phenomenon of self-organized criticality in the way the edges become open when one approaches the critical
point from below [DCGP14]. As a consequence, our proof for the lower bound on the partition function is not
valid in this context.
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2 Definitions and notations

2.1 The box
We fix an integer d > 2 for the whole article. Let Ed be the set of edges between nearest neighbours of Zd :

Ed =
{
{x, y} ⊂ Zd : ‖x− y‖1 = 1

}
.

Let n > 1. Let us consider the box centered at 0 and containing nd vertices,

Λ(n) =
[
−n

2
,
n

2

[d
∩ Zd =

{
−
⌊n

2

⌋
, . . . ,

⌊
n− 1

2

⌋}d
.

For V ⊂ Zd a set of vertices, we write

E [V ] =
{
{x, y} ⊂ V : ‖x− y‖1 = 1

}
for the set of edges in Ed connecting two vertices of V , and we write in particular En = E [Λ(n)]. The boundary
of the box Λ(n) will be denoted

∂Λ(n) =
{
x ∈ Λ(n) : ∃ y ∈ Zd\Λ(n) ‖x− y‖1 = 1

}
.

2.2 Bernoulli percolation
For 0 6 p 6 1, on the space {0, 1}Ed

equipped with the σ-field generated by events depending on finitely many
edges, let Pp be the product measure such that the state of each edge follows a Bernoulli law of parameter p. An
element ω : Ed → {0, 1} is called a percolation configuration. Edges e ∈ Ed such that ω(e) = 1 are said open in ω,
and the other edges are said closed in ω. Under the law Pp, each edge is open with probability p and the states
of different edges are independent of each other. For any configuration ω : Ed → {0, 1} and any edge e ∈ Ed, we
will write

ωe : f ∈ Ed 7−→

{
0 if f = e ,

ω(f) otherwise

for the configuration obtained from ω by closing the edge e. Similarly, for any configuration ω : Ed → {0, 1} and
any set of edges H ⊂ Ed, we will write

ωH : f ∈ Ed 7−→

{
1 if f ∈ H ,

ω(f) otherwise
and ωH : f ∈ Ed 7−→

{
0 if f ∈ H ,

ω(f) otherwise

for the configurations obtained from ω by opening or closing all the edges of H. These notations naturally extend
to configurations ω : En → {0, 1} on the edges of the box Λ(n). We will also write Pp for the induced probability
distribution on these configurations.

2.3 Clusters
Let ω : Ed → {0, 1} be a percolation configuration on Zd. For x, y ∈ Zd, we write x ω←→ y if there exists a path
of open edges in the configuration ω joining x and y. For x ∈ Zd, we will write

C(x) = C(x, ω) =
{
y ∈ Zd : x

ω←→ y
}

for the connected component of x, which is called the cluster of x in ω. If x ∈ Zd and Y ⊂ Zd, we write

x
ω←→ Y ⇐⇒ ∃ y ∈ Y x

ω←→ y .
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All these notations naturally extend to percolation configurations on the box Λ(n). Thus, for ω : En → {0, 1}
and x ∈ Λ(n), we will write C(x, ω) (or C(x)) for the set of vertices in Λ(n) which are connected to x in Λ(n)
by an open path in the configuration ω. When it is not clear whether we consider paths which stay in the box or
not, for example if ω is defined on Ed, we will specify CΛ(n)(x) to denote the set of vertices which are connected
to x by an open path with all its intermediate vertices belonging to Λ(n), i.e., the cluster of x in the configuration
restricted to En.

For a percolation configuration ω : En → {0, 1} in the box Λ(n), we will denote by Cmax(ω), or some-
times Cmax(Λ(n)), the largest cluster in ω, speaking in terms of number of vertices. In case of equality between
several maximal clusters, we choose one of them with an arbitrary order on subsets of Λ(n). For ω : En → {0, 1},
we also define

Mn(ω) =
{
x ∈ Λ(n) : x

ω←→ ∂Λ(n)
}

and Bbn(ω) =
{
x ∈ Λ(n) :

∣∣CΛ(n)(x, ω)
∣∣ > nb

}
,

where b > 0 is a fixed parameter. Given p ∈ [0, 1], let

θ(p) = Pp
(
|C(0)| =∞

)
be the probability that the origin lies in an infinite open cluster in a percolation configuration drawn according
to Pp. We will write pc for the critical point of Bernoulli percolation in dimension d, defined by

pc = inf
{
p ∈ [0, 1] : θ(p) > 0

}
,

and which is such that 0 < pc < 1 (see theorem 1.10 of [Gri99]).

3 Geometrical interlude

3.1 Main result
The purpose of this section is to show the following geometric inequality, which one could sum up as “separating
a cluster of a given size in a graph (V, E) requires O(|V |(d−1)/d

) edges”.

Lemma 1. There exists a constant K = K(d) such that, for any finite connected subgraph G = (V, E) of (Zd, Ed),
for any vertex x ∈ V and for any integer m such that 1 6 m 6 |V |, there exists a subset E0 ⊂ E of edges of G
with cardinality

|E0| 6 K |V |
d−1
d

such that the connected component of x in the graph (V, E\E0) contains exactly m vertices.

We decompose the proof of this lemma in two steps. In section 3.2, we prove “the butcher’s lemma”, which
allows to cut a graph into small components, which may be too small, in particular the component of x might
have a cardinality strictly smaller than the goal m. In section 3.3, we prove “the surgeon’s lemma”, which involves
an adequate algorithm to reopen some of the edges closed by the butcher’s lemma in order to reach the goal
size m for the cluster of x.

3.2 “The butcher’s lemma”
We start with an upper bound on the number of edges that one needs to remove from a connected graph to divide
it into pieces which are smaller than half of the initial graph.

Lemma 2 (The butcher’s lemma). For every finite subgraph G = (V, E) of (Zd, Ed), there exists a subset E0 ⊂ E
of edges of G with cardinality

|E0| 6 4d+1d2 |V |
d−1
d

such that any connected component of the graph (V, E\E0) contains at most d|V | /2e vertices.

7



Figure 2: Percolation in the box Λ(35) with, left, p = 0.48 and right, p = 0.52. Open edges belonging to the
largest cluster are drawn in solid lines, while other open edges are in dotted lines.

Figure 3: Percolation in the box Λ(35) with, left, p = 0.48 and right, p = 0.52. Open edges connected to the
boundary of the box by an open path are drawn in solid lines, while other open edges are in dotted lines.
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m vertices

•
x

edges of E0 to be closed

Figure 4: Closing the edges of E0 (drawn in thick lines) cuts the graph in several connected components, such
that x lies in a component (drawn in normal lines) containing the required number of vertices. Lemma 1 states
that, in dimension 2, the subset E0 can be chosen containing O

(√
|V |
)
edges.

This separation lemma, which can be summarized by “cutting a graph in two requires O(|V |(d−1)/d
) edges”,

was proved in [BST12], corollary 3.3. For completeness, we present here a self-contained proof of this geometric
result for the case of Zd. The more general technique of [BST12] would make it possible to extend our result to
more general graphs, but we choose here to restrict our presentation to the d-dimensional square grid. For x ∈ Zd,
we will write its coordinates x = (x1, . . . , xd). For any finite non-empty subset V ⊂ Zd and any i ∈ {1, . . . , d},
we define

diami V = max
x∈V

xi −min
x∈V

xi and diamV = max
16i6d

diami V .

If i ∈ {1, . . . , d} and m ∈ Z, then

Ti,m =
{
e = {x, y} ∈ Ed : xi = m and yi = m+ 1

}
will denote the slice of edges cutting Zd in two parts in the direction i between abscissa m and m + 1. We first
prove an auxiliary lemma.

Lemma 3. For every k ∈ N and for any real number A > 4, given a subgraph G = (V,E) of (Zd, Ed) such
that |V | 6 Ad and

diamV 6

(
3

2

)k
(A− 1) ,

there exists a subset E0 ⊂ E of edges of G with cardinality

|E0| 6 2Ad−1 + 36d2

(
1−

(
2

3

)k)
Ad−1

such that any connected component of the graph (V, E\E0) contains at most
⌈
Ad/2

⌉
vertices.

Remark 1. In the sequel, this lemma will only be used with A = |V |1/d but it will be helpful for the proof to keep
this parameter A fixed rather than have it depending on the graph.
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Proof. Fix A > 4. We will proceed by induction on k, and therefore we start with the case k = 0. Let G = (V, E)
be a subgraph of (Zd, Ed) such that |V | 6 Ad and diamV 6 A − 1. Without loss of generality, we can assume
that V ⊂ Λ(diamV + 1). Let us choose

E0 = E ∩
(
T1,−1 ∪ T1,0

)
,

whose cardinality is
|E0| 6 2

(
diamV + 1

)d−1
6 2Ad−1 .

If C ⊂ V is a connected component of (V, E\E0), then we have

|C| 6 max

(⌊
diamV

2

⌋
,

⌊
diamV + 1

2

⌋)(
diamV + 1

)d−1
6

(
diamV + 1

)d
2

6
Ad

2
.

We now perform the induction step. Take k > 1 such that the result holds for k−1. Let G = (V,E) be a subgraph
of (Zd, Ed) such that |V | 6 Ad and

diamV 6

(
3

2

)k
(A− 1) .

We are going to trim the graph G to decrease its diameter by a factor 2/3. To this end, we will remove slices of
edges in directions i in which the diameter is “too big”. Consider

I =

{
i ∈ {1, . . . , d} : diami V >

(
3

2

)k−1

(A− 1)

}
,

and take i ∈ I. Without loss of generality, one can assume that min
x∈V

xi = 0. By the pigeonhole principle, there
exists an integer ki satisfying⌊

diami V

3

⌋
< ki 6 2

⌊
diami V

3

⌋
and |E ∩ Ti,ki | 6

|E|⌊
diami V

3

⌋ .
We choose such a ki and we write, recalling that A > 4,⌊

diami V

3

⌋
>

diami V

3
− 2

3

>
1

3

(
3

2

)k−1

(A− 1)− 2

3

=
1

9

(
3

2

)k−1

(A− 1) +
2

9

((
3

2

)k−1

(A− 1)− 3

)

>
1

9

(
3

2

)k−1

(A− 1)

>
1

9

(
3

2

)k−1
3

4
A

=
1

12

(
3

2

)k−1

A .

Noting that |E| 6 d |V | 6 dAd, we get

|E ∩ Ti,ki | 6

(
2

3

)k−1
12 |E|
A

6

(
2

3

)k−1
12dAd

A
= 12d

(
2

3

)k−1

Ad−1 .

Consider now
E1 =

⋃
i∈I

(E ∩ Ti,ki) ,

10



whose cardinality is

|E1| 6 12d2

(
2

3

)k−1

Ad−1 .

Let G′ = (V ′, E′) be a maximal connected component of the graph (V, E\E1), in terms of number of vertices.
By construction, we have that, for i ∈ I,

diami(V
′) 6 max

(
ki, diami V − (ki + 1)

)
6

2

3
diami V 6

(
3

2

)k−1

(A− 1) ,

while for i /∈ I, the definition implies

diami(V
′) 6 diami V 6

(
3

2

)k−1

(A− 1) .

Taking the maximum over i yields

diam(V ′) 6

(
3

2

)k−1

(A− 1) .

Besides, note that |V ′| 6 |V | 6 Ad. Hence, by the induction hypothesis applied to G′, there exists E2 ⊂ E′ such
that

|E2| 6 2Ad−1 + 36d2

(
1−

(
2

3

)k−1
)
Ad−1 ,

and all connected components of the graph (V ′, E′\E2) contain at most
⌈
Ad/2

⌉
vertices. Now take E0 = E1∪E2.

We have

|E0| = |E1| + |E2|

6 12d2

(
2

3

)k−1

Ad−1 + 2Ad−1 + 36d2

(
1−

(
2

3

)k−1
)
Ad−1

= 2Ad−1 + 36d2

(
1−

(
2

3

)k)
Ad−1 .

If C is a connected component of the graph (V, E\E0), then either C ⊂ V \V ′ which, by maximality of V ′,
entails |C| 6 |V | /2 6 Ad/2, or C ⊂ V ′ in which case C turns out to be a connected component of the
graph (V ′, E′\E2), which implies |C| 6

⌈
Ad/2

⌉
.

We can now prove the butcher’s lemma, which is a mere rephrasing of lemma 3.

Proof of lemma 2. If |V | > 4d, this is a straightforward consequence of lemma 3 with

A = |V |1/d and k =

⌈
d lnA− ln(A− 1)

ln 3− ln 2

⌉
because we then have

diamV 6 |V | =
Ad

A− 1
(A− 1) 6

(
3

2

)k
(A− 1)

and the lemma provides us with a subset E0 ⊂ E with cardinality

|E0| 6
(
2 + 36d2

)
Ad−1 6 4d+1d2 |V |

d−1
d

such that all connected components of (V, E\E0) contain at most
⌈
Ad/2

⌉
= d|V | /2e vertices. Otherwise, if we

have |V | < 4d, then E0 = E is solution of the problem.

11



3.3 “The surgeon’s lemma”
The application of the butcher’s lemma allows us to separate a graph into connected components which are at
least twice smaller than the original graph. If the connected component of x in the remaining graph still contains
more vertices than the goal size m, one can apply again the butcher’s lemma to this component of x, to obtain
a connected component which contains at most a fourth of the initial number of vertices. This operation can
be repeated until the connected component of x contains strictly less than m edges, which means that we have
closed too many edges. The surgeon’s lemma will fix this problem, by reopening some of the edges closed by the
butcher’s lemma.

Lemma 4 (The surgeon’s lemma). Let k ∈ N and let G = (V, E) be a connected subgraph of (Zd, Ed) with |V | 6
2k. Let x ∈ V and let m be an integer such that 1 6 m 6 |V |. There exists a subset E0 ⊂ E of edges of G with
cardinality

|E0| 6
1− ak

1− a
4d+1d2 |V |

d−1
d , where a =

1

2
d−1
d

,

such that, in the graph (V, E\E0), the connected component of x contains exactly m vertices.

