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Introduction

The interest in the consumption of foods that provide health benefits and possess attractive sensorial characteristics has always stimulated research, much of which has focused on bioactive compounds that promote health or provide sensory stimulation [START_REF] Marseglia | Extraction, identification and semi-quantification of oligopeptides in cocoa beans[END_REF]. Accordingly, cocoa and its derivatives have been well studied with this approach. Cocoa has been recognized as an important source of polyphenols [START_REF] Demidchik | Mechanisms of oxidative stress in plants: From classical chemistry to cell biology[END_REF], flavonoids [START_REF] Patras | Identification of novel cocoa flavonoids from raw fermented cocoa beans by HPLC-MSn[END_REF], catechins, procyanidins [START_REF] Cádiz-Gurrea | Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract[END_REF], amino acids (Marseglia, Palla, & Caligiani, 2014), polypeptides, and oligopeptides [START_REF] Marseglia | Extraction, identification and semi-quantification of oligopeptides in cocoa beans[END_REF]. To this list may include compounds that add sensory properties to the product, known as "single-origin" [START_REF] Torres-Moreno | Dark chocolate acceptability: Influence of cocoa origin and processing conditions[END_REF], which are of interest to both researchers and consumers. Transversally, these studies may repeatedly denote homogeneity, but the increased understanding of food chemistry that they have provided has underpinned new guidelines and motivated consumption. In addition, nowadays, the focus on food characteristics related to geographic origin is often prioritized. Furthermore, the study of compounds or metabolites not reported so far ("unknown") is facilitated by the use of analytical tools with higher resolution and sensitivity.

According to these perspectives, the study of novel compounds like phytoprostanes (PhytoPs) and phytofurans (PhytoFs) is of interest Abbreviations: BHA, Butylated hydroxyanisole; ALA, α-linolenic acid; FAMEs, fatty acids methyl esters; GC-MS, Gas chromatography-mass spectrometry; IsoPs, isoprostanes; LOD, limit of detection; LOQ, limit of quantification; MRM, multiple reaction monitoring; Nfr2, nuclear factor erythroid-2; OS, oxidative stress; PCA, principal components analysis; PhytoFs, phytofurans; PhytoPs, phytoprostanes; PUFA, polyunsaturated fatty acids; PVDF, polyvinylidene fluoride; ROS, reactive oxygen species; RSD, relative standard deviation; SD, standard deviation; SPE, solid-phase extraction; UHPLC-ESI-QqQ-MS/MS, ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry ⁎ Corresponding authors at: Quality, Safety and Bioactivity of Plant Foods Group, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100
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T because it is known that they play a role in the regulation of immune function [START_REF] Barden | Flaxseed oil supplementation increases plasma F1-phytoprostanes in healthy men[END_REF] and display anti-inflammatory and apoptosis-inducing activities, among others, similar to other prostanoids [START_REF] Durand | Isoprostanes and phytoprostanes: Bioactive lipids[END_REF]. These metabolites are prostaglandin-like compounds (plant oxylipins) derived from the lipid peroxidation of polyunsaturated fatty acids (PUFAs), such as α-linolenic acid (ALA, C18:3n-3), via a nonenzymatic free-radical-catalyzed pathway [START_REF] Jahn | A cautionary note on the correct structure assignment of phytoprostanes and the emergence of a new prostane ring system[END_REF]. In the biosynthesis of IsoPs which are oxidative stress (OS) markers in mammals, a carbon radical undergoes a 5-exo-trig cyclization (Baldwin rules (Baldwin, 1976;[START_REF] Baldwin | Rules for ring closure: Ring formation by conjugate addition of oxygen nucleophiles[END_REF]) to form the cyclopentane ring of isofurans (IsoFs) [START_REF] Jahn | Beyond prostaglandins-chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids[END_REF][START_REF] Morrow | A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism[END_REF]. Meanwhile, the PhytoPs -like PhytoFs -are oxylipins which may be formed from ALA, but they require a high oxygen tension (higher than 21%) to attack the same carbon radical as PhytoPs and form compounds containing a tetrahydrofuran ring. So, the IsoFs are characterized by a tetrahydrofuran ring and two side chains. These bioactive compounds act as endogenous mediators capable of protecting cells from damage under various conditions related to OS [START_REF] Loeffler | B(1)-phytoprostanes trigger plant defense and detoxification responses[END_REF].

