
HAL Id: hal-02417391
https://hal.science/hal-02417391v1

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FLUSH + PREFETCH: A Countermeasure Against
Access-driven Cache-based Side-Channel Attacks

M Asim Mukhtar, Maria Mushtaq, M Khurram Bhatti, Vianney Lapotre, Guy
Gogniat

To cite this version:
M Asim Mukhtar, Maria Mushtaq, M Khurram Bhatti, Vianney Lapotre, Guy Gogniat. FLUSH +
PREFETCH: A Countermeasure Against Access-driven Cache-based Side-Channel Attacks. Journal
of Systems Architecture, 2020, 104, pp.101698. �10.1016/j.sysarc.2019.101698�. �hal-02417391�

https://hal.science/hal-02417391v1
https://hal.archives-ouvertes.fr

FLUSH + PREFETCH: A Countermeasure Against Access-driven Cache-based Side-Channel Attacks

Journal Pre-proof

FLUSH + PREFETCH: A Countermeasure Against Access-driven
Cache-based Side-Channel Attacks

M. Asim Mukhtar, Maria Mushtaq, M. Khurram Bhatti,
Vianney Lapotre, Guy Gogniat

PII: S1383-7621(19)30505-3
DOI: https://doi.org/10.1016/j.sysarc.2019.101698
Reference: SYSARC 101698

To appear in: Journal of Systems Architecture

Received date: 18 March 2019
Revised date: 23 October 2019
Accepted date: 30 November 2019

Please cite this article as: M. Asim Mukhtar, Maria Mushtaq, M. Khurram Bhatti,
Vianney Lapotre, Guy Gogniat, FLUSH + PREFETCH: A Countermeasure Against Access-
driven Cache-based Side-Channel Attacks, Journal of Systems Architecture (2019), doi:
https://doi.org/10.1016/j.sysarc.2019.101698

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.sysarc.2019.101698
https://doi.org/10.1016/j.sysarc.2019.101698

FLUSH+PREFETCH: A Countermeasure Against Access-driven Cache-based
Side-Channel Attacks

M. Asim Mukhtara,∗, Maria Mushtaqb, M. Khurram Bhattic, Vianney Lapotred, Guy Gogniate

aInformation Technology University (ITU), 4th Floor, ASTP, 346-B, Ferozepur Road, Lahore, Pakistan, E-mail: mh.asim.mukhtar@gmail.com
bUniversity of South Brittany, Rue Saint-Maude, Lorient, France, E-mail: maria.mushtaq@univ-ubs.fr

cInformation Technology University (ITU), 4th Floor, ASTP, 346-B, Ferozepur Road, Lahore,Pakistan E-mail: khurram.bhatti@itu.edu.pk
dUniversity of South Brittany, Rue Saint-Maude, Lorient, France, E-mail: vianney.lapotre@univ-ubs.fr

eUniversity of South Brittany, Rue Saint-Maude, Lorient, France, E-mail: guy.gogniat@univ-ubs.fr

Abstract

Cache-based side-channel attacks (SCAs) are becoming a security threat to the emerging computing platforms. To mitigate these
attacks, numerous countermeasures have been proposed. However, these countermeasures require either radical hardware mod-
ification or they are incompatible with the performance features like super-page and data de-duplication. This paper presents
a countermeasure, called Flush+Prefetch, which obfuscates the memory access behavior of a secure application using indepen-
dent threads that randomly access the memory belonging to secure application. Unlike existing state-of-the-art countermeasures,
Flush+Prefetch works with commodity hardware and it is compatible with existing performance features. As a proof-of-concept,
we have studied the effectiveness of Flush+Prefetch by defending the secret key of RSA cryptosystem against a high-resolution
cache side-channel attack called Flush+Reload. We have evaluated the confidentiality of RSA decryption process on an Intel Xeon
E5-2643 processor by generating 100, 000 requests to a web-server sequentially while considering the effect on performance as
well. Our experimental results show that the confidentiality of memory accesses by RSA is preserved under Flush+Prefetch coun-
termeasure. Our results show that the performance, in terms of average execution time, is improved by 10.2% for best design case
as compared to the system under attack.

Keywords:
Side-Channel Attacks (SCAs); Access Driven Cache-based SCAs; Obfuscation based Countermeasure; Noise; Flush+Reload;
RSA.