Proof. We proceed by induction on k. The result is trivial if k = 0, so we perform next the induction step.
Take k > 1 such that the result holds for k− 1. Let G = (V, E) be a connected subgraph of (Zd, Ed) with 2k−1 <
|V | 6 2k, let x ∈ V and let m be an integer such that 1 6 m 6 |V |. According to lemma 2, we can choose a
subset E0 ⊂ E of cardinality

|E0| 6 4d+1d2 |V |
d−1
d

such that any connected component of the graph (V, E\E0) contains at most 2k−1 vertices. The idea is to reopen
the edges of E0 one by one starting from the cluster of x, in order to make this cluster grow until it reaches
the size m. Then we will apply the induction hypothesis on the last piece added, which contains at most 2k−1

vertices.

e3

e4

V2 = Vσ

V0
V1\V0

V ′ = V2\V1 = Vσ\Vσ−1
V4\V3

e1

•
x

e2 = eσ

•x
′

Figure 5: Illustration of the proof of lemma 4: closing the edges of E0 = {e1, e2, e3, e4} cuts the graph in pieces
containing at most 2k−1 vertices. We reopen the edges ei in this order until the number of vertices in the cluster
of x reaches or exceeds m. In the case drawn here, σ = 2, and V3 = V2 because the edge e3 connects two vertices
which already belong to V2.

We are going to order the edges of E0 by exploring them one by one starting from the cluster of x. We
start by writing V0 for the connected component of x in the graph (V, E\E0). We have that |V0| 6 2k−1 < |V |,
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hence V0 ( V . Yet the graph (V, E) is connected, therefore we can choose an edge e1 ∈ E0 incident to this
cluster V0. Assume now that we have defined e1, . . . , es ∈ E0 for some s > 1. Let Vs be the connected component
of x in the graph (

V, E \ (E0\ {e1, . . . , es})
)
.

If s < |E0|, then we can choose an edge es+1 ∈ E0 incident to Vs. Such an edge exists because (V, E) is connected.
We proceed with this construction until all the edges of E0 are ordered in a sequence e1, . . . , er where r = |E0|.
We have then

x ∈ V0 ⊂ V1 ⊂ . . . ⊂ Vr = V .

If we close all the edges of E0 and then reopen these edges one by one in the order e1, . . . , er, then after having
reopened s edges, the cluster of x is Vs. Therefore, we introduce

σ = min
{
s ∈ {0, . . . , r} : |Vs| > m

}
which is the number of reopened edges at which the size of the cluster of x reaches or exceeds the desired
size m. This number σ is well-defined because |Vr| = |V | > m. Assume that σ > 1. By minimality of σ,
we have |Vσ−1| < m 6 |Vσ|, hence Vσ 6= Vσ−1. In that case, the edge eσ must connect a vertex of Vσ−1 to a
vertex x′ ∈ Vσ\Vσ−1. Letting m′ = m− |Vσ−1|, we have that

1 6 m′ 6 |Vσ| − |Vσ−1| = |Vσ\Vσ−1| .

Otherwise, if σ = 0, we set x′ = x and m′ = m, which entails 1 6 m′ 6 |V0|.

Let us consider the graph G′ = (V ′, E′) of the connected component of x′ in (V, E\E0). The choice of E0 ensures
that |V ′| 6 2k−1. What’s more, we have that V ′ = Vσ\Vσ−1 if σ > 1 and V ′ = V0 otherwise, which in both cases
leads to 1 6 m′ 6 |V ′|. The induction hypothesis applied to the graph G′ = (V ′, E′) gives us a subset E′0 ⊂ E′

satisfying

|E′0| 6
1− ak−1

1− a
4d+1d2 |V ′|

d−1
d 6

1− ak−1

1− a
4d+1d2a |V |

d−1
d

and such that the connected component of x′ in (V ′, E′\E′0), which will be denoted V ′x′ , contains exactly m′

vertices. Now, we consider the set
E′′0 = {eσ+1, . . . , er} ∪ E′0 ,

which is such that

|E′′0 | = (r − σ) + |E′0|

6 4d+1d2 |V |
d−1
d +

a− ak

1− a
4d+1d2 |V |

d−1
d

=
1− ak

1− a
4d+1d2 |V |

d−1
d .

If σ = 0, then the connected component of x in the graph (V, E\E′′0 ) is V ′x′ and thus it contains exactly m′ =
m vertices. Otherwise, if σ > 1, then this connected component is Vσ−1 ∪ V ′x′ , which contains |Vσ−1| + m′ = m
vertices.

4 The largest cluster
This section is devoted to the proof of theorem 1 for the case of the first model, i.e., the one defined with the
largest cluster in the box Λ(n). As explained in the introduction, the first step is to show the exponential decay
of the distribution of |Cmax| in the subcritical and supercritical phases.
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4.1 Exponential decay in the subcritical phase
We first present a classical estimate about the size of the largest cluster below pc :

Lemma 5. For any a ∈ (0, d), for p < pc and A > 0, we have

−∞ < lim inf
n→∞

1

na
ln Pp

( ∣∣Cmax(Λ(n)
)∣∣ > Ana

)
6 lim sup

n→∞

1

na
ln Pp

( ∣∣Cmax(Λ(n)
)∣∣ > Ana

)
< 0 .

Proof. Let a > 0, p < pc and A > 0. For all n > 1, we have that

Pp
( ∣∣Cmax(Λ(n)

)∣∣ > Ana
)

= Pp

(
max
v∈Λ(n)

∣∣CΛ(n)(v)
∣∣ > Ana

)
6 Pp

(
max
v∈Λ(n)

|C(v)| > Ana
)

6 ndPp
(
|C(0)| > Ana

)
.

According to theorem 6.75 in [Gri99], there exists a constant λ(p) > 0 such that, for all m > 1,

Pp
(
|C(0)| > m

)
6 e−mλ(p) . (8)

It follows that, for all n > 1,
Pp
( ∣∣Cmax(Λ(n)

)∣∣ > Ana
)

6 nde−Aλ(p)na

,

which implies the desired upper bound. To create a cluster of size more than Ana, one may simply open a
self-avoiding path of bAnac edges and bAnac+ 1 vertices, hence

Pp
( ∣∣Cmax(Λ(n)

)∣∣ > Ana
)

> pbAn
ac ,

which shows the lower bound.

4.2 Exponential decay in the supercritical phase
We establish a similar result in the supercritical regime:

Lemma 6. For all a ∈ (0, d), for p > pc and A > 0, we have

−∞ < lim inf
n→∞

1

nd−a/d
ln Pp

( ∣∣Cmax(Λ(n)
)∣∣ < Ana

)
6 lim sup

n→∞

1

nd−a/d
ln Pp

( ∣∣Cmax(Λ(n)
)∣∣ < Ana

)
< 0 .

The upper bound is a consequence of the following result, which easily follows from the classical literature:

Lemma 7. For all p > pc, we have

lim sup
n→∞

1

nd−1
ln Pp

(∣∣Cmax(Λ(n)
)∣∣ 6 θ(p)nd

8

)
< 0 .

Proof. Assume first that d > 3. From theorem 1.2 of [Pis96], it follows that, for d > 3, for all p > p̂c (where p̂c
denotes the slab-percolation threshold),

lim sup
n→∞

1

nd−1
ln Pp

(
|Cmax (Λ(n))| 6 θ(p)nd

2

)
< 0 .

In addition, Grimmett and Marstrand proved the identity pc = p̂c for d > 3 in [GM90]. The claim for d > 3 thus
follows immediately.

Consider now the case d = 2. Theorem 6.1 of [ACC90] implies that, for all p > pc, if we consider a percolation
configuration on Zd and write C∞ ⊂ Zd for the unique infinite cluster of the configuration, then

lim
n→∞

1

n
ln Pp

(
|C∞ ∩ Λ(n)| 6 θ(p)n2

2

)
< 0 .
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Thereby, there exists L > 0 such that, for all n > 1,

Pp

(
|C∞ ∩ Λ(n)| 6 θ(p)n2

2

)
6 e−Ln .

Besides, if we set, for m > k > 1,

Lk,m =
{
The rectangle {0, . . . , k} × {0, . . . , m} is crossed by an open path in its long direction

}
,

then it follows from equation (7.110) in [Gri99] that there exist positive constants C2(p) and C3(p) such that, for
all m > k > 1,

Pp (Lk,m) > 1− C2me
−C3k . (9)

Define the rectangles

R1 = Z2 ∩
]n

2
, n
[
× [−n, n[ , R2 = Z2 ∩ [−n, n[×

]n
2
, n
[
,

R3 = Z2 ∩
[
−n, −n

2

[
× [−n, n[ , R4 = Z2 ∩ [−n, n[×

[
−n, −n

2

[
,

which are represented in figure 6. Following a classical argument (see the proof of theorem 7.61 in [Gri99]), we

R1R3

R2

R4

•x

•
y

Λ(n)

Λ(2n)

2nn

Figure 6: If each of the four rectangles is crossed by an open path in its long direction, then Λ(n) is surrounded
by an open path in Λ(2n), and thus any two vertices x and y in the box Λ(n) cannot be connected to ∂Λ(2n)
without being connected to each other by an open path inside Λ(2n).

consider the events

En =
{
There exists an open path in Λ(2n)\Λ(n) containing Λ(n) in its interior

}
and

Fn =
{
Each of the rectangles R1, R2, R3, R4 is crossed by an open path in its long direction

}
.

As illustrated on figure 6, we have the inclusion En ⊃ Fn. In addition, by the FKG inequality, we have that

Pp (Fn) > Pp
(
Lbn/2c, 2n

)4
.

In combination with (9), this yields

Pp (En) > Pp (Fn) > Pp
(
Lbn/2c, 2n

)4
>
(

1− 2C2ne
−C3bn/2c

)4

> 1− 8C2ne
−C3bn/2c .
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Yet if the event En occurs, then all the vertices of Λ(n) which are connected by an open path to the boundary
of Λ(2n) must be connected to each other inside Λ(2n), which implies that |Cmax (Λ(2n))| > |C∞ ∩ Λ(n)|.
Therefore, we have the inclusion

En ∩
{
|C∞ ∩ Λ(n)| > θ(p)n2

2

}
⊂
{∣∣Cmax (Λ(2n))

∣∣ > θ(p)n2

2

}
.

Considering complementary events leads to

Pp

(
|Cmax (Λ(2n))| 6 θ(p)n2

2

)
6 1− Pp (En) + Pp

(
|C∞ ∩ Λ(n)| 6 θ(p)n2

2

)
6 8C2ne

−C3bn/2c + e−Ln

6 e−L
′n

for a certain constant L′ > 0, which concludes the proof.

We now briefly explain how to deduce lemma 6 from lemma 7:

Proof of lemma 6. We divide the box Λ(n) into smaller boxes of side

Nn =

⌈(
8Ana

θ(p)

)1/d
⌉
.

The box Λ(n) contains at least bn/Nncd disjoint boxes of side Nn, so that we have

Pp
( ∣∣Cmax(Λ(n)

)∣∣ < Ana
)

6 Pp
( ∣∣Cmax(Λ(Nn)

)∣∣ < Ana
)bn/Nncd

6 Pp

(∣∣Cmax(Λ(Nn)
)∣∣ < θ(p)Nd

n

8

)bn/Nncd

,

which implies that

lim sup
n→∞

1

nd−a/d
ln Pp

( ∣∣Cmax(Λ(n)
)∣∣ < Ana

)
6 lim sup

n→∞

nd

Nd
nn

d−a/d ln Pp

(∣∣Cmax(Λ(Nn)
)∣∣ < θ(p)Nd

n

8

)
= lim sup

N→∞

1

Nd−1
ln Pp

(∣∣Cmax(Λ(N)
)∣∣ < θ(p)Nd

8

)
< 0 ,

using lemma 7. To obtain the lower bound, divide the box Λ(n) into boxes of side Nn =
⌈
(Ana)1/d

⌉
− 1, which

all contain strictly less than Ana vertices, and consider the event that all the edges between two neighbouring
boxes are closed, to obtain :

ln Pp
( ∣∣Cmax(Λ(n)

)∣∣ < Ana
)

> dnd−1

⌈
n

Nn

⌉
ln(1− p) n→∞∼ d ln(1− p)

A1/d
nd−a/d ,

which shows that d− a/d is indeed the correct exponent.

4.3 Lower bound on the partition function
We show the following inequality on the normalization constant Zn of our model:

Lemma 8. For any real number a such that 0 < a < d, we have

lim inf
n→∞

lnZn
(lnn)na(d−1)/d

> −∞ .
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Proof. Construction of the coupling: As explained in the introduction, we define a monotone coupling of the
distributions Pϕn(t) for t ∈

{
0, . . . , nd

}
. Write En = {e1, . . . , er} with r = |En|, and consider a collection of i.i.d.

random variables
(Xt,e)t∈{0, ..., nd−1}, e∈En

with Bernoulli law of parameter exp(−1/na). For t0 ∈
{

0, . . . , nd
}
, define a random configuration

ω(t0) : e ∈ En 7−→ min
06t<t0

Xt,e .

Hence, for t0 ∈
{

0, . . . , nd
}
and e ∈ En, we see that

P
(
ω(t0)(e) = 1

)
=

t0−1∏
t=0

P
(
Xt,e = 1

)
= exp

(
− t0
na

)
= ϕn(t0) ,

therefore the configuration ω(t0) has distribution Pϕn(t0). What’s more, configurations are coupled in such a way
that

1En
= ω(0) > ω(1) > · · · > ω(nd) .

When going from the configuration ω(t) to the configuration ω(t+ 1), a certain number or edges are closed (these
are the edges e such that ω(t)(e) = 1 and Xt,e = 0). In order to control the edge closures one by one, we define
intermediate configurations. For t ∈

{
0, . . . , nd − 1

}
and s0 ∈ {0, . . . , r}, we set

ω(t, s0) : es ∈ En 7−→

{
ω(t+ 1)(es) if s 6 s0 ,

ω(t)(es) otherwise.