In the scientific literature, PhytoPs and PhytoFs have been reported in numerous natural or unprocessed products, as also in processed products (as shown Supplementary Table S1), but, so far, these compounds have not been reported in cocoa beans. For this reason, the objective of the present work was to assess, for the first time, the concentrations of PhytoPs and PhytoFs in cocoa bean from different clones. Hence, a comparative study of the content of PhytoPs and PhytoFs by UHPLC-MS/MS was developed in cocoa beans obtained from the same farm, the same period of flowering and ripeness of the fruits. In addition, the same process of fermentation and drying was assured. Only the variety of the genetic material of the cocoas was varied. The profile of these metabolites was studied in conjunction with the fatty acids levels. The value of these matrices as a source of these largely unknown oxylipins needs to be addressed in order to plan nutritional trials devoted to shed some light on their biological activity.

Materials and methods

Chemicals and reagents

The PhytoPs -9-F 1t -PhytoP, 9-epi-9-F 1t -PhytoP, ent-16-F 1t -PhytoP, ent-16-epi-16-F 1t -PhytoP, 9-D 1t -PhytoP, 9-epi-9-D 1t -PhytoP, ent-16-B 1 -PhytoP, 16-B 1 -PhytoP, ent-9-L 1 -PhytoP, and 9-L 1 -PhytoP -were synthesized according to our published procedures [START_REF] El Fangour | Total synthesis of the eight diastereomers of the syn-anti-syn phytoprostanes F1 types I and II[END_REF][START_REF] El Fangour | A flexible synthesis of the phytoprostanes B1 type I and II[END_REF][START_REF] Pinot | Total synthesis of the four enantiomerically pure diasteroisomers of the phytoprostanes E1Type II and of the 15-E2t-Isoprostanes[END_REF]. The PhytoFs -ent-16-(RS)-9-epi-ST-Δ 14 -10-PhytoF, ent-9-(RS)-12-epi-ST-Δ 10 -13-PhytoF, ent-9-(S)-12-epi-ST-Δ 10 -13-PhytoF, ent-9-(R)-12-epi-ST-Δ 10 -13-PhytoF, and ent-16-(RS)-13-epi-ST-Δ 14 -9-PhytoF -were synthesized according to our previous reports [START_REF] Cuyamendous | Synthesis and discovery of phytofurans: Metabolites of [small alpha]-linolenic acid peroxidation[END_REF] (Fig. 1). Hexane, sodium hydroxide (NaOH), anhydrous sodium sulfate, and water for LC-MS were obtained from Panreac (Castellar Del Vallés, Barcelona, Spain). Fatty acid methyl ester (FAME) Mix Supelco GLC-50, GLC-100, CLA isomers (c9 t11 CLA and t10 c12 CLA), nonanoic acid (C9:0), heptadecanoic acid (C17:0), boron trifluoride (BF 3 ), and Bis-Tris (bis(2-hydroxyethyl) amino-tris(hydroxymethyl)methane) were obtained from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). Methylene chloride was purchased from Labscan Ltd (Dublin, Ireland). All LC-MS grade solvents, methanol, and acetonitrile were purchased from J.T. Baker (Phillipsburg, New Jersey, USA). The SPE cartridges (Strata X-AW 33µ, 100 mg/3 mL) were acquired from Phenomenex (Torrance, CA, USA), and the Sep-Pak® classic C18 cartridges from Waters (Milford, MA).

Geographical origin of the samples

Cocoa (Theobroma cacao) trees were cultivated, and their cobs fermented and extracted, at the "Cannes" (Maceo) experimental farm, located 132 km from Medellín, Department of Antioquia, Colombia (Supplementary Material). Cannes is situated 1000 m above sea level (6°31'16.62"N and -74°49'25.57"W), the annual average temperature is 23 °C, the annual precipitation is 2700 mm, and the mean relative humidity is 80%. The study included 31 different clones of cocoa beans grown on the experimental farm, which were classified according to their denomination on the farm (three criollos, three criollos modernos, four forasteros, two forasteros albinos, ten regionals, and nine trinitarios) (Table 1). For the harvest of samples, the period of cocoa grown known as "traviesa" (crossbred) was selected (from May to June of 2016); this was after the first flowering of the year, but before the main harvest. The fruit ripeness was determined by an expert farmer; healthy and representative cobs were selected from each clone batch grown on the experimental farm. The extraction of the cocoa beans was done the same day for all the samples. The beans were separated inside plastic meshes and labelled for subsequent identification. The meshes with the beans were arranged in fermentation drawers. The fermentation process was developed in a place covered in the same area of cocoa crop and was performed at room temperature spontaneously and in wooden drawers designed in three columns by three rows with a capacity of 150 kg per drawer. The three central horizontal drawers were used, and labelled as drawer 1, drawer 2 and drawer 3. The monitoring and evolution was developed under the guidance of a farmer and a FEDE-CACAO (National Federation of Cocoa-Colombia) technician with expertise in the cocoa fermentation process. The fermentation was performed with beans that were healthy and free of impurities such as leaves or insects, for six days, guaranteeing the death of the embryo in each bean.