1. Introduction

Cloud computing is an emerging computing paradigm in
which multiple virtual machines (VMs) are developed on a
same physical machine [1, 2]. Each virtual machine gets an
abstraction of the shared physical machine provided by under-
lying layer known as virtual machine monitor (VMM). VMM
takes care of isolation and exclusive resources between the vir-
tual machines. The magnitude of sharing of physical hardware
between virtual machines is fundamental to cloud economy but
it raises security issues [3, 4, 5, 6, 7]. The most recent at-
tacks known as Side-Channel Attacks (SCAs) exploit the shared
physical resources even in existence of strict VMM isolation or
theoretically secure cryptographic ciphers.

Access-driven cache-based side-channel attacks are an im-
portant class of cache based side channel attacks. These attacks
have gained interest in research community because these can
break popular cryptosystems with high accuracy. For example,
Yarom et al. [8] have presented the Flush+Reload attack that
retrieves up to 96.7% of secret key by observing the sequence
of memory accesses made by RSA. RSA is considered to be

∗Corresponding author.
1Declarations of interest: none

theoretically secure cipher and its strength depends on the fac-
torization of two large prime numbers [9]. Cache-based SCAs
are of particular concern for modern security efforts in classical
computer architectures that run cryptosystems as they are capa-
ble of successfully retrieving the secret cryptographic informa-
tion without the knowledge of factorization of prime number.

Recently, various software and hardware based countermea-
sures have been proposed against cache-based SCAs [10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20]. However, these counter-
measures require radical hardware modifications or these are in-
compatible with the performance features like super-pages, data
de-duplication and simultaneous-multithreading. For example,
Shi et al.[13], Kim et al. [14] and Ji et al. [21] have proposed
partitioning of cache using software-based techniques in order
to mitigate cache-based SCAs, but these are incompatible with
the super-pages [22], which yields slowing down of application
by up to 10% to 33% [23]. Also, Liu et al. [18] have proposed
randomization of memory-to-cache mappings in order to miti-
gate cache-based SCAs, but this countermeasure requires radi-
cal modifications in hardware, which unfortunately have not be-
ing adopted in mainstream processors. Thus, it is imperative to
design a countermeasure against cache-based SCAs that works
on commodity hardware and does not disable the widely used

Preprint submitted to Journal of Systems Architecture December 6, 2019

performance features such as super-pages, data de-duplication,
and simultaneous-multithreading, along with the strong secu-
rity guarantees.

Our proposed countermeasure that we call Flush+Prefetch
works on commodity hardware without disabling performance
features. The proposed countermeasure requires minor mod-
ification at application level and works in multi-threading
environment. This countermeasure takes benefit from two
limitations of software-based cache attacks: 1) the attacks
cannot identify the source that has generated a particular
cache access and 2) These cannot detect multiple operations
on a particular cache line. These limitations are exploited
by injecting noise in cache access pattern through the use of
concurrent threads that contain prefetch or clflush instructions.
Doing so randomly encodes cache access pattern such that
the attacker cannot extract the encryption/decryption key from
cache access information. As a proof-of-concept, we have
analyzed the security of RSA against Flush+Reload attack.

This paper makes the following contributions:

• We have designed and implemented two obfuscation
mechanisms called as Flush+Prefetch, integrated with ap-
plication that are independent to applications execution
path in order to mitigate access-driven cache side-channels
attacks. Flush+Prefetch requires fewer software modifi-
cation and can execute on commodity hardware without
disabling hardware performance features like super-pages,
data de-duplication and simultanueous-multithreading.

• We have evaluated the security of these mechanisms
by defending the secret key of RSA cryptosystem
against a high-resolution cache side-channel attack called
Flush+Reload attack. We have analyzed 100, 000 mem-
ory access traces of RSA in presence of Flush+Prefetch
countermeasure to show the confidentiality of secret key.

• We have evaluated the performance overhead of
Flush+Prefetch countermeasure for both mechanisms
and find that performance overhead is smaller than
previous state-of-the-art single path programming based
countermeasure [24].

The remainder of this paper is organized as follows. Section
2 provides related work and background on cache-based side
channel attacks, countermeasure techniques and Flush+Reload
attack. Section 3 presents our proposed Flush+Prefetch coun-
termeasure technique for SCAs. Section 4 presents the results
of our experimental evaluation in detail. Section 5 compares
our countermeasure with other application level countermea-
sures. Section 6 discuses the synchronization and generaliza-
tion aspect of our countermeasure. Finally, Section 7 concludes
this paper.

2. Related Work & Background

In this section, we provide overview of cache based SCAs
and related countermeasures, and background on Flush+Reload
attack and RSA cryptographic cipher.