In this way, we have ω(t, 0) = ω(t) and for s > 1, the configuration ω(t, s) is obtained from the configu-
ration ω(t, s − 1) by closing the edge es if Xt,es = 0, and by keeping everything unchanged if Xt,es = 1.
For s = r = |En|, all edges have been updated, so ω(t, r) = ω(t+ 1). The configurations are therefore coupled in
such a way that

(t, s) 6 (t′, s′) =⇒ ω(t, s) > ω(t′, s′) ,

where we use the lexicographic order on {0, . . . , nd − 1} × {0, . . . , r}. As we have shown in (7), the parti-
tion function Zn is equal to the probability that the non-increasing function t 7→

∣∣Cmax(ω(t)
)∣∣ admits a fixed

point. Thus, we now look for an instant t = T situated before this function goes under the first bisector, and we
will see what is needed on the variables Xt,e for this function to actually cross the bisector at the instant t = T+2.

Definition of the instant T : Still considering the lexicographic order, we define a pair of random variables

(T, S) = min
{

(t, s) ∈
{

0, . . . , nd − 2
}
× {0, . . . , r} : ∃e ∈ En

∣∣Cmax(ω(t, s)e
)∣∣ 6 t+ 2

}
.

This minimum is well defined because one always has
∣∣Cmax(ω(nd − 2, 0)

)∣∣ 6 nd. In addition, for every (t0, s0),
the event {(T, S) = (t0, s0)} only depends on the variables Xt, es for (t, s) 6 (t0, s0), which means that (T, S)
is a stopping time for the filtration generated by the variables Xt,es . Also, closing one single edge cannot divide
the size of the largest cluster by more than two, whence∣∣Cmax(ω(T, S)

)∣∣ 6 2(T + 2) . (10)

Let us prove that we also have ∣∣Cmax(ω(T, S)
)∣∣ > T + 2 . (11)

We distinguish several cases.
• If S > 1, then the minimality of (T, S) ensures that, for all e ∈ En,∣∣Cmax(ω(T, S − 1)e

)∣∣ > T + 2 .
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•
(t, s) = (0, 0)

•
(T, S)

•
(T + 2, 0)

ω = 1En |Cmax(ω)| > T + 2

∃e ∈ En |Cmax(ωe)| 6 T + 2

Cmax

|Cmax(ω)| = T + 2

close H
H

Cmax

Figure 7: Sketch of the proof: if E occurs, i.e., between the instants (T, S) and (T + 2, 0), the edges H are closed
but no other edges of Cmax is closed, then the largest cluster in the configuration ω(T + 2, 0) contains T + 2
vertices.

Yet the configuration ω(T, S) is obtained from ω(T, S − 1) by closing at most one edge, whence (11).
• If S = 0 and T > 0, then, (T, S) being minimal, we have that∣∣Cmax(ω(T − 1, r)

)∣∣ > T − 1 + 2 = T + 1 .

The configurations ω(T − 1, r) and ω(T, 0) being identical, inequality (11) is also satisfied.
• The case (T, S) = (0, 0) does not happen because all edges are open in the configuration ω(0, 0).

Construction of the happy event: Let (V, E) be the graph of the largest cluster in ω(T, S), that is to
say V = Cmax

(
ω(T, S)

)
and E is the set of edges between two vertices of V which are open in ω(T, S). Given (11),

it follows from lemma 1 that there exists a (random) set of edges

H = H
(
T, ω(T, S)

)
⊂ E ,

satisfying
|H| 6 K |V |

d−1
d (12)

and such that the largest connected component of the graph (V, E\H) contains exactly T + 2 vertices. Note that
we have defined H = H(T, ω(T, S)) as a deterministic function of the variables T and ω(T, S), this will be useful
later. The existence of an edge e ∈ En such that∣∣Cmax(ω(T, S)e

)∣∣ 6 T + 2

entails that, in ω(T, S), there is at most one cluster containing strictly more than T + 2 vertices. Thus, closing
the edges of H is enough for the remaining largest cluster to contain T + 2 vertices, i.e.∣∣Cmax(ω(T, S)H

)∣∣ = T + 2 .

Hence, closing the edges of H and no other edge of E
[
Cmax

(
ω(T, S)

)]
between the instants (T, S) and (T + 2, 0)

ensures that
∣∣Cmax(ω(T + 2)

)∣∣ = T + 2. But the edges es ∈ H are note necessarily labeled with numbers s > S.
It is therefore not generally possible to close all the edges of H between the instants (T, S) and (T + 1, 0).
For this reason, the event we consider is the one in which no edge of E

[
Cmax

(
ω(T, S)

)]
is closed between (T, S)

and (T +1, 0), and the edges of E
[
Cmax

(
ω(T, S)

)]
which are closed between (T +1, 0) and (T +2, 0) are precisely

the edges of H, that is to say

E =


∀s > S es ∈ E

[
Cmax

(
ω(T, S)

)]
⇒ XT, es = 1

∀e ∈ H XT+1, e = 0

∀e ∈ E
[
Cmax

(
ω(T, S)

)]
\H XT+1, e = 1

 .

18



If this event occurs, then in ω(T + 2), all the edges of H are closed, the other edges of E
[
Cmax

(
ω(T, S)

)]
which

were open in the configuration ω(T, S) remain open, and all the other clusters contain at most T + 2 vertices,
whence

E ⊂
{ ∣∣Cmax(ω(T + 2)

)∣∣ =
∣∣Cmax(ω(T, S)H

)∣∣ = T + 2
}
.

Conditional probability of the happy event: Coming back to the expression (7) of the partition function,
we find that

Zn > P
( ∣∣Cmax(ω(T + 2)

)∣∣ = T + 2
)

> P (E) . (13)

Let (t0, s0) and ω0 : En → {0, 1} be such that

P
(
Ct0, s0, ω0

)
> 0 where Ct0, s0, ω0

=
{

(T, S) = (t0, s0) and ω(T, S) = ω0

}
.

Having defined H as a deterministic function of T and ω(T, S), we can consider the event

Ẽt0, s0, ω0 =


∀s > s0 es ∈ E [Cmax (ω0)]⇒ Xt0, es = 1

∀e ∈ H(t0, ω0) Xt0+1, e = 0

∀e ∈ E [Cmax (ω0)] \H(t0, ω0) Xt0+1, e = 1

 ,

which satisfies
P
(
E
∣∣ Ct0, s0, ω0

)
= P

(
Ẽt0, s0, ω0

∣∣ Ct0, s0, ω0

)
. (14)

Now note that this event Ẽt0, s0, ω0 depends only on the variables Xt, es with (t, s) > (t0, s0), whereas the
event Ct0, s0, ω0 depends only on the variables Xt, es with (t, s) 6 (t0, s0). Thus, these two events are independent
of each other, which allows us to write

P
(
Ẽt0, s0, ω0

∣∣ Ct0, s0, ω0

)
= P

(
Ẽt0, s0, ω0

)
=

∏
s>s0

es∈E[Cmax(ω0)]

P
(
Xt0, es = 1

)
×

∏
e∈H(t0, ω0)

P
(
Xt0+1, e = 0

)
×

∏
e∈E[Cmax(ω0)]\H(t0, ω0)

P
(
Xt0+1, e = 1

)
>
(
e−1/na

)2|E[Cmax(ω0)]| (
1− e−1/na

)|H(t0, ω0)|
.

Combining this with (14) yields

P
(
E
∣∣ (T, S, ω(T, S))

)
>
(
e−1/na

)2|E[Cmax(ω(T, S))]| (
1− e−1/na

)|H(T, ω(T, S))|
. (15)

Yet, according to (10), we have∣∣E [Cmax (ω(T, S))]
∣∣ 6 d |Cmax(ω(T, S))| 6 2d(T + 2) .

Furthermore, by concavity of x 7→ 1− e−x, we get

1− e−1/na

>
1

na
(
1− e−1

)
>

1

2na
.

In addition, combining (12) and (10) leads to

|H| 6 K |Cmax(ω(T, S))|
d−1
d 6 K

(
2(T + 2)

) d−1
d 6 2K

(
T + 2

) d−1
d .
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Replacing all this in equation (15), we obtain

P
(
E
∣∣ (T, S, ω(T, S))

)
> exp

(
−4d (T + 2)

na

)(
1

2na

)2K(T+2)
d−1
d

.

We take the conditional expectation with respect to T , and we deduce that

P
(
E
∣∣T ) > exp

(
−4d (T + 2)

na

)(
1

2na

)2K(T+2)
d−1
d

. (16)

Upper bound on T : We need a control on T in order to obtain a lower bound on P(E). Define

τ+
n =

⌈
na
(
− ln

(pc
2

))⌉
. (17)

Lemma 6 implies that
Ppc/2

(
|Cmax| 6 τ+

n

) n→∞−→ 1 .

This entails that, for n large enough,

Ppc/2
(
|Cmax| 6 τ+

n

)
>

1

2
.

Given that
ϕn
(
τ+
n

)
6 ϕn

(
na
(
− ln

(pc
2

)))
=

pc
2
,

we deduce that, for n large enough,

P
(
T 6 τ+

n

)
> P

( ∣∣Cmax (ω(τ+
n )
)∣∣ 6 τ+

n + 2
)

= Pϕn(τ+
n )

(
|Cmax| 6 τ+

n + 2
)

> Ppc/2
(
|Cmax| 6 τ+

n + 2
)

>
1

2
.

Therefore, we can find κ > 2 such that, for all n > 1,

P
(
T 6 κna

)
>

1

2
. (18)

Conclusion: Combining (18) with (16) gives

P (E) > P
(
E ∩ {T 6 κna}

)
= P

(
T 6 κna

)
P
(
E
∣∣T 6 κna

)
>

1

2
exp

(
−4d(κna + 2)

na
− 2K(κna + 2)

d−1
d ln(2na)

)
>

1

2
exp

(
−8dκ− 4Kκ(ln 2)na(d−1)/d − 4Kκa(lnn)na(d−1)/d

)
.

Now recall inequality (13) to deduce that

lim inf
n→∞

lnZn
(lnn)na(d−1)/d

> −4Kκa > −∞ ,

which is the required lower bound.
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4.4 Proof of the convergence result
We are now in position to prove theorem 1 in the case of the first model.

Proof of theorem 1, case Fn = |Cmax|. Let ε > 0 and a ∈ (0, d). Given that a(d − 1)/d < a, the lower bound
on Zn we have obtained in lemma 8 implies that lnZn/n

a → 0. Combining this with the result of lemma 5 and
plugging it into the inequality (5) then leads to

lim sup
n→∞

1

na
lnµn

(
pn < pc − ε

)
6 lim sup

n→∞

1

na
ln Ppc−ε

(
|Cmax| >

(
− ln(pc − ε)

)
na
)
< 0 . (19)

Similarly, using lemma 6 and the fact that a(d− 1)/d < d− a/d, we get

lim sup
n→∞

1

nd−a/d
lnµn

(
pn > pc + ε

)
6 lim sup

n→∞

1

nd−a/d
ln Ppc+ε

(
|Cmax| <

(
− ln(pc + ε)

)
na
)
< 0 . (20)

It remains to show that the exponent v = a∧ (d−a/d) is optimal. To this end, we go back to our computation (3)
and we recall that Zn was expressed as a probability in (7), whence Zn 6 1. Therefore, with t+n as defined in (2)
we have

µn
(
pn > pc + ε

)
=

1

Zn

t+n−1∑
t=0

Pϕn(t)

(
|Cmax| = t

)
>

t+n−1∑
t=0

Pϕn(t)

(
|Cmax| = t

)
.

Using the notations of the last subsection, this becomes

µn
(
pn > pc + ε

)
> P

(
∃t ∈

{
0, . . . , t+n − 1

}
:
∣∣Cmax(ω(t)

)∣∣ = t
)

> P
(
E ∩

{
T 6 t+n − 3

} )
, (21)

since the occurrence of the event E implies that
∣∣Cmax(ω(T + 2)

)∣∣ = T + 2. As we did in the proof of lemma 8,
we can write

P
(
T 6 t+n − 3

)
> P

( ∣∣Cmax(ω(t+n − 3)
)∣∣ < t+n

)
= Pϕn(t+n−3)

(
|Cmax| < t+n

)
.

Now notice that ϕn(t+n − 3)→ pc + ε, whence ϕn(t+n − 3) 6 pc + 2ε for n large enough. Thus, for n large enough,
we have

P
(
T 6 t+n − 3

)
> Ppc+2ε

(
|Cmax| < t+n

)
.

Plugging this into (21) and using our lower bound (16) on the conditional probability of E with respect to T then
leads to

1

nd−a/d
lnµn

(
pn > pc + ε

)
> −

4d
(
t+n − 1

)
na+d−a/d −

2K
(
t+n − 1

) d−1
d ln

(
2na

)
nd−a/d

+
1

nd−a/d
ln Ppc+2ε

(
|Cmax| < t+n

)
= O

(
1

nd−a/d

)
+O

(
lnn

nd−a

)
+

1

nd−a/d
ln Ppc+2ε

(
|Cmax| < t+n

)
.

Taking the limit inferior and using the lower bound given by lemma 6, we obtain

lim inf
n→∞

1

nd−a/d
lnµn

(
pn > pc + ε

)
> −∞ . (22)

To handle the other tail, we choose a′ such that

a < a′ < d ∧ da

d− 1
,

we define t−n =
⌊
na
(
− ln(pc − ε)

)⌋
and we write

µn
(
pn < pc − ε

)
> P

(
∃t ∈

{
t−n + 1, . . . , nd

}
:
∣∣Cmax(ω(t)

)∣∣ = t
)

> P
(
E ∩

{
T > t−n − 1

} )
> P

(
E ∩

{
t−n − 1 6 T 6 na

′
} )

. (23)
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We now have

P
(
t−n − 1 6 T 6 na

′)
= P

(
T > t−n − 1

)
− P

(
T > na

′)
> P

( ∣∣Cmax(ω(t−n − 1)
)∣∣ > 2

(
t−n + 1

) )
− P

( ∣∣∣Cmax(ω(⌊na′⌋))∣∣∣ > na
′
)

> Ppc−2ε

(
|Cmax| > 2

(
t−n + 1

) )
− Ppc/2

(
|Cmax| > na

′
)

> e−Cn
a

− e−C
′na′

>
e−Cn

a

2
,

with C, C ′ > 0, using the exponential estimate of lemma 5. Plugging this into (23) and using again (16), we now
obtain

1

na
lnµn

(
pn < pc − ε

)
> O

(
1

n2a−a′

)
+O

(
lnn

na−a′+a′/d

)
− C − ln 2

na
n→∞−→ −C > −∞ . (24)

The first case of theorem 1 then follows from (19), (20), (22) and (24).