A natural drying process was performed on wooden platforms in a marquee dryer. The meshes were opened and the beans were carefully extended, ensuring that the clones were not mixed. The drying was completed on the seventh day, as indicated by the cracking of the beans and the, development of a kidney shape and brown colour. Samples (18 cocoa beans in triplicate) were processed and analysed up to one month after collection on the farm. The samples were stored at -80 °C before being extracted for further analyses.

Processing of cocoa beans

The PhytoPs and PhytoFs from the cocoa beans samples were isolated using a dispersive liquid-liquid extraction followed by an SPE, according to a procedure described by Collado-González, Medina et al. (2015) with modifications. Each sample was ground in a coffee mill to obtain a semi-fine cocoa powder (< 1000 µm), homogenized, and weighed (about 2 g), before being added to a mortar together with 10 mL of BHA dissolved in methanol (1 g L -1 ). Then, the homogenized sample was transferred to a centrifuge tube and centrifuged for 10 min at 4 °C and 2000g. The supernatant was filtered in a C18 Sep-Pak (previously activated with 10 mL of methanol and 10 mL of water). Exactly 1 mL of the extract was diluted with 10 mL of hexane, 2 mL of methanol, and 2 mL of BIS-TRIS buffer (0.02 M, HCl, pH = 7); between each addition the mixture was stirred vigorously. The emulsion obtained was subjected to SPE using a Strata X-AW cartridge (100 mg/ 3 mL); prior to this, the cartridge was conditioned and equilibrated with 2 mL of hexane, 2 mL of methanol, and 2 mL of milliQ water. After removal of the non-subject compounds, the cartridge was washed with 2 mL of hexane, 2 mL of milliQ water, 2 mL of a solution of methanol/ milliQ water (1/3, v/v), and 2 mL of acetonitrile. The target compounds were eluted with 1 mL of methanol and dried using a SpeedVac concentrator (Savant SPD121P, Thermo Scientific, MA, USA). The dry extracts were reconstituted with 200 μL of mobile phase (solvent A, a mixture of milliQ water/0.01% (v/v) acetic acid, and solvent B, a solution of methanol/0.01% (v/v) acetic acid, in a proportion of 90:10 v/ v, respectively). The samples were filtered through 0.45-μm PVDF filters (Millipore, MA, USA) and 20 μL of each sample were analysed. The samples were analysed in triplicate.

Stock solutions of PhytoFs and PhytoPs were prepared in methanol/ water (50:50, v/v), to facilitate the ionization process in the mass spectrometer, at a concentration of 1000 nM for each compound and stored in Eppendorf tubes at -80 °C. Twelve successive dilutions were prepared for the calibration curve (with R 2 value higher than 0.99).

Measurements

Phytofurans and phytoprostanes analyses

The identification and quantification of PhytoFs and PhytoPs were performed using a UHPLC coupled to a 6460 triple quadrupole-MS/MS (Agilent Technologies, Waldbronn, Germany), with a BEH C 18 analytical column (2.1 × 50 mm, 1.7 μm) (Waters, Milford, MA). The column temperature was 6 °C. The mobile phases consisted of water/acetic acid (99.99:0.01, v/v) (A) and methanol/acetic acid (99.99:0.01, v/v) (B) and 20 µL of the diluted extract was injected at a flow of 0.2 mL min -1 . The following gradient program was used: 60% B at 0 min, 62% B at 2 min, 62.5% B at 4 min, 65% B at 8 min, and 60% B at 8.01 min. The acquisition time was 8.01 min for each sample, with a post-run of 1.5 min for column equilibration. Analysis was performed in the negative mode by Criollo Big Criollo -3 Criollo Big Regional -1 Regional Middle Regional -2 Regional Small Regional -3 Regional Middle Regional -4 Regional Big Regional -5 Regional Big Regional -6 Regional Middle Regional -7 Regional Small Regional -8 Regional Middle Regional -9 Trinitario Big Regional -10 Regional Middle Regional -11 Table 1 Cacao clones evaluated and their respective characteristics. Small bean size: (< 1.4 g/grain); middle (1.4-1.6 g/ grain); big (≥1.6 g/grain).

multiple reaction monitoring (MRM). The MS parameters fragmentor (ion optics: capillary exit voltage), collision energy, and preferential MRM transition of the corresponding analytes were optimized for each analyte (Table 2). The source parameters used were gas flow: 8 L min -1 ; gas temperature: 325 °C; sheath gas temperature: 350 °C; jetstream gas flow: 12 L min -1 ; nebulizer: 30 psi; capillary voltage: 3000 V; and nozzle voltage: 1750 V. Data acquisition and processing were performed using MassHunter software version B.04.00 (Agilent Technologies). The elution gradient and mass spectrometric parameters were as described previously (Collado-González, Medina, et al., 2015). The quantification of PhytoPs and PhytoFs detected in cocoa clones was performed using authentic standard according to standard curve freshly prepared as mentioned in the previous Section 2.3.

Fatty acid profile

The analysis of fatty acids was performed by methylating these compounds in situ, following the procedure described by [START_REF] Taber | A nomenclature system for the isoprostanes[END_REF] and later improved by [START_REF] Trigueros | Fatty acid and conjugated linoleic acid (CLA) content in fermented milks as assessed by direct methylation[END_REF]. The cocoa beans were ground, homogenized, and weighed. A sample of approximately 40 mg was transferred into a test tube. 60 µL of C17:0 in n-hexane solution as internal standard (-20 mg mL -1 solution in HPLC grade n-hexane) was added. Then, 100 mL of methylene chloride and 1 mL of 0.5 M NaOH in methanol were added, and the tubes were heated in a water bath at 90 °C for 10 min. One milliliter of BF 3 in methanol was added and the mixture was left at room temperature (25 °C) for 30 min. One milliliter of distilled water and 600 mL of hexane were added, and then the fatty acids methyl esters (FAMEs) were extracted by vigorous shaking for about 1 min. Following centrifugation, aliquots were dried with anhydrous sodium sulfate and the top layer was transferred into a vial flushed with nitrogen, which was stored at -20 °C until analysis. The FAMEs were analysed using GC-MS with a SupraWax-280 column, 100% polyethylene glycol (Teknokroma S. Co. Ltd., 165 Barcelona, Spain; 30 m × 0.25 mm × 0.25 µm film thickness). The analyses were carried out using helium as carrier gas at a flow rate of 1.1 mL min -1 and a program as follows: initial temperature 80 °C, hold for 2 min; rate of increase of 8.0 °C min -1 to 160 °C; rate of 4 °C min -1 from 160 to 220 °C, hold for 13 min; and rate of 10 °C min -1 from 220 to 260 °C, hold for 6 min. The injector and detector temperatures were held at 230 and 260 °C, respectively; 0.5 µL of the extract was injected. The analyses were run in duplicate.

Statistical analysis

To determine the effect of each factor on each individual PhytoP, PhytoF, and PUFA, an analysis of variance (ANOVA, p ≤ 0.05), Pearson's correlation analysis of the different variables studied and multiple range test (Tukey's test) were carried out using the SPSS program, version 23.0 (SPSS Inc., Chicago, IL, USA). Mean values were compared by the LSD (Least Significant Difference) test when significant interactions between factors were found.

Results and discussion

Oxidative stress is a complex chemical and physiological phenomenon that accompanies practically all the biotic and abiotic stresses in plants [START_REF] Hasanuzzaman | Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor[END_REF]. It develops as a result of the overproduction and accumulation of reactive oxygen species (ROS) [START_REF] Demidchik | Mechanisms of oxidative stress in plants: From classical chemistry to cell biology[END_REF].