4.5 A variant on the torus
One can define a similar model on the torus of side n, which boils down to considering periodic boundary
conditions on the box Λ(n). Clusters on the torus are at least as big as in the box, so the exponential decay
in the supercritical phase for the model defined on the torus immediately follows from lemma 6. The analog of
lemma 5 can be proved by noting that the size of the cluster of the origin in the torus is stochastically dominated
by the size of the cluster of the origin in a configuration on all Zd. The same proof for the lower bound on the
partition function applies in the case of the torus, by adapting our geometrical lemma to extend it to subgraphs
of the torus. We therefore have the same convergence of pn to pc when n→∞ for this alternative model.

5 The number of vertices connected to the boundary
We prove here theorem 1 in the case of the model defined with |Mn|, which is the number of vertices connected
by an open path to the boundary of the box ∂Λ(n).

5.1 Exponential decay in the subcritical phase
Following the same method as for the first model, we start with an upper bound on the law of |Mn| in the
subcritical regime (the lower bound is straightforward, but we will not need it).

Lemma 9. For any a > d− 1, for p < pc and A > 0, we have the upper bound

lim sup
n→∞

1

na
ln Pp

(
|Mn| > Ana

)
< 0 .

Proof. Take a > d − 1, p < pc and A > 0. Write ∂Λ(n) = {x1, . . . , xt} with t = |∂Λ(n)|. If A and T are two
events, then A ◦ T denotes the disjoint occurrence of these two events, which is defined in section 2.3 of [Gri99].
Let ω : En → {0, 1} be a configuration such that |Mn(ω)| > Ana. Define, for i ∈ {1, . . . , t},

ni =
∣∣∣CΛ(n)(xi) \

⋃
j<i

CΛ(n)(xj)
∣∣∣ =

{
0 if there exists j < i such that xi

ω←→ xj ,∣∣CΛ(n)(xi)
∣∣ otherwise.

We have that
t∑
i=1

ni =

∣∣∣∣∣
t⋃
i=1

CΛ(n)(xi)

∣∣∣∣∣ = |Mn(ω)| > Ana ,

and
ω ∈

{∣∣CΛ(n)(x1)
∣∣ > n1

}
◦ . . . ◦

{∣∣CΛ(n)(xt)
∣∣ > nt

}
.
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Indeed, if ni = 0, then the event
{∣∣CΛ(n)(xi)

∣∣ > ni
}
is trivial, whereas if we have ni > 0 and nj > 0 for some i 6= j,

then the vertices xi and xj must belong to disjoint clusters. Whence the inclusion{
|Mn| > Ana

}
⊂

⋃
06n1, ..., nt6n

d

n1+···+nt>An
a

{∣∣CΛ(n)(x1)
∣∣ > n1

}
◦ · · · ◦

{∣∣CΛ(n)(xt)
∣∣ > nt

}
.

Note that, for all i ∈ {1, . . . , t}, the event
{∣∣CΛ(n)(xi)

∣∣ > ni
}
is an increasing event, thus by the BK inequality,

Pp
(
|Mn| > Ana

)
6

∑
06n1,...,nt6n

d

n1+···+nt>An
a

t∏
i=1

Pp
( ∣∣CΛ(n)(xi)

∣∣ > ni

)

6
∑

06n1,...,nt6n
d

n1+···+nt>An
a

t∏
i=1

Pp
(
|C(0)| > ni

)
.

Furthermore, according to theorem 6.75 in [Gri99], for p < pc, there exists a constant λ(p) > 0 such that, for
all n > 1,

Pp
(
|C(0)| > n

)
6 e−nλ(p) ,

which is also true if n = 0. It follows that

Pp
(
|Mn| > Ana

)
6

∑
06n1,...,nt6n

d

n1+···+nt>An
a

t∏
i=1

exp
(
− λ(p)ni

)
6

∑
06n1,...,nt6nd

exp
(
− λ(p)Ana

)
6
(
nd + 1

)t
exp

(
− λ(p)Ana

)
= exp

(
|∂Λ(n)| ln(nd + 1)− λ(p)Ana

)
.

To conclude, note that
|∂Λ(n)| ln(nd + 1) = O

(
(lnn)nd−1

)
= o(na) .

This completes the proof of the lemma.

5.2 Exponential decay in the supercritical phase
We now state a similar exponential decay property in the supercritical regime.

Lemma 10. For all a < d, for p > pc and A > 0, we have

lim sup
n→∞

1

nd−1
ln Pp

(
|Mn| < Ana

)
< 0 .

Proof. Let p > pc and A > 0. As in the proof of lemma 6, we show that

lim sup
n→∞

1

nd−1
ln Pp

(
|Mn| 6

θ(p)nd

2

)
< 0 .

For d > 3, the result follows from theorem 1.2 of [Pis96], which proves it for p larger than p̂c, which was proved
to be equal to pc in [GM90]. In dimension d = 2, the claim follows from theorem 6.1 in [ACC90].

23



5.3 Lower bound on the partition function
We now establish a lower bound on the normalization constant Zn.

Lemma 11. For any real a such that d− 1 < a < d, we have

lim inf
n→∞

lnZn
(lnn)na(d−1)/d

> −∞ .

Heuristics of the proof: We wish to apply the same technique as in the proof for the case of the largest cluster
(section 4.3), by constructing a decreasing coupling between the distributions Pϕn(t) for t varying from 0 (all
edges open) to nd (almost all edges closed). We monitor the evolution of the variable |Mn| until an instant t = T ′

when |Mn| is of order T ′. Then we find a set of edges H ⊂ En whose closure would lead to |Mn| = T ′ + 2 at the
instant T ′ + 2.

The hurdle is that, in order to find such a set H which is not too big (and thus whose closure is likely enough),
we need a control on the size of the clusters which are connected to the boundary of the box at the instant T ′.
To obtain such a control, a natural idea is to monitor first the evolution of the size of the clusters connected to
the boundary, to wait for an instant T when these clusters have become small enough, and then to define the
instant T ′ in a way which ensures that it is later than T . However, unlike the size of the largest cluster Cmax,
which can be at most divided by a factor 2 when closing an edge, the size of the largest cluster connected to the
boundary can fall drastically with the closure of one edge. To avoid this, we choose to monitor the size of the
largest cluster on the torus, that is to say in the square box but with periodic boundary conditions. This variable
has the advantage of being at most halved at each edge closure.

Proof. Sketch of the proof: We first define a decreasing coupling of configurations (ω(t, s))t, s but on the edges
of the torus. We then consider the first instant (T, S) when any of the clusters on the torus contains at most 2T+3
vertices. In what follows, we will reason conditionally on the fact that, at this instant, the largest cluster on the
torus touches the boundary of the box. We will show that, at this instant, we have |Mn(ω)| > T + 2. Next we
will construct a second instant (T ′, S′) > (T, S) and a set of edges H such that, if the only edges ofMn which
are closed between (T ′, S′) and (T ′ + 2, 0) are the edges of H, then we have |Mn(ω(T ′ + 2))| = T ′ + 2. We will
call this scenario the “happy event”, and our aim is to obtain a lower bound on its probability. To this end, we
will show that, with sufficiently high probability, we have T ′ = O(na), which implies that, from the instant (T, S)
onward, any of the clusters on the torus contains O(na) vertices. This control will allow us to show that it is
possible to find H small enough to ensure that the happy event is likely enough.

•
(0, 0)

•
(T, S)

•
(T ′, S′)

•
(T ′ + 2, 0)

ω = 1En

CTmax∣∣CTmax(ω)
∣∣ 6 2T + 3

|Mn(ω)| >
∣∣CTmax(ω)

∣∣ > T + 2

Mn

|Mn(ω)| > T ′ + 2

∃e ∈ En |Mn(ωe)| 6 T ′ + 2

close H

Mn

H

|Mn(ω)| = T ′ + 2

Figure 8: Illustration for the sketch of the proof of lemma 11.

Construction of the coupling and definition of T : Take n > 2. We use the same notations and definitions as
in the proof of lemma 8, but we now consider configurations on the torus. To define the torus, write p : Zd → Λ(n)
for the projection application, with is such that p(x)− x ∈ nZd for every x ∈ Zd. The torus is the graph whose
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vertex set is Λ(n), and whose edge set is

ETn = p
(
Ed
)

=
{{

p(x), p(y)
}

: {x, y} ∈ Ed
}
,

which amounts to adding edges between corresponding vertices on opposite faces of the box. We then write ETn =
{e1, . . . , er} with r =

∣∣ETn ∣∣, and we consider a collection of i.i.d. random variables

(Xt,e)t∈{0, ..., nd−1}, e∈ET
n

all distributed with a Bernoulli law of parameter exp(−1/na). We set, for t0 ∈ {0, . . . , nd},

ω(t0) : e ∈ ETn 7−→ min
06t<t0

Xt,e ,

and for t ∈ {0, . . . , nd − 1} and s0 ∈ {0, . . . , r}, we define

ω(t, s0) : es ∈ ETn 7−→

{
ω(t+ 1)(es) if s 6 s0 ,

ω(t)(es) otherwise.

For a configuration ω : ETn → {0, 1} and v ∈ Λ(n), we denote CTΛ(n)(v, ω) ⊂ Λ(n) the cluster of v in the
configuration ω on the torus, that is to say the connected component of the vertex v in the graph(

Λ(n),
{
e ∈ ETn : ω(e) = 1

})
.

For any ω : ETn → {0, 1}, write CTmax(ω) for the largest cluster on the torus in the configuration ω. In case of
equality between several clusters, we choose one with an arbitrary order on the subsets of Λ(n). We consider the
pair of random variables

(T, S) = min
{

(t, s) ∈
{

0, . . . , nd − 2
}
× {0, . . . , r} :

∣∣CTmax(ω(t, s)
)∣∣ 6 2t+ 3

}
,

which is well-defined because
∣∣CTmax(ω(nd − 2, 0)

)∣∣ 6 nd. Let us show that, at this instant (T, S), we have∣∣CTmax(ω(T, S)
)∣∣ > T + 2 . (25)

We distinguish several cases :
• If S > 1 then, (T, S) being minimal, we have

∣∣CTmax(ω(T, S − 1)
)∣∣ > 2T + 4. To obtain (25), note that closing

a single edge can at most divide
∣∣CTmax∣∣ by a factor two.

• If T 6= 0 and S = 0 then, by minimality of (T, S), we have that∣∣CTmax(ω(T − 1, r)
)∣∣ > 2(T − 1) + 4 = 2T + 2 > T + 2 ,

which implies inequality (25), because the configurations ω(T − 1, r) and ω(T, 0) are identical.
• The case (T, S) = (0, 0) never occurs because we have

∣∣CTmax(ω(0, 0)
)∣∣ = nd > 3.

We have thus shown that (25) holds.

Definition of the reference vertex : We now consider the vertex V = min CTmax
(
ω(T, S)

)
, by taking the

minimum with an arbitrary order on Λ(n). Given that∑
v∈Λ(n)

P(V = v) = 1 ,

we can find a vertex v0 ∈ Λ(n) such that

P(V = v0) >
1

|Λ(n)|
=

1

nd
.
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In what follows, we will reason conditionally on this event {V = v0}. Until now, everything took place on the torus,
which is translation-invariant. If v0 /∈ ∂Λ(n), we can apply a translation on the torus so as to have v0 ∈ ∂Λ(n),
modifying at the same time the orders considered on ETn , on Λ(n) and on the subsets of Λ(n). Therefore, without
loss of generality, we can assume that v0 ∈ ∂Λ(n). Hence, if V = v0 then we have CTmax

(
ω(T, S)

)
⊂Mn

(
ω(T, S)

)
,

whence
V = v0 ⇒

∣∣Mn

(
ω(T, S)

)∣∣ >
∣∣CTmax(ω(T, S)

)∣∣ > T + 2 , (26)

following (25).

Construction of the second instant T ′: We now consider

(T ′, S′) = min
{

(t, s) > (T, S) : ∃e ∈ En
∣∣Mn

(
ω(t, s)e

)∣∣ 6 t+ 2
}
.

The fact that T 6 nd−2 and
∣∣Mn

(
ω(nd − 2, r)

)∣∣ 6 nd ensures that (T ′, S′) is well-defined and that T ′ 6 nd−2.
Let us show, by distinguishing several cases, that

V = v0 ⇒
∣∣Mn

(
ω(T ′, S′)

)∣∣ > T ′ + 2 . (27)

• If (T ′, S′) = (T, S), then the claim follows from (26).
• If (T ′, S′) > (T, S) and S′ = 0, then the minimality of (T ′, S′) implies that

T ′ − 1 + 2 <
∣∣Mn

(
ω(T ′ − 1, r)

)∣∣ =
∣∣Mn

(
ω(T ′, S′)

)∣∣ .
• Else if (T ′, S′) > (T, S) and S′ 6= 0, then by minimality of (T ′, S′), we know that for all e ∈ En,∣∣Mn

(
ω(T ′, S′ − 1)e

)∣∣ > T ′ + 2 ,

which entails in particular that
∣∣Mn

(
ω(T ′, S′)

)∣∣ > T ′ + 2, because the configuration ω(T ′, S′) is obtained from
the configuration ω(T ′, S′ − 1) by closing at most one edge.
We conclude that (27) holds in all cases.

Construction of the happy event: We now wish to define a set of edges H that we want to be closed between
the configuration ω(T ′, S′) and the configuration ω(T ′ + 2, 0) in order to have∣∣Mn

(
ω(T ′ + 2)

)∣∣ = T ′ + 2 .