In this study, we selected the Cannes experimental farm because it is located in an area of cocoa production in the region of Antioquia, Colombia. This farm has a rich clone plantation; the cocoa trees are the same age and there are many different clones. In addition, the abiotic stresses (such as drought, salinity, cold, high light/UV-B, heat, air pollution, heavy metals, mechanical wounding, and nutritional deficiency [START_REF] Nakabayashi | Integrated metabolomics for abiotic stress responses in plants[END_REF]) influencing the beans were considered homogeneous for all samples, as was the biotic stress experienced during fermentation. These variables, although influencing the formation of the target metabolites, were assumed to be constant and, although they may have exerted some influence on the results obtained, the impact of the genetic resource (clones) was assumed to be far superior. However, as far as we know, this is the first report where different classes of PhytoPs have been detected and quantified in fermented and dried cocoa beans of different clones; and as a result it was determined statistically different PhytoP and PhytoF levels were found among the different cocoa beans clones (Tables 3 and4). They were independent of a classification like criollo (and criollo moderno), regional, forastero, or trinitario cocoa. The results of statistical tests are shown in Supplementary Table S2. PhytoPs and PhytoFs were detected in all the cocoa beans samples analysed, except for some specific samples in which they were below the LOD (Tables 3 and4) and with respect to recovery percentages were in the range of 85 and 123% for all the analytes (PhytoPs and PhytoFs) according to our recent published validated method [START_REF] Domínguez-Perles | Sorting out the phytoprostane and phytofuran profile in vegetable oils[END_REF]. The identification of these free PhytoPs was confirmed according to their pseudomolecular ions, the characteristic MS/MS fragmentation product ions (quantification and confirmation transitions), and their corresponding retention times (Collado-González, Medina, et al., 2015). PhytoPs and PhytoFs are formed non-enzymatically as regio-and stereoisomeric mixtures, so the analytical conditions employed in our study did not allow enantiomeric separation; therefore, they are quantified in the cocoa beans samples as racemic mixtures of PhytoPs and PhytoFs (Fig. 1). It is important to note that ent-16-epi-16-F 1t -PhytoP + ent-16-F 1t -PhytoP are epimers at position C16; ent-9-(RS)-12-epi-ST-Δ 10 -13-PhytoF + ent-9-(S)-12-epi-ST-Δ 10 -13-PhytoF + ent-9-(R)-12-epi-ST-Δ 10 -13-PhytoF are a racemic mixture at position C9 (50% 9R and 50% 9S); and 16-B 1t -PhytoP + ent-16-B 1t -PhytoP and 9-L 1 -PhytoP + ent-9-L 1 -PhytoP represent racemic mixtures that are not separable in our chromatographic conditions (Collado-González, Medina, et al., 2015).

The total PhytoPs and PhytoFs amounts in the cocoa beans ranged from 221.46 to 1589.83 and 1.18 to 13.13 ng g -1 , respectively, being Criollo-2 and Regional-8 the clones with the highest concentration of PhytoPs and PhytoFs, respectively (Tables 3 and4). Moreover, the greatest proportion of the PhytoPs profile of the samples was represented by the series F 1t -, while the series B 1 -, L 1 -, and D 1t -were detected at lower levels, corresponding to ranges of 209.46 to 1558.44, 3.04 to 46.35, 2.11 to 26.34, and 1.82 to 21.79 ng g -1 , respectively. These results are consistent with those reported previously for Passiflora edulis Sims shell, macroalgae, and red wine [START_REF] Barbosa | Nonenzymatic α-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes[END_REF][START_REF] Marhuenda | Dependency of phytoprostane fingerprints of must and wine on viticulture and enological processes[END_REF][START_REF] Medina | Quantification of phytoprostanes -bioactive oxylipins -and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS[END_REF]. In relation to PhytoFs, there are few studies of these compounds. [START_REF] Cuyamendous | Synthesis and discovery of phytofurans: Metabolites of [small alpha]-linolenic acid peroxidation[END_REF] described for the first time the synthesis of PhytoFs and quantified the compound ent-16(RS)-13-epi-ST-Δ 14 -9-PhytoF in nuts (pine nuts and walnuts) and seeds (flaxseeds and chia seeds). [START_REF] Yonny | Thermal stress in melon plants: Phytoprostanes and phytofurans as oxidative stress biomarkers and the effect of antioxidant supplementation[END_REF] studied PhytoFs in melon leaves, but they did not find ent-16(RS)-13epi-ST-Δ 14 -9-PhytoF; conversely, in cocoa beans, this PhytoF was the most abundant (Table 3). Accordingly, the profile of the individual series differed significantly among the samples of the cocoa clones analysed. Furthermore, differences in genotype could also affect the apparent PhytoPs content and series in plant samples [START_REF] Carrasco-Del Amor | Impact of packaging atmosphere, storage and processing conditions on the generation of phytoprostanes as quality processing compounds in almond kernels[END_REF]Collado-González, Medina et al., 2015;[START_REF] Collado-González | The phytoprostane content in green table olives is influenced by Spanish-style processing and regulated deficit irrigation[END_REF]. On this matter, a study of different types of nuts (walnut, macadamia, and pecan) was reported by [START_REF] Carrasco-Del Amor | Impact of processing conditions on the phytoprostanes profile of three types of nut kernels[END_REF]. This work showed that the PhytoP profile varied according to the nut type, and possibly according to the given genotype within specie. This could explain the results in our study -where the qualitative and quantitative PhytoP profiles varied greatly among the cocoa clones, but they were also affected by factors such as the growing conditions and chemical composition with respect to ALA, OA, LA and other lipids, and tocopherols. These compounds varied tremendously within the species, according to environmental variability, geographical origin, temperature, and irrigation [START_REF] Zhu | Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis)[END_REF]. Further studies are needed to investigate if the cultivation of the same cocoa clones in different areas has a real effect on the production of specific PhytoPs and Phy-toFs.

The importance of PhytoPs and PhytoFs is related not only to plant physiology but also to their biological effects in humans, since they are part of our diet and their presence has already been reported in human biofluids [START_REF] Barden | Flaxseed oil supplementation increases plasma F1-phytoprostanes in healthy men[END_REF]. They can reach the gastrointestinal tract and interact with the gut microflora. In fact, there is evidence that these bioactive lipid derivatives can modify the functions of the immune systems [START_REF] Durand | Isoprostanes and phytoprostanes: Bioactive lipids[END_REF] and neuronal systems [START_REF] Minghetti | Nonenzymatic oxygenated metabolites of α-linolenic acid B1-and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-γ activation[END_REF]. Furthermore, there is similarity between the plant and mammalian stress responses. In this sense, [START_REF] Medina | Quantification of phytoprostanes -bioactive oxylipins -and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS[END_REF] tentatively proposed that the effect of PhytoPs on human physiological 

Table 4

Individual series of PhytoPs levels (ng g -1 ) in cacao beans. The values are represented as means ± SD (standard deviation). ND: not detected or not quantified.

Samples (r = 0.357); total PhytoFs and C16:1 and C20:0 (r = 0.406 and r = -0.477, respectively); 9-F 1t -PhytoP and C18:1 (r = 0.433); 9-epi-9-D 1t -PhytoP and C14:0 (r = -0.439); ent-16-B 1 -PhytoP + 16-B 1 -PhytoP and C16:1 (r = -0.395); ent-9-L 1 -PhytoP + 9-L 1 -PhytoP and C16:1 (r = -0.391); ent-9-(RS)-12-epi-ST-Δ 10 -13-PhytoF + ent-9-(S)-12-epi-ST-Δ 10 -13-PhytoF + ent-9-(R)-12-epi-ST-Δ 10 -13-PhytoF and C14:0 (r = 0.648); ent-16-(RS)-13-epi-ST-Δ 14 -9-PhytoF and C14:0, C16:0; C18:0, and C18:3 (r = 0.438, r = 0.424, r = -0.416, and r = 0.485, respectively). Although the correlation of the results is positive in this preliminary analysis, it should not be attributed solely to this correlation among the series of the PhytoPs, PhytoFs and FAMEs. In future assays, it should be considered other physicochemical phenomena linked to the biotic and abiotic factors that can occur both in the harvest and postharvest periods of the cocoa fruits. According to previous studies, the formation of these compounds develops from the attack of ROS on ALA. But, as we indicated previously in the results, only ent-16-(RS)-13-epi-ST-Δ 14 -9-PhytoF showed a positive correlation, in accordance with [START_REF] Cuyamendous | Synthesis and discovery of phytofurans: Metabolites of [small alpha]-linolenic acid peroxidation[END_REF]. Notably, flaxseeds showed the highest C18:1 level but had a relatively low ent-16-(RS)-13-epi-ST-Δ 14 -9-PhytoF level compared to walnuts and chia seeds, that contained less C18:1. However, pine nuts had the lowest ALA level and the lowest ent-16-(RS)-13-epi-ST-Δ 14 -9-PhytoF level; but, it was also established in the same study that the relative concentrations of ent-16-(RS)-13-epi-ST-Δ 14 -9-PhytoF do not necessarily express the relative C18:1 concentrations in walnuts and chia seeds.