We are only interested in situations where V = v0, thus we set arbitrarily H = ∅ if the event {V = v0} does not
occur. We now assume that V = v0. By definition of (T ′, S′), we may consider an edge e ∈ En such that∣∣Mn

(
ω(T ′, S′)e

)∣∣ 6 T ′ + 2 . (28)

We choose this edge eminimal (for the order e1, . . . , er we have considered on ETn ) among the edges satisfying (28),
which ensures that e only depends on T ′, ω(T ′, S′) and V . We then construct the set H by distinguishing two
cases depending on whether this inequality (28) is strict or not.
• In case of equality in (28), we take H = {e}.
• Assume that equation (28) is a strict inequality. It follows from (27) that∣∣Mn

(
ω(T ′, S′)e

)∣∣ < ∣∣Mn

(
ω(T ′, S′)

)∣∣ ,
which means that closing the edge e changes the number of vertices connected to the boundary of the box.
Consequently, one end of the edge e, say v, must be disconnected from ∂Λ(n) when closing e in the configu-
ration ω(T ′, S′). Write (Cv, Ev) for the graph of the open cluster of v in the configuration ω(T ′, S′)e. We
have, using (27), ∣∣Mn

(
ω(T ′, S′)e

)∣∣ =
∣∣Mn

(
ω(T ′, S′)

)∣∣− |Cv| > T ′ + 2− |Cv| .

Combining this with the (strict) inequality (28) yields
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Mn

(
ω(T ′, S′)e

)
•
e
•v

Cv

close H

H

•
e
•v

ω(T ′, S′) ω(T ′ + 2, 0)

Figure 9: If (28) is a strict inequality, then closing the edge e in the configuration ω(T ′, S′) changes the num-
ber |Mn| of vertices connected to the boundary of the box. This means that one end of the edge e, say v, happens
to be disconnected from the boundary when e is closed. We then choose a subset H of the edges of the cluster Cv
which is disconnected by the closure of e, such that closing all the edges of H and no other edges of E [Mn]
between (T ′, S′) and (T ′ + 2, 0) implies

∣∣Mn

(
ω(T ′ + 2)

)∣∣ = T ′ + 2.

1 6 T ′ + 2−
∣∣Mn

(
ω(T ′, S′)e

)∣∣ 6 |Cv| .

Applying lemma 1 to the graph (Cv, Ev) and the vertex v, we can choose a set H ⊂ Ev satisfying

|H| 6 K |Cv|
d−1
d (29)

and such that the cluster of v in the graph (Cv, Ev\H) contains exactly T ′ + 2−
∣∣Mn

(
ω(T ′, S′)e

)∣∣ vertices. We
then have ∣∣Mn

(
ω(T ′, S′)H

)∣∣ = T ′ + 2 .

The edge e (and thus the vertex v) depends only on T ′, ω(T ′, S′) and V , thus we can choose such a set H which
also depends only on T ′, ω(T ′, S′) and V . Besides, we have the following control over |Cv|:

|Cv| =
∣∣CΛ(n)

(
v, ω(T ′, S′)e

)∣∣ 6
∣∣CΛ(n)

(
v, ω(T ′, S′)

)∣∣ 6
∣∣CTmax(ω(T ′, S′)

)∣∣ . (30)

Note now that
∣∣CTmax(ω)

∣∣ is a decreasing function of ω and that, by definition, (T ′, S′) > (T, S), whence∣∣CTmax(ω(T ′, S′)
)∣∣ 6

∣∣CTmax(ω(T, S)
)∣∣ 6 2T + 3 . (31)

Combining (30) and (31), we get |Cv| 6 2T + 3, and therefore the upper bound (29) becomes

|H| 6 K
(
2T + 3

) d−1
d . (32)

To sum up these two cases, we have defined a (random) set of edges H ⊂ En whose size is controlled by (32) and
which satisfies ∣∣Mn

(
ω(T ′, S′)H

)∣∣ = T ′ + 2 .

Therefore, conditionally on {V = v0}, if the edges belonging to H and no other edges of E
[
Mn

(
ω(T ′, S′)

)]
are

closed between the configurations ω(T ′, S′) and ω(T ′ + 2, 0), then we have∣∣Mn

(
ω(T ′ + 2)

)∣∣ = T ′ + 2 . (33)

This leads us to consider the event

E =


∀s > S′ es ∈ E

[
Mn

(
ω(T ′, S′)

)]
⇒ XT ′, es = 1

∀e ∈ H XT ′+1, e = 0

∀e ∈ E
[
Mn

(
ω(T ′, S′)

)]
\H XT ′+1, e = 1


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which, if it occurs and if V = v0, implies (33). Also, our expression (7) becomes

Zn = P
(
∃t ∈

{
0, . . . , nd

} ∣∣Mn

(
ω(t)

)∣∣ = t
)

> P
(
E ∩ {V = v0}

)
. (34)

Conditional probability of the happy event: As in the proof of lemma 8, we consider (t0, t
′
0, s
′
0) and a

configuration ω0 : ETn → {0, 1} such that

P
(
Ct0, t′0, s′0, ω0

)
> 0 where Ct0, t′0, s′0, ω0

=
{

(T, T ′, S′) = (t0, t
′
0, s
′
0)
}
∩
{
ω(T ′, S′) = ω0

}
∩
{
V = v0

}
.

By definition of T and T ′, we have

|Mn (ω0)| 6 (T ′ + 2) + (2T + 3) 6 3T ′ + 5 .

The event Ct0, t′0, s′0, ω0
only depends on the variables Xt, es with (t, s) 6 (t′0, s

′
0) and, conditionally on this event,

the event E only depends on the variables Xt, es for (t′0, s
′
0) < (t, s) < (t′0 + 2, 0). What’s more, the set H only

depends on T ′, ω(T ′, S′) and V , which allows us to write H = H (T ′, ω(T ′, S′), V ). Therefore, we have

P
(
E
∣∣ Ct0, t′0, s′0, ω0

)
=

∏
s>s′0

es∈E[Mn(ω0)]

P
(
Xt′0, es

= 1
)
×

∏
e∈H(t′0, ω0, v0)

P
(
Xt′0+1, e = 0

)
×

∏
e∈E[Mn(ω0)]\H(t′0, ω0, v0)

P
(
Xt′0+1, e = 1

)
>
(
e−1/na

)2|E[Mn(ω0)]| (
1− e−1/na

)|H(t′0, ω0, v0)|

> exp

(
−2d |Mn (ω0)|

na

)(
1

2na

)|H(t′0, ω0, v0)|

> exp

(
−2d(3t′0 + 5)

na
− 2a(lnn)

∣∣H(t′0, ω0, v0)
∣∣) .

Using the upper bound (32) on |H| leads to

P
(
E
∣∣∣ T, T ′, S′, ω(T ′, S′), V

)
> 1V=v0 exp

(
−2d(3T ′ + 5)

na
− 2Ka(lnn) (2T + 3)

d−1
d

)
.

Taking the conditional expectation with respect to (T ′, V ), we obtain

P
(
E
∣∣T ′, V ) > 1V=v0 exp

(
−2d(3T ′ + 5)

na
− 2Ka(lnn) (2T ′ + 3)

d−1
d

)
. (35)

Upper bound on T ′: It follows from lemma 9 that

lim sup
n→∞

1

na
ln Ppc/2

[
|Mn| > na

(
− ln

(pc
2

))]
< 0 .

Therefore, we have

Ppc/2

[
|Mn| > na

(
− ln

(pc
2

))]
= o

(
1

nd

)
,

and thus, if we take τ+
n defined as in (17) then, for n large enough,

P
( ∣∣Mn

(
ω(τ+

n )
)∣∣ > τ+

n

)
6 Ppc/2

[
|Mn| > na

(
− ln

(pc
2

))]
6

1

2nd
.

28



We then have, using the fact that P
(
V = v0

)
> 1/nd,

P
(
V = v0 and

∣∣Mn

(
ω(τ+

n )
)∣∣ < τ+

n

)
>

1

nd
− 1

2nd
=

1

2nd
.

Yet, if V = v0 and |Mn (ω(τ+
n ))| < τ+

n , then inequality (27) entails that T ′ < τ+
n . From this we can deduce that,

for n large enough,

P
(
V = v0 and T ′ < τ+

n

)
>

1

2nd
.

Therefore, we can find κ > 2 such that, for n large enough,

P
(
V = v0 and T ′ 6 κna

)
>

1

2nd
. (36)

Conclusion: Combining (35) and (36) yields

P
(
E ∩ {V = v0}

)
> P

(
V = v0 and T ′ 6 κna

)
P
(
E
∣∣∣ V = v0 and T ′ 6 κna

)
>

1

2nd
exp

(
−2d(3κna + 5)

na
− 2Ka(lnn) (2κna + 3)

d−1
d

)
>

1

2nd
exp

(
−6dκ− 10d

na
− 8Kκa(lnn)na(d−1)/d

)
.

Given (34), we obtain

lim inf
n→∞

lnZn
(lnn)na(d−1)/d

> lim inf
n→∞

ln P
(
{V = v0} ∩ E

)
(lnn)na(d−1)/d

> −8Kκa > −∞ ,

which is the required lower bound.

5.4 Proof of the convergence result
We now explain how the second case of theorem 1 follows from the above lemmas.

Proof of theorem 1, case Fn = |Mn|. Let ε > 0 and a ∈ (d− 1, d). Exactly as in section 4.4, the upper bounds

lim sup
n→∞

1

na
lnµn

(
pn < pc − ε

)
< 0 . and lim sup

n→∞

1

nd−1
lnµn

(
pn > pc + ε

)
< 0

follow from our lower bound on Zn (lemma 11) and from the results of exponential decay in the subcritical
(lemma 9) and supercritical phases (lemma 10). To obtain the lower bound, we go back to our computation (3)
to write

µn
(
pn > pc + ε

)
=

1

Zn

t+n−1∑
t=0

Pϕn(t)

(
|Mn| = t

)
> Pϕn(t+n−1)

(
|Mn| = t+n − 1

)
, (37)

where t+n is still given by (2). We now implement a simplified surgery procedure to force |Mn| = t+n − 1 starting
from a configuration ω such that |Mn(ω)| > t+n − 1. According to lemma 10, we have

Pϕn(t+n−1)

(
|Mn| > t+n − 1

)
> Ppc+ε

(
|Mn| > t+n − 1

)
n→∞−→ 1 . (38)

Let ω ∈ {0, 1}En be a configuration such that |Mn(ω)| > t+n − 1. Consider the set E of the edges of En which
have exactly one endpoint in ∂Λ(n), which is such that

|Mn(ωE)| = |∂Λ(n)| 6 2dnd−1 < t+n − 1 (39)
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for n large enough, because a > d− 1. We write E =
{
e1, . . . , e|E|

}
with |E| 6 2dnd−1, and we let

B = max
{
b ∈ {1, . . . , |E|} :

∣∣Mn

(
ω{e1, ..., eb}

)∣∣ > t+n − 1
}
.

It follows from (39) that B < |E|, whence by maximality of B,∣∣Mn

(
ω{e1, ..., eB+1}

)∣∣ < t+n − 1 .

Therefore, if we write eB+1 = {x, y} with x ∈ ∂Λ(n) and y /∈ ∂Λ(n), and if we consider the cluster which is
disconnected from the boundary when closing this edge eB+1, namely :

Cy = CΛ(n)

(
y, ω{e1, ..., eB+1}

)
,

we have ∣∣Mn

(
ω{e1, ..., eB+1}

)∣∣ =
∣∣Mn

(
ω{e1, ..., eB}

)∣∣− |Cy| ,
so that m = (t+n − 1) −

∣∣Mn

(
ω{e1, ..., eB+1}

)∣∣ satisfies 1 6 m 6 |Cy|. Hence, lemma 1 provides us with H1 ⊂ En,
of size |H1| 6 |Cy|(d−1)/d 6 nd−1, such that∣∣CΛ(n)

(
y, ω{e1, ..., eB+1}∪H1

)∣∣ = m.

Writing H = H(ω) = {e1, . . . , eB} ∪H1, we then have |H| 6 (2d+ 1)nd−1 and∣∣Mn

(
ωH
)∣∣ =

∣∣Mn

(
ω{e1, ..., eB+1}

)∣∣+m = t+n − 1 .

Using lemma 6.3 in [CP00], we can deduce that

Pϕn(t+n−1)

(
|Mn| = t+n − 1

)
>

(
1

Cn

)(2d+1)nd−1

× Pϕn(t+n−1)

(
|Mn| > t+n − 1

)
,

where

Cn =

(
1 ∨ ϕn(t+n − 1)

1− ϕn(t+n − 1)

)
|En| = O

(
nd
)
.

Plugging this into (37) and using (38) then yields

lim inf
n→∞

1

(lnn)nd−1
ln µn

(
|pn − pc| > ε

)
> lim inf

n→∞

1

(lnn)nd−1
ln µn

(
pn > pc + ε

)
> −(2d+ 1)d > −∞ ,

as announced in theorem 1.

6 The distribution of the cluster sizes
The goal of this section is to prove the remaining part of theorem 1, namely the case of Fn =

∣∣Bbn∣∣, along with
theorem 2. To this end, we fix 0 < b < a < d.

6.1 Exponential decay in the subcritical phase
We now prove the following exponential decay in the subcritical regime :

Lemma 12. For every p < pc and any A > 0, we have

−∞ < lim inf
n→∞

1

na
ln Pp

( ∣∣Bbn∣∣ > Ana
)

6 lim sup
n→∞

1

na
ln Pp

( ∣∣Bbn∣∣ > Ana
)
< 0 .

30



Proof. Let p < pc and A > 0. Writing Nn = 1+
⌊
Ana−b

⌋
and using the BK inequality as in the proof of lemma 9,

we get

Pp
( ∣∣Bbn∣∣ > Ana

)
6

Nn∑
k=1

∑
x1, ..., xk∈Λ(n)

∑
nb6n1, ..., nk6n

d

n1+···+nk>An
a

Pp
({∣∣CΛ(n)(x1)

∣∣ > n1

}
◦ · · · ◦

{∣∣CΛ(n)(xk)
∣∣ > nk

})

6
Nn∑
k=1

∑
x1, ..., xk∈Λ(n)

∑
nb6n1, ..., nk6n

d

n1+···+nk>An
a

k∏
i=1

e−λ(p)ni

6 Nn
(
nd
)2Nn

e−λ(p)Ana

.