9-F 1t -PhytoP 9-epi-9-F 1t -PhytoP ent-16-epi-16-F 1t -PhytoP + ent-16-F 1t -PhytoP 9-D 1t -PhytoP 9-epi-9-D 1t -PhytoP ent-16-B 1 -PhytoP + 16-B 1 -PhytoP ent-9-L 1 -PhytoP + 9-L 1 -PhytoP Criollo moderno

Conclusions

The study of PhytoPs and PhytoFs can be considered recent, and it has been carried out in several matrices; such as rice, walnuts, almonds, melon plants (leaves), macroalgae, wines and musts, vegetables oils, among others. However, this is the first identification and quantification of these compounds in dry fermented cocoa beans. mechanisms could be related to different metabolic processes. For instance, PhytoPs can activate the stress-sensing mammalian transcription factor Nrf2 (nuclear factor erythroid-2) [START_REF] Heiss | Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata[END_REF]. This transcription factor is an emerging regulator of cellular resistance to oxidants and it controls and induces expression of the antioxidant response. Accordingly, Nrf2 activation contributes to several beneficial bioactivities of natural products. In this sense, the benefits o f fruit consumption may be due to the interactions of different bioactive compounds (flavonoids, o ther p olyphenols, a nd P hytoPs, among others), since they could activate the Nrf2 pathway and increase expression of the antioxidant response [START_REF] Waltenberger | Natural products to counteract the epidemic of cardiovascular and metabolic disorders[END_REF].

In relation to cocoa or its derivatives, the capacity of this food has been hypothesized to activate the Nrf2 factor, but it is associated with flavan-3-ol(-) -epicatechin [START_REF] Shah | The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway[END_REF]. Accordingly, the results of the present study show the presence and diverse concentrations of the different series o f PhytoPs i n cocoa b eans, a nd can f ormulate the contribution of PhytoPs in favor of the reduction of the risk of ischemic heart disease. As previously stated by [START_REF] Carrasco-Del Amor | Phytoprostanes in almonds: Identification, quantification, and impact of cultivar and type of cultivation[END_REF] and [START_REF] Marhuenda | Dependency of phytoprostane fingerprints of must and wine on viticulture and enological processes[END_REF], this study also supports the importance of PhytoPs and PhytoFs as relevant OS biomarkers in plants.

Furthermore, the FAME profile was determined with the objective of comparing it with the concentrations and profiles o f P hytoPs and PhytoFs; as mentioned above, ALA is the precursor of both PhytoPs and PhytoFs, so some relationship between this fatty acid and the oxylipins under study here was expected. Other fatty acids from cocoa beans were measured in order to find p ossible c orrelations w ith P hytoPs and PhytoFs synthesis. The result of this analysis was expressed as g Kg -1 and it is presented in Table 5. The most important fatty acids, for types of cocoa beans, were C16:0, and C18:0 and C18:1. Pearson correlations were made between the totals and each of the series of PhytoPs, Phy-toFs, and FAMEs. The results showed medium linear correlations, with a level of significance of p < 0.05 between the total PhytoPs and C18:1

Table 5

FAMEs levels in cacao beans. The values are represented as g Kg -1.

The results obtained show dry fermented cocoa beans to be a rich source of PhytoPs and PhytoFs. In fact, the individual concentrations of the PhytoPs and PhytoFs reported in the present study are higher than in other matrices studied. Moreover, the concentrations of the PhytoPs and PhytoFs determined in the different cocoa clones showed significant differences among them, but unrelated to the classification: criollo, criollo moderno, regional, forastero, and trinitario. One well known characteristic of cocoa is the quantity and quality of its fatty acids and fats, which implies their theoretical correlation with the profiles of the studied compounds. But, taking into account the lack of correlation with ALA and other fatty acids, the variation in the concentrations of PhytoPs and PhytoFs may be attributed to the biotic and abiotic stressors to which the plants are exposed. Also, this variation may be due to other characteristics of the matrix, such as the presence of antioxidants and equivalent molecules, followed by variations in the genetic resource, the origin of the cocoa crop, and the fermentation and drying processes. This information may be very useful for cocoa industries and for the development of the cocoa growing regions.

Fig. 1 .

 1 Fig. 1. Chemical structures of phytoprostanes and phytofurans (named according to the ((Collado-González et al., 2016) Taber/Roberts nomenclature).

Table 2

 2 UHPLC-QqQ-MS/MS parameters for the quantification and confirmation of phytoprostanes and phytofuranes. Z Quantification transition. Y Confirmation transition. X Coeluting diastereoisomers quantified together.