Therefore, we obtain

1

na
ln Pp

( ∣∣Bbn∣∣ > Ana
)

6
lnNn
na

+
2Nnd lnn

na
− λ(p)A

n→∞−→ −λ(p)A < 0 ,

which proves the upper bound. The lower bound follows from the lower bound given by lemma 5, since Ana > nb

for n large enough.

6.2 Exponential decay in the supercritical phase
We now deal with the deviations in the regime p > pc. We wish to thank an anonymous referee for having
improved our proof, leading to a better (and in fact optimal) exponent.

Lemma 13. We have the upper bound

∀p > pc ∀A > 0 lim sup
n→∞

1

nd−b/d
ln Pp

( ∣∣Bbn∣∣ < Ana
)
< 0 .

Proof. Let p > pc and A > 0. To prove this result, we partition the box Λ(n) into hypercubic boxes of side

Nn =

⌈(
8nb

θ(p)

)1/d
⌉
.

Therefore, we let

Mn = min

{
m ∈ N : Λ(n) ⊂

⋃
j∈Λ(m)

(
Nnj + Λ(Nn)

)}
,

so that we have a partition
Λ(n) =

⊔
j∈Λ(Mn)

[(
Nnj + Λ(Nn)

)
∩ Λ(n)

]
.

By definition of Bbn, we have∣∣Bbn∣∣ =
∣∣∣{x ∈ Λ(n) :

∣∣CΛ(n)(x)
∣∣ > nb

}∣∣∣
> nb

∣∣∣∣{ j ∈ Λ(Mn) :
∣∣∣Cmax[(Nnj + Λ(Nn)

)
∩ Λ(n)

]∣∣∣ > nb
}∣∣∣∣ .

Now note that
nb |Λ(Mn)|

2
=

nbMd
n

2

n→∞∼ nb

2

(
n

Nn

)d
n→∞∼ nb+dθ(p)

16nb
=

θ(p)nd

16
.

Given that Ana = o(nd), this implies that, for n large enough,

Ana <
nb |Λ(Mn)|

2
.
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Therefore, we have the following implication :

∣∣Bbn∣∣ < Ana ⇒
∣∣∣∣{ j ∈ Λ(Mn) :

∣∣∣Cmax[(Nnj + Λ(Nn)
)
∩ Λ(n)

]∣∣∣ > nb
}∣∣∣∣ < |Λ(Mn)|

2

⇒
∣∣∣∣{ j ∈ Λ(Mn) :

∣∣∣Cmax[(Nnj + Λ(Nn)
)
∩ Λ(n)

]∣∣∣ < nb
}∣∣∣∣ > |Λ(Mn)|

2
.

The problem now is that the boxes on the boundaries might be truncated, while the inside boxes are full, that is
to say

∀j ∈ Λ(Mn − 2) Nnj + Λ(Nn) ⊂ Λ(n) .

But the number of boxes on the boundaries is∣∣Λ(Mn)\Λ(Mn − 2)
∣∣ = o

(
|Λ(Mn)|

)
,

so that we have, for n large enough,

∣∣Bbn∣∣ < Ana ⇒
∣∣∣{ j ∈ Λ(Mn − 2) :

∣∣Cmax(Nnj + Λ(Nn)
)∣∣ < nb

}∣∣∣ > |Λ(Mn)|
4

.

Using now the independence of the sizes of the largest cluster inside disjoint boxes and the fact that the number
of choices of at least |Λ(Mn)| /4 boxes is at most 2|Λ(Mn)|, we get

Pp
( ∣∣Bbn∣∣ < Ana

)
6 2M

d
nPp

( ∣∣Cmax(Λ(Nn)
)∣∣ < nb

)Md
n/4

,

which implies that

lim sup
n→∞

1

nd−b/d
ln Pp

( ∣∣Bbn∣∣ < Ana
)

6 lim sup
n→∞

[
Md
n ln 2

nd−b/d
+

Md
n

4nd−b/d
ln Pp

( ∣∣Cmax(Λ(Nn)
)∣∣ < nb

)]
.

Now note that
Md
n

nd−b/d
n→∞∼ (n/Nn)d

nd−b/d
n→∞∼ nb/d

Nn

1

Nd−1
n

n→∞∼
(
θ(p)

8

)1/d
1

Nd−1
n

.

Therefore, we obtain

lim sup
n→∞

1

nd−b/d
ln Pp

( ∣∣Bbn∣∣ < Ana
)

6
1

4

(
θ(p)

8

)1/d

lim sup
n→∞

1

Nd−1
n

ln Pp
( ∣∣Cmax(Λ(Nn)

)∣∣ < nb
)
.

The result then follows from lemma 7, noting that nb 6 θ(p)Nd
n/8.

6.3 Lower bound on the partition function
It remains to prove a lower bound on the normalization constant Zn. Adapting the technique of lemmas 8 and 11,
we can easily obtain a bound with an exponent b. This is done in lemma 14, and the proof is much simpler than
in the previous sections because, instead of performing a surgery step, we only “freeze” the edges of Bbn during a
certain number of steps. But this bound may not be sufficient to outweigh the bound in the supercritical phase,
since it may be the case that b > d− b/d. To solve this problem, we show an other lower bound in lemma 15 with
a different exponent, using a more geometrical technique.

Lemma 14. For every a and b such that 0 < b < a < d, we have

lim inf
n→∞

lnZn
nb

> −∞ .
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Proof. We use the same monotone coupling (ω(t, s))06t6nd, 06s6r as in the proof of lemma 8. Following a strategy
similar to that of lemma 8, we define

(T, S) = min
{

(t, s) ∈
{

0, . . . , nd − 2
}
× {0, . . . , r} :

∣∣Bbn(ω(t, s)
)∣∣ 6 t+ 1 + 2nb

}
. (40)

When closing one single edge,
∣∣Bbn∣∣ cannot decrease by more than 2nb (in the worst case, the edge cuts a cluster

of 2
⌈
nb
⌉
− 2 vertices in two equal parts). Therefore, we always have

∣∣Bbn(ω(T, S)
)∣∣ > T + 1. Thus, if we consider

the instant T ′ =
∣∣Bbn(ω(T, S)

)∣∣, we have T + 1 6 T ′ 6 T + 1 + 2nb. In view of this, our strategy is to force all
the edges of Bbn

(
ω(T, S)

)
to remain open until the configuration ω(T ′, 0). This idea is much simpler than the

strategy of the previous sections, because we do not perform any surgery step. Considering the event

E =

{
∀s > S es ∈ E

[
Bbn
(
ω(T, S)

)]
⇒ XT, es = 1

∀t ∈ {T + 1, . . . , T ′ − 1} ∀e ∈ E
[
Bbn
(
ω(T, S)

)]
Xt, e = 1

}
,

equation (7) becomes

Zn > P
( ∣∣Bbn(ω(T ′, 0)

)∣∣ =
∣∣Bbn(ω(T, S)

)∣∣ = T ′
)

> P
(
E
)
. (41)

A lower bound on the probability of E is easily obtained by writing

P
(
E
∣∣ (T, S, ω(T, S))

)
=

∏
s>S

es∈E[Bb
n(ω(T, S))]

P
(
XT, es = 1

) T ′−1∏
t=T+1

∏
e∈E[Bb

n(ω(T, S))]

P
(
Xt, e = 1

)

>
(
e−1/na

)(T ′−T )|E[Bb
n(ω(T, S))]|

>
(
e−1/na

)(2nb+1)d(T+1+2nb)

. (42)

We then show an upper bound on T , using the same technique as in the proof of lemma 8. With τ+
n defined as

in (17), we can write

P
(
T 6 τ+

n

)
> P

( ∣∣Bbn(ω(τ+
n )
)∣∣ 6 τ+

n + 1 + 2nb
)

> Ppc/2
( ∣∣Bbn∣∣ 6 τ+

n + 1 + 2nb
)

n→∞−→ 1 ,

thanks to lemma 12. Combining this with (41) and (42) then leads to

lnZn
nb

>
ln P

(
T 6 τ+

n

)
nb

+
ln P

(
E
∣∣T 6 τ+

n

)
nb

> o(1)− (2nb + 1)d(τ+
n + 1 + 2nb)

na+b

n→∞−→ −2d
(
− ln

(pc
2

))
,

using that τ+
n ∼ (− ln(pc/2))na.

We now state the other lower bound we obtain using a more geometrical technique:

Lemma 15. For every a and b such that 0 < b < a < d, we have

lim inf
n→∞

lnZn
(lnn)nc

> −∞ where c =

(
1− a

d
+
b

d

)
∨
(
a− a

d

)
.

Proof outline: We use again the same coupling (ω(t, s))t,s as in the previous proof, and the same instant (T, S).
We then want to close edges to reach a fixed point, but the problem is that it is not always possible to do so by
only closing edges. Imagine for example that, in the configuration ω(T, S), no cluster contains more than

⌈
nb
⌉

vertices, meaning that Bbn is only made of clusters containing exactly
⌈
nb
⌉
vertices. Then, in this very unfavourable

situation, closing edges either does not affect
∣∣Bbn∣∣ or it diminishes

∣∣Bbn∣∣ by ⌈nb⌉, thus we cannot finely tune Bbn
only by closing edges.

To circumvent this problem, we will change what happened before the instant (T, S) so as to ensure that,
at this instant, we have at our disposal a cluster containing at least 2nb vertices. This will enable us to use our
surgery procedure on this cluster, to reach the exact desired value for

∣∣Bbn∣∣.
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n•x
•
y

H

|C(x)| > nb

|C(y)| > nb

Ln

Figure 10: If there is no cluster with size > 2nb, we reconstitute one by joining two clusters of size at least nb,
with a path using less than dLn edges.

But, to do so, we need to intervene on the past of the instant (T, S), which will make notations more
complicated. Namely, we will define a second coupling of configurations (ω′(t, s))t,s which is a copy of the first
coupling, except that the closure times of a certain number of edges are drawn again, allowing us to close or to
open these edges at different times.

Before diving into the proof, we detail our surgery procedure in the following two lemmas. The first one is a
lower bound on the number of edges to reopen to create a cluster of size at least 2nb.

Lemma 16. Let b ∈ (0, d). For every n > 1 and for any configuration ω ∈ {0, 1}En such that
∣∣Bbn(ω)

∣∣ > 2d+1nb,
there exists a set of edges H ⊂ En, such that

∣∣Cmax(ωH)∣∣ > 2nb and |H| 6 4d
n1+b/d

|Bbn(ω)|1/d
.

Proof. Let b ∈ (0, d) and ω ∈ {0, 1}En such that
∣∣Bbn(ω)

∣∣ > 2d+1nb. If |Cmax(ω)| > 2nb, then we choose H = ∅.
Let us now assume that |Cmax(ω)| < 2nb. Then all the clusters in Bbn(ω) contain between nb and 2nb vertices.
Therefore, there are at least

∣∣Bbn(ω)
∣∣ /(2nb) such clusters in the configuration ω. Now, if we divide the box Λ(n)

into hypercubic boxes of side

Ln =

⌈
2n

(
2nb

|Bbn(ω)|

)1/d
⌉
,

with boxes which may be smaller along the boundaries of Λ(n), the number of boxes is

⌈
n

Ln

⌉d
6

1

2

(∣∣Bbn(ω)
∣∣

2nb

)1/d

d

<

1

2

(∣∣Bbn(ω)
∣∣

2nb

)1/d

+ 1

d 6

∣∣Bbn(ω)
∣∣

2nb
.

Hence, there are strictly more boxes than the number of clusters with size at least nb. Therefore, by the pigeonhole
principle, at least one of these boxes must intersect two such clusters, which means that we can find x, y ∈ Λ(n)
such that

|C(x, ω)| > nb , |C(y, ω)| > nb , x 6ω←→ y and ‖x− y‖∞ 6 Ln .

We then have ‖x− y‖1 6 dLn, implying that there exists a path H ⊂ En of at most dLn edges which connects x
and y. Opening the edges of this path in ω creates a connection between two different clusters of size at least nb,
whence

∣∣Cmax(ωH)∣∣ > 2nb. What’s more, we have

|H| 6 dLn 6 d

(
21+1/dn1+b/d

|Bbn(ω)|1/d
+ 1

)
6
(
21+1/d + 1

)
d

n1+b/d

|Bbn(ω)|1/d
6 4d

n1+b/d

|Bbn(ω)|1/d
,

which completes the proof of this lemma.

34



The second geometrical lemma will tell us how many edges we need to close to adjust the size of Bbn:

Lemma 17. Let b ∈ (0, d). There exists K1 = K1(d) > 0 such that, for n > 1, for any configuration ω ∈ {0, 1}En

and any s ∈ N, if
12nb 6 s 6

∣∣Bbn(ω)
∣∣ 6 s+ 6nb and |Cmax(ω)| > 2nb , (43)

then there exists H ⊂ En such that∣∣Bbn(ωH)∣∣ = s and |H| 6 K1

(
s+ nb

) d−1
d .

Sketch of the proof: If we have at our disposal a big enough cluster, then we may reach
∣∣Bbn∣∣ = s by only

closing edges of this cluster. In this case, using the geometrical results of section 3, the idea is to cut Cmax(ω)
into one large piece of size m > nb and remaining pieces all of size < nb (see the left part of figure 11). Adjusting
the cutting so that m = |Cmax(ω)| −

∣∣Bbn(ω)
∣∣+ s yields the desired result.

But, for the above technique to work, we need this m to be greater than nb, so that the large piece of size m
still belongs to Bbn after the cutting. This is the case if |Cmax(ω)| > 7nb, because then m > 7nb − 6nb = nb.

In the case when |Cmax(ω)| < 7nb, we proceed differently. In this case, we first cut other intermediate clusters,
to reach a situation where s 6

∣∣Bbn∣∣ < s+nb (see the right part of figure 11). Then, we can use Cmax(ω) to reach
exactly

∣∣Bbn∣∣ = s, by disconnecting
∣∣Bbn∣∣−s vertices from Cmax(ω). Because we have assumed that |Cmax(ω)| > 2nb

and
∣∣Bbn∣∣−s < nb, we can ensure that the resulting cluster still contains at least nb vertices, and thus still belongs

to Bbn.