	Compound	Retention time (min)	ESI mode	MRM transition (m/z)	Fragmentor (V)	Collision energy (V)
	Phytoprostanes					
	Ent-16-epi-16-F 1t -PhytoP X	1.583	Negative	327.1 > 283.2 Z 327.1 > 225.1 Y	80 80	15 15
	9-F 1t -PhytoP	1.631	Negative	327.2 > 273.1	110	15
				327.2 > 171.0	110	15
	Ent-16-F 1t -PhytoP X	1.712	Negative	327.2 > 283.2	80	10
				327.2 > 225.1	80	10
	9-epi-9-F 1t -PhytoP	1.785	Negative	327.2 > 272.8	110	10
				327.2 > 171.0	110	10
	9-D 1t -PhytoP	1.791	Negative	325.2 > 307.3	100	4
				325.2 > 134.7	100	4
	9-epi-9-D 1t -PhytoP	2.022	Negative	325.2 > 307.2	100	7
				325.2 > 134.9	100	7
	16-B 1 -PhytoP	2.620	Negative	307.2 > 223.2	100	10
				307.2 > 235.1	100	100
	9-L 1 -PhytoP	3.079	Negative	307.2 > 185.1	110	7
				307.2 > 196.7	110	7
	Phytofurans					
	Ent-9-(RS)-12-epi-ST-Δ 10 -13-PhytoF	0.906	Negative	344.0 > 300.0	110	10
				344.0 > 255.9	110	10
	Ent-16-(RS)-9-epi-ST-Δ 14 -10-PhytoF	1.501	Negative	343.9 > 209.0	90	12
				343.9 > 201.1	90	12
	Ent-16-(RS)-13-epi-ST-Δ 14 -9-PhytoF	1.523	Negative	343.0 > 171.1	90	22
				343.0 > 97.2	90	

Table 3

 3 Individual series of PhytoFs levels (ng g -1 ) in cacao beans. The values are represented as means ± SD (standard deviation). ND: not detected or not quantified.

	Samples	ent-16-(RS)-9-epi-ST-	ent-9-(RS)-12-epi-ST-Δ 10 -13-PhytoF + ent-9-(S)-12-epi-ST-Δ 10 -13-PhytoF + ent-9-(R)-12-epi-ST-Δ 10 -13-PhytoF ent-16-(RS)-13-epi-
		Δ 14 -10-PhytoF		ST-Δ 14 -9-PhytoF
	Criollo moderno -1 1.13 ± 0.08	0.99 ± 0.05	1.51 ± 0.15
	Criollo moderno -2 ND	ND	1.26 ± 0.34
	Criollo moderno -3 1.09 ± 0.06	ND	1.55 ± 0.62
	Criollo -1	ND	ND	ND
	Criollo -2	1.18 ± 0.07	0.97 ± 0.22	3.31 ± 0.12
	Criollo -3	ND	ND	ND
	Regional -1	ND	ND	ND
	Regional -2	1.48 ± 0.13	1.12 ± 0.10	2.96 ± 0.36
	Regional -3	0.99 ± 0.05	ND	2.19 ± 0.07
	Regional -4	1.49 ± 0.07	1.55 ± 0.04	1.11 ± 0.05
	Regional -5	0.95 ± 0.08	ND	1.00 ± 0.09
	Regional -6	1.88 ± 0.18	2.21 ± 0.18	ND
	Regional -7	ND	ND	ND
	Regional -8	2.70 ± 0.39	2.94 ± 0.21	7.49 ± 0.30
	Regional -9	1.08 ± 0.15	ND	1.74 ± 0.30
	Regional -10	1.33 ± 0.28	1.37 ± 0.10	2.38 ± 0.37
	Regional -11	1.09 ± 0.00	ND	2.24 ± 0.24
	Albino -1	1.20 ± 0.03	ND	2.13 ± 0.35
	Albino -2	1.56 ± 0.21	1.20 ± 0.08	2.79 ± 0.35
	CCN-51	1.80 ± 0.11	ND	3.29 ± 0.07
	FMT-1	1.39 ± 0.03	1.10 ± 0.13	3.06 ± 0.26
	FTU-6	1.00 ± 0.17	ND	1.01 ± 0.13
	CAU-37	1.38 ± 0.13	1.58 ± 0.31	2.06 ± 0.06
	EET-8	ND	ND	1.38 ± 0.17
	EET-96	1.05 ± 0.03	ND	2.14 ± 0.80
	FMAC-11	1.38 ± 0.20	1.08 ± 0.11	1.82 ± 0.18
	FMAC-12	1.01 ± 0.02	1.14 ± 0.06	1.60 ± 0.47
	ICS-1	ND	ND	ND
	ICS-39	ND	ND	ND
	ICS-95	1.18 ± 0.19	ND	ND
	TSH-565	1.58 ± 0.09	1.30 ± 0.12	2.23 ± 0.32
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