Proof. Let us now detail the strategy presented above. Let b ∈ (0, d), ω ∈ {0, 1}En and s ∈ N such that (43)
holds. We distinguish between two cases :
• First case: Assume that |Cmax(ω)| > 7nb. Letting m = |Cmax(ω)| −

∣∣Bbn(ω)
∣∣ + s, we can use lemma 1 to

find H1 ⊂ En with
|H1| 6 K |Cmax(ω)|(d−1)/d 6 K

(
s+ 6nb

)(d−1)/d

and such that closing the edges of H1 divides Cmax(ω) into one connected component of size exactly m, and
one or several other pieces, whose total size is |Cmax(ω)| −m =

∣∣Bbn(ω)
∣∣ − s 6 6nb. Using the butcher’s lemma

(lemma 2), this remaining part can be cut into pieces smaller than 3nb. Using again the butcher’s lemma on the
connected subpieces which contain strictly more than (3/2)nb vertices (there are at most 3 such subpieces), we
can cut them into pieces smaller than (3/2)nb. Repeating the operation on the eventual pieces containing strictly
more than (3/4)nb vertices (there are at most 7 such subpieces), we can cut them into pieces smaller than (3/4)nb.
Thus, using at most 11 times the butcher’s lemma, we obtain H2 ⊂ En such that |H2| 6 11× 4d+1d2

(
6nb
)(d−1)/d

and such that in the configuration ωH1∪H2 , the vertices of Cmax(ω) are separated into one cluster of size exactlym
and the remaining clusters which are all smaller than (3/4)nb < nb (see the left part of figure 11). Therefore,
writing H = H1 ∪H2 and using that

m = |Cmax(ω)| −
∣∣Bbn(ω)

∣∣+ s > 7nb − 6nb = nb ,

we obtain ∣∣Bbn(ωH)∣∣ =
∣∣Bbn(ω)

∣∣− |Cmax(ω)|+m = s

and
|H| 6 K

(
s+ 6nb

)(d−1)/d
+ 11× 4d+1d2

(
6nb
)(d−1)/d

6 6
(
K + 11× 4d+1d2

)(
s+ nb

)(d−1)/d
.

• Second case: Now assume that 2nb 6 |Cmax(ω)| < 7nb. The first step in this case is to find H1 ⊂ En such
that

s 6
∣∣Bbn(ωH1

)∣∣ < s+ nb . (44)

If we already have
∣∣Bbn(ω)

∣∣ < s + nb, then we take H1 = ∅. Assume now that
∣∣Bbn(ω)

∣∣ > s + nb. As explained
in the sketch of the proof, the idea to obtain (44) is to cut one or several intermediate clusters. By intermediate,
we mean clusters containing at least nb vertices but which are not Cmax. Each cutting of an intermediate cluster
will have to either yield directly (44) or to decrease

∣∣Bbn∣∣ by at least
⌈
nb
⌉
− 1, maintaining

∣∣Bbn∣∣ > s. Because we
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n

︸ ︷︷ ︸
size m = |Cmax(ω)| −

∣∣Bbn(ω)
∣∣+ s

H2

H1

Cmax

First case : |Cmax| > 7nb

=⇒ In both cases, we obtain
∣∣Bbn(ωH1∪H2

)∣∣ = s

n

︸ ︷︷ ︸
size m = |Cmax(ωH1)| −

∣∣Bbn(ωH1)
∣∣+ s

H2

H1

Cmax

Second case : |Cmax| < 7nb

Figure 11: First case: when |Cmax| > 7nb (picture on the left), we cut a piece of Cmax with the desired size m
(by closing H1) and we divide the remaining part of Cmax into pieces smaller than nb (by closing H2). Second
case: when |Cmax| < 7nb, we cut some intermediate clusters (by closing H1) and we adjust by cutting a piece
of Cmax with the desired size m (by closing H2). In both figures, the hatched region is Bbn(ω)\Bbn(ωH1∪H2

), i.e.,
the vertices whose cluster is no longer larger than nb after the cutting procedure.

start from s + nb 6
∣∣Bbn(ω)

∣∣ 6 s + 6nb, at most 6 such cuttings are necessary to eventually obtain (44). Let us
now detail the cutting we perform on these intermediate clusters. We look for H0 ⊂ En such that

s 6
∣∣Bbn(ωH0

)∣∣ 6
( ∣∣Bbn(ω)

∣∣− ( ⌈nb⌉− 1
))
∨
(
s+ nb − 1

)
. (45)

Notice that ∣∣Bbn(ω)
∣∣ > s > 12nb > |Cmax(ω)| ,

which allows us to choose x ∈ Bbn(ω)\Cmax(ω), meaning that the cluster Cx = C(x, ω) is larger than nb but it is
not the largest cluster (it is what we call an intermediate cluster). We now distinguish between several subcases
depending on the size of this cluster Cx:
◦ If |Cx| > 2

⌈
nb
⌉
− 2, then lemma 1 provides us with H0 ⊂ En such that∣∣C(x, ωH0

)∣∣ = |Cx| −
( ⌈
nb
⌉
− 1
)
.

We then have ∣∣Bbn(ωH0

)∣∣ =
∣∣Bbn(ω)

∣∣− ( ⌈nb⌉− 1
)
.

◦ If
⌈
nb
⌉

6 |Cx| < 2
⌈
nb
⌉
− 2 and

∣∣Bbn(ω)
∣∣ − |Cx| > s, then we choose a set of edges H0 ⊂ En such

that
∣∣C(x, ωH0

)∣∣ =
⌈
nb
⌉
− 1. In this case, we get∣∣Bbn(ωH0

)∣∣ =
∣∣Bbn(ω)

∣∣− |Cx| 6
∣∣Bbn(ω)

∣∣− ⌈nb⌉ .
◦ Otherwise, if

⌈
nb
⌉
6 |Cx| < 2

⌈
nb
⌉
−2 and

∣∣Bbn(ω)
∣∣−|Cx| < s, then we choose H0 such that

∣∣C(x, ωH0

)∣∣ =
⌈
nb
⌉
,

which entails that ∣∣Bbn(ωH0

)∣∣ =
∣∣Bbn(ω)

∣∣− ( |Cx| − ⌈nb⌉ ) < s+ nb .

In all three cases, H0 satisfies (45) and lemma 1 ensures that H0 can be chosen with

|H0| 6 K |Cx|(d−1)/d 6 K |Cmax(ω)|(d−1)/d 6 7Knb(d−1)/d .
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After closing this set of edges H0, we still have
∣∣Bbn∣∣ > s and, either

∣∣Bbn∣∣ < s + nb or
∣∣Bbn∣∣ has decreased by at

least nb−1. Therefore, we can repeat this operation, and after at most 6 steps, we obtain s 6
∣∣Bbn∣∣ < s+ nb. Thus,

we end up with H1 ⊂ En satisfying (44) and such that |H1| 6 42Knb(d−1)/d. As we have not touched Cmax(ω)
during this procedure, we still have

2nb 6
∣∣Cmax(ωH1

)∣∣ < 7nb .

Letting now
m =

∣∣Cmax(ωH1

)∣∣− ∣∣Bbn(ωH1

)∣∣+ s ,

it follows from (44) that
nb 6 m 6

∣∣Cmax(ωH1

)∣∣ .
Hence, using again lemma 1, we can find H2 ⊂ En with |H3| 6 K

(
7nb
)(d−1)/d and such that closing the edges

of H2 divides the cluster Cmax
(
ωH1

)
into one connected component of size exactly m and one or several other

connected components, whose total size is∣∣Cmax(ωH1

)∣∣−m =
∣∣Bbn(ωH1

)∣∣− s < nb .

Therefore, writing H = H1 ∪H2, we obtain∣∣Bbn(ωH)∣∣ =
∣∣Bbn(ωH1

)∣∣− ∣∣Cmax(ωH1

)∣∣+m = s ,

with
|H| 6 42Knb(d−1)/d + 7Knb(d−1)/d = 49Knb(d−1)/d .

In both cases, we obtain the claimed result, with K1 =
(
6K + 66× 4d+1d2

)
∨ (49K).

We are now in a position to prove our second lower bound on Zn.

Proof of lemma 15. As explained above, we define two couplings, in order to be able not only to close edges, but
also to reopen edges.
Definition of the two couplings: The first coupling is defined as in the previous proofs: we write En =
{e1, . . . , er} with r = |En|, and we consider i.i.d. random variables

(Xt,e)t∈{0, ..., nd−1}, e∈En

with Bernoulli law of parameter exp(−1/na). For t0 ∈
{

0, . . . , nd
}
, we define

ω(t0) : e ∈ En 7−→ min
06t<t0

Xt,e .

In addition to this, we draw a uniform random M ∈
{

0, . . . , nd
}
, uniform independent edges ε1, . . . , εM ∈ En

and i.i.d. random variables
(
X ′t,e

)
t6nd−1, e∈En

again with Bernoulli law of parameter exp(−1/na). The second
coupling of configurations is then defined by

∀ t0 ∈
{

0, . . . , nd
}

ω′(t0) : e ∈ En 7−→

{
min

06t<t0
X ′t,e if e ∈ {ε1, . . . , εM} ,

ω(t0) otherwise,

with again intermediate configurations defined for all t ∈
{

0, . . . , nd − 1
}
and s0 ∈ {0, . . . , r} by

ω′(t, s0) : es ∈ En 7−→

{
ω′(t+ 1)(es) if s 6 s0 ,

ω′(t)(es) otherwise.

Hence, the two decreasing couplings have the same law, with ω(t)
d
= ω′(t)

d
= Pϕn(t), and the second coupling

differs from the first one only on the edges ε1, . . . , εM . This set of edges is chosen at random, but we will be
interested in the probability that {ε1, . . . , εM} = H1 ∪ H2, where H1 is a set of edges which we want to leave
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open longer in the second coupling, and H2 is a set of edges which we want to close sooner in the second coupling.
Thus, this double coupling will allow us to perform the surgery procedure of lemmas 16 (which involves opening
edges) and 17 (which involves closing edges), starting from a given configuration in the first coupling. Note that,
instead of constructing such a double coupling, we could also have used the standard estimate of, for example,
lemma 6.3 in [CP00], about the price to open or close edges.

Reconstitution of a big enough cluster: As in the proof of lemma 14, we consider the instant (T, S) defined
by (40), which is such that

T + 1 6
∣∣Bbn(ω(T, S)

)∣∣ 6 T + 1 + 2nb .

With τ+
n defined as in (17) and τ−n given by

τ−n =

⌊
na
(
− ln

(
pc + 1

2

))⌋
,

we have

P
(
T /∈ [τ−n , τ

+
n ]
)

6 P
( ∣∣Bbn(ω(τ−n )

)∣∣ 6 τ−n + 1 + 2nb or
∣∣Bbn(ω(τ+

n )
)∣∣ > τ+

n + 1 + 2nb
)

6 P(pc+1)/2

( ∣∣Bbn∣∣ 6 τ−n + 1 + 2nb
)

+ Ppc/2
( ∣∣Bbn∣∣ > τ+

n + 1 + 2nb
)

n→∞−→ 0 , (46)

thanks to lemmas 12 and 13. This allows us, in the sequel, to reason conditionally on the event that τ−n 6 T 6 τ+
n .

Lemma 16 then provides us with H1 = H1

(
ω(T, S)

)
⊂ En such that the configuration ω(T, S)H1 , where the edges

of H1 are reopened, contains a cluster with at least 2nb vertices, and such that

|H1| 6 4d
n1+b/d

|Bbn(ω)|1/d
6 4d

n1+b/d

T 1/d
6 4d

n1+b/d

(τ−n )1/d
6 K ′n1+b/d−a/d (47)

for a certain K ′ > 0. We can choose this H1 minimal in the sense of inclusion, so that either H1 = ∅ if we already
had

∣∣Cmax(ω(T, S)
)∣∣ > 2nb or all the edges ofH1 belong to Cmax

(
ω(T, S)H1

)
which contains at most 4nb vertices,

so that in both cases,

T + 1 6
∣∣Bbn(ω(T, S)H1

)∣∣ 6
∣∣Bbn(ω(T, S)

)∣∣+ 4nb 6 T + 1 + 6nb .

Surgery step: The next step is to find a set of edges H2 = H2

(
ω(T, S)H1

)
⊂ En such that∣∣Bbn(ω(T, S)H1

H2

)∣∣ = T + 1 . (48)

Still assuming τ−n 6 T 6 τ+
n , applying lemma 17 with s = T + 1 > τ−n > 12nb, we can construct H2 ⊂ En, which

can be defined as a function of the configuration ω(T, S)H1 , satisfying (48) and whose cardinality is bounded by

|H2| 6 K1

(
T + 1 + 6nb

)(d−1)/d
6 K1

(
τ+
n + 1 + 6nb

)(d−1)/d
6 K ′′na(d−1)/d , (49)

for a certain K ′′ > 0, since τ+
n = O(na) and a > b.

The happy event: We now consider the event (where H1 = H2 = ∅ if T /∈ [τ−n , τ
+
n ])

E =


M = |H1|+ |H2| , {ε1, . . . , εM} = H1 ∪H2 ,

∀s > S es ∈ E
[
Bbn
(
ω(T, S)

)]
⇒ XT, es = 1 ,

∀e ∈ H1 ∀t ∈ {0, . . . , T} X ′t, e = 1 ,

∀e ∈ H2 X ′0, e = 0

 .

If this event occurs and τ−n 6 T 6 τ+
n , then we have∣∣Bbn(ω′(T + 1, 0)

)∣∣ =
∣∣Bbn(ω(T, S)H1

H2

)∣∣ = T + 1 ,
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whence
Zn > P

( ∣∣Bbn(ω′(T + 1, 0)
)∣∣ = T + 1

)
> P

(
E ∩

{
τ−n 6 T 6 τ+

n

} )
. (50)

As in the proof of lemma 8, we now take (t0, s0) and ω0 ∈ {0, 1}En such that τ−n 6 t0 6 τ+
n and

P
(
Ct0, s0, ω0

)
> 0 where Ct0, s0, ω0 =

{
(T, S) = (t0, s0) and ω(T, S) = ω0

}
.

Because H1 and H2 only depend on T and ω(T, S), we may consider the deterministic sets H1 and H2 associated
with T = t0 and ω(T, S) = ω0. Then we consider the event

Ẽt0, s0, ω0
=


M = |H1|+ |H2| , {ε1, . . . , εM} = H1 ∪H2 ,

∀s > s0 es ∈ E
[
Bbn
(
ω0

)]
⇒ Xt0, es = 1 ,

∀e ∈ H1 ∀t ∈ {0, . . . , t0} X ′t, e = 1 ,

∀e ∈ H2 X ′0, e = 0

 ,

which is independent of Ct0, s0, ω0
because Ct0, s0, ω0

depends only on the variables Xt, es with (t, s) 6 (t0, s0).
Therefore, we can write

P
(
E
∣∣ Ct0, s0, ω0

)
= P

(
Ẽt0, s0, ω0

∣∣∣ Ct0, s0, ω0

)
= P

(
Ẽt0, s0, ω0

)
=

1

nd + 1

(
1

nd

)|H1|+|H2| ∏
s>s0

es∈E[Bb
n(ω0)]

P
(
Xt0, es = 1

) ∏
e∈H1

t0∏
t=0

P
(
X ′t, e = 1

) ∏
e∈H2

P
(
X ′0, e = 0

)

>

(
1

nd + 1

)1+|H1|+|H2| (
e−1/na)|E[Bb

n(ω0)]|+|H1|(t0+1)(
1− e−1/na)|H2|

.

We now use the bounds (47) and (49) on |H1| and |H2|, the upper bound∣∣E [Bbn(ω0)
]∣∣ 6 d

∣∣Bbn(ω0)
∣∣ 6 d

(
t0 + 1 + 2nb

)
6 d

(
τ+
n + 1 + 2nb

)
and the fact that, for n large enough, 1− e−1/na

> 1/(nd + 1), to obtain

P
(
E
∣∣ Ct0, s0, ω0

)
>

(
1

nd + 1

)1+K′n1+b/d−a/d+2K′′na(d−1)/d

exp

(
−d(τ+

n + 1 + 2nb) + (τ+
n + 1)K ′n1+b/d−a/d

na

)
.

This bound being uniform with respect to t0, s0 and ω0 (as long as τ−n 6 t0 6 τ+
n ), we obtain that

P
(
E
∣∣ τ−n 6 T 6 τ+

n

)
>

(
1

nd + 1

)1+K′n1+b/d−a/d+2K′′na(d−1)/d

exp

(
− (d+K ′n1+b/d−a/d)(τ+

n + 1) + 2dnb

na

)
.

Plugging this into (50) and recalling (46), we get

lnZn > ln P
(
τ−n 6 T 6 τ+

n

)
−
(
1 +K ′n1+b/d−a/d + 2K ′′na(d−1)/d

)
ln
(
nd + 1

)
−
(
d+K ′n1+b/d−a/d)(τ+

n + 1
)

+ 2dnb

na

= o(1) +O
(
n1+b/d−a/d lnn

)
+O

(
na(d−1)/d lnn

)
= O

(
nc lnn

)
,

with c = (1 + b/d− a/d) ∨ (a− a/d).
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6.4 Proof of the convergence result
We now obtain the third case of theorem 1, proceeding as in section 4.4.

Proof of theorem 1, case Fn =
∣∣Bbn∣∣. Let ε > 0 and 0 < b < a < d. The upper bound

lim sup
n→∞

1

na
lnµn

(
pn < pc − ε

)
< 0 (51)

follows from the exponential decay in the subcritical regime (lemma 12) and the lower bound on Zn given by
lemma 14, using that b < a. Similarly, lemma 13 together with the other lower bound on Zn given by lemma 15
implies

lim sup
n→∞

1

nd−b/d
lnµn

(
pn > pc + ε

)
< 0 , (52)

using that

c =

(
1− a

d
+
b

d

)
∨
(
a− a

d

)
< 1 ∨

(
d− a

d

)
< d− b

d
.

To obtain a lower bound on µn
(
pn < pc − ε

)
, we use the same technique as in section 4.4, choosing this time a

parameter a′ ∈ (a, 2a− b). Using the notations of the proof of lemma 14 and t−n =
⌊
na
(
− ln(pc − ε)

)⌋
, we write

µn
(
pn < pc − ε

)
> P

(
E ∩

{
T > t−n

} )
> P

(
E ∩

{
t−n 6 T 6 na

′})
.

As in section 4.4, using that ϕn(t−n ) > pc − ε and ϕn
(
na
′) −→ 0 < pc/2, and using the exponential estimate of

lemma 12, we have

P
(
t−n 6 T 6 na

′)
> Ppc−ε

( ∣∣Bbn∣∣ > t−n + 1 + 2nb
)
− Ppc/2

( ∣∣Bbn∣∣ > na
′
)

> e−Cn
a

− e−C
′na′

>
e−Cn

a

2
.

Combining this with the lower bound (42) on the conditional probability P
(
E
∣∣T ), we obtain

1

na
lnµn

(
pn < pc − ε

)
> O

(
1

n2a−b−a′

)
− C − ln 2

na
n→∞−→ −C > −∞ . (53)

We now turn to the other lower bound. With t+n given by (2) we have

µn
(
pn > pc + ε

)
> Pϕn(t+n−1)

( ∣∣Bbn∣∣ = t+n − 1
)
. (54)

We now consider a configuration ω ∈ {0, 1}En such that
∣∣Bbn(ω)

∣∣ > t+n −1, and we use again the surgery procedure
detailed in section 6.3 to force

∣∣Bbn∣∣ = t+n −1. Dividing the box Λ(n) into hypercubic boxes of side Nn =
⌈
nb/d

⌉
− 1

(and hence of volume < nb), and closing all the edges on the boundaries of these boxes, we can find H1 ⊂ En
such that Bbn

(
ωH1

)
= ∅ and

|H1| = O

(
n

Nn
nd−1

)
= O

(
nd−b/d

)
.

Rather than closing all this set of edges H1, we choose a maximal subset H2 ⊂ H1 such that
∣∣Bbn(ωH2

)∣∣ > t+n − 1.
The maximality of H2 then ensures that

t+n − 1 6
∣∣Bbn(ωH2

)∣∣ 6 t+n − 1 + 2nb ,

since closing one edge can at most diminish
∣∣Bbn∣∣ by 2nb, as explained in the proof of lemma 14. Using now the

geometrical lemmas 16 and 17, we can find H3, H4 ⊂ En such that∣∣∣Bbn(ωH3

H2∪H4

)∣∣∣ = t+n − 1 with |H3| = O
(
n1+b/d−a/d) and |H4| = O

(
na(d−1)/d

)
.
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Following lemma 6.3 in [CP00], we obtain

Pϕn(t+n−1)

( ∣∣Bbn∣∣ = t+n − 1
)

>

(
1

O(nd)

)|H2|+|H3|+|H4|

Pϕn(t+n−1)

( ∣∣Bbn∣∣ > t+n − 1
)

> exp
(
−O

(
(lnn)nd−b/d

))
Ppc+ε

( ∣∣Bbn∣∣ > t+n − 1
)
.

Plugging this into (54) and recalling that the probability on the right-hand side tends to 1 according to lemma 13,
we obtain

1

(lnn)nd−b/d
lnµn

(
pn > pc + ε

)
> −∞ . (55)

The last case of theorem 1 then follows from (51), (52), (53) and (55).

6.5 A control on the convergence speed
We now make the previous arguments more precise, in order to obtain an estimate on the convergence speed of pn
towards the critical point pc. We assume that there exist real numbers β > 0, γ > 0 such that

lim sup
p→pc
p>pc

ln θ(p)

ln(p− pc)
6 β and lim inf

p→pc
p<pc

lnχ(p)

ln(pc − p)
> −γ ,

and we fix for all this part some real numbers a, b and c such that

0 < b < a < d and 0 < c < min

(
b

2γ
,
a− b
2γ

,
d− a
β

,
d− bd− b

2β

)
.

We also choose β′ and γ′ such that

β < β′ <
1− b
c
∧ d− a

c
and γ < γ′ <

b

2c
∧ a− b

2c
.

Therefore, we can find ε0 > 0 such that, for 0 < ε < ε0,

θ (pc + ε) > εβ
′

and χ (pc − ε) 6
1

εγ′
.

6.5.1 Subcritical phase

Lemma 18. We have the upper bound

∀ε > 0 ∀A > 0 lim sup
n→∞

1

na−2γ′c
ln Ppc−ε/nc

( ∣∣Bbn∣∣ > Ana
)
< 0 .

Proof. Take A > 0 and 0 < ε < pc. Without loss of generality, we can assume that ε < ε0. We repeat the proof
of lemma 12, but replacing p with pc − ε/nc. To control Pp

( ∣∣CΛ(n)(xi)
∣∣ > ni

)
, the upper bound (8) is no longer

sufficient, because we would need to specify the dependence in n of λ(pc− ε/nc). Thus, we use another inequality
provided by the same theorem 6.75 in [Gri99], which states that

∀p < pc ∀n > χ(p)2 Pp
(
|C(0)| > n

)
6 2 exp

(
− n

2χ(p)2

)
. (56)

With our choice of γ′, we have that

χ
(
pc −

ε

nc

)2

6
n2γ′c

ε2γ′
= o

(
nb
)
.
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Hence, the condition nb > χ (pc − ε/nc)2 is satisfied for n large enough. This allows us to apply (56) to get,
with Nn = 1 +

⌊
Ana−b

⌋
as in the proof of lemma 12,

Ppc−ε/nc

( ∣∣Bbn∣∣ > Ana
)

6
Nn∑
k=1

∑
x1, ..., xk∈Λ(n)

∑
nb6n1, ..., nk6n

d

n1+···+nk>An
a

k∏
i=1

2 exp

(
− ni

2χ(pc − ε/nc)2

)

6 Nnn
2dNn exp

(
−Aε2γ′na−2γ′c

)
.

Therefore, we obtain

1

na−2γ′c
ln Ppc−ε/nc

( ∣∣Bbn∣∣ > Ana
)

6
lnNn
na−2γ′c

+
2Nnd lnn

na−2γ′c
−Aε2γ′ = O

(
lnn

na−2γ′c

)
+O

(
1

nb−2γ′c

)
−Aε2γ′

= o(1)−Aε2γ′ ,

which proves the desired upper bound.

6.5.2 Supercritical phase

Lemma 19. We have the upper bound

∀ε > 0 ∀A > 0 lim sup
n→∞

1

nd−bd−2β′c
ln Ppc+ε/nc

( ∣∣Bbn∣∣ < Ana
)
< 0 .

This bound is much rougher than the bound we proved in lemma 13, but it presents the advantage of using
only θ(p) which we have assumed to scale as (p− pc)β . The counterpart is that it only works with b < 1.

Proof. We let N =
⌈
nb
⌉
, and we divide the box Λ(n) into smaller boxes of side 3N , leaving apart the remainder,

meaning that we write

Λ(n) ⊃
bn/(3N)cd⊔

i=1

Bi ,

where the boxes Bi = Λ(3N) + τi are disjoint translates of Λ(3N). If a vertex x ∈ Λ(N) is connected to the
boundary ∂Λ(3N), then the cluster of x in the box Λ(3N) contains at least N > nb vertices, whence

Sn
def
=

bn/(3N)cd∑
i=1

∣∣∣{x ∈ (Λ(N) + τi
)

: x
ω←→ ∂Bi inside Bi

}∣∣∣ 6
∣∣Bbn∣∣ .

The boxes Bi being disjoint, the variables in the above sum are pairwise independent. Besides, the expectation
of this sum is

Epc+ε/nc

[
Sn
]

>
⌊ n

3N

⌋d
Ndθ

(
pc +

ε

nc

)
>
⌊ n

3N

⌋d
Nd ε

β′

nβ′c
n→∞∼ εβ

′

3d
nd−β

′c .

Using that d− cβ′ > a, we deduce that, for n large enough, we have

Epc+ε/nc

[
Sn
]

> 2Ana .

Therefore, applying Hoeffding’s inequality (see [Hoe63]) yields that, for n large enough,

Ppc+ε/nc

(
Bbn < Ana

)
6 Ppc+ε/nc

(
Sn − Epc+ε/nc

[
Sn
]
< −1

2
Epc+ε/nc

[
Sn
])

6 exp

(
−

Epc+ε/nc

[
Sn
]2

2 bn/(3N)cdN2d

)
6 exp

(
−
⌊ n

3N

⌋d ε2β′

2n2β′c

)
,

which concludes the proof, using that bn/(3N)cd ∼ nd−bd/3d.
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6.5.3 Conclusion

Combining the lower bound on Zn obtained in lemma 14 and the results of lemmas 18 and 19, we get the
convergence of nc(pn − pc) to 0, using that

a− 2γ′c > b and d− bd− 2β′c > b .

In fact, using also the lower bound of lemma 15, a slightly larger admissible window for c can be obtained, namely

0 < c < min

(
b

2γ
,
d− a
β

,
max

[
a− b, a/d+ min(a− 1− b/d, 0)

]
2γ

,
d− bd+ max

[
− b, a/d−max(1 + b/d, a)

]
2β

)
,

but we have preferred to present the simpler condition in the statement of the theorem, since none of them is
optimal anyway.

6.6 An alternative model with cluster diameters
The variant obtained by replacing Bbn with the function B̃bn defined by (1) can be dealt with using the same
techniques. The main difference is that, instead of using theorem 6.75 of [Gri99], we use the theorem 5.4 therein,
which states that

∀p < pc ∃ψ(p) > 0 ∀n > 1 Pp
(

0
ω←→ ∂Λ(n)

)
6 e−nψ(p) .

Acknowledgments: We wish to thank an anonymous referee who suggested an improvement of our previous
version of lemma 13.
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