2.1. Cache-Based SCAs and Countermeasures

As caches are shared among processes, execution time of
co-running processes varies based on contention among cache
lines. By carefully orchestrating the contention, memory ac-
cess trace of any co-running processes can be extracted, such
attacks are known as access-driven cache based-side channel
attacks. These attacks have been extensively studied in past
few decades [25, 26, 8, 3, 27, 28, 29, 30, 31, 32]. Initially,
the attacks were presented on single core architecture, which
required to compromise OS scheduler for successful attack
[25, 28, 29, 30]. Recently, these attacks have been presented
on multi-core architecture without the assumption of compro-
mising OS/VMM, which is a more realistic assumption [26, 8].
Among these, Flush+Reload attack is the fastest and accurate
attack and have been raising high-security threat when it is
combined with other microarchitectural vulnerabilities such as
demonstrated in Meltdown [33] and Spectre [34] attacks.

To mitigate these attacks, numerous countermeasures have
been proposed by modifying the components of system soft-
ware, hardware or applications [22, 13, 14, 15, 21, 10, 35, 24].
At system and hardware -levels, countermeasures mainly mod-
ify the page allocation algorithm or cache controllers to elimi-
nate sharing among processes. These countermeasures require
radical modifications and do not guarantee compatibility with
features such as data-deduplicaiton, superpages and simulta-
neous multithreading (SMT) [22]. Therefore, these counter-
measures have not being adopted in mainstream processors. As
compared to these, modifications at application-level are rela-
tively easy and flexible. Brickell et al. [10] have modified the
AES implementation to introduce compaction, randomisation
and preloading of lookup table for hiding the real memory ac-
cess trace in noise. However, this implementation incurs high
performance overhead of about 100% to 120% and it is specific
to AES implementation. Crane et al. [35] used dynamic soft-
ware diversity to obfuscate the cache access traces by randomly
executing the multiple different copies of the security-critical
part of the application. However, this countermeasure also in-
curs high performance overhead of about 76%. Rane et al. [24]
have presented a compiler-based solution named as Raccoon
that made memory access trace constant by modifying the ex-
ecution behavior of secret dependent branches in an applica-
tion. The performance overhead of Raccoon becomes signifi-
cantly larger when number of branches increases. Most of the
application-level countermeasures have reported high overhead
because of extraneous execution path comes in the critical path
of application. Unlike previous application-level countermea-
sure, Flush+Prefetch decouples the extraneous execution path
from the critical execution path of application.

2.2. Flush+Reload Attack

In this article, we take Flush+Reload as a proof-of-concept
to show the effectiveness of our countermeasure. Therefore,
we discuss this attack in detail for an understanding of the fol-
lowing sections. The Flush+Reload attack fundamentally ex-
ploits the timing difference of cache hit as compared to cache
miss. Figure 1 shows how the attack works. One round of

2

Flush+Reload attack technique consists of three distinct phases:
Flush, Wait, and Reload as shown in Figure 1. In the first phase,
attacker, while targeting shared Last-Level Cache (LLC), first
evicts a shared cache line of interest using clflush instruction.
[8]. In the second phase, attacker waits for a prefixed duration
and allows victim to execute. In the last phase, attacker us-
ing mov instruction reloads the same cache line it had evicted
earlier and measures its loading time using rdtsc instruction.
A slow reload would indicate that attacker is the only process
touching that particular cache line, thus every reload will cause
a cache miss and will take more time to fetch data from main
memory. A faster reload, however, indicates that the victim pro-
cess also touched the cache line of interest while attacker was
in his wait phase, thus a cache hit for attacker and it takes less
time to fetch data from cache. Figure 1 shows various possi-
bilities during an attack round. Case-A shows that the victim
process does not access cache line at all, while Case-B shows
the victim accessed once. Significant difference in the reload
time is measured. Case-C shows the victim’s access can over-
lap the reload phase of attacker, which allows victim to benefit
from attacker’s reload for execution. The attacker, in this case,
reports a cache miss for himself. Case-D shows an opposite
scenario when attacker benefits from victim’s access. Case-E
shows the likelihood of not missing on any access by the vic-
tim if attacker targets a cache line of interest belonging to loop
body. Flush+Reload has high resolution as it targets specific
cache lines that belong to operations of cryptosystem.

Figure 1: Timing of Flush+Reload. (A) No Victim Access (B)With Victim
Access (C) Victim Access Overlap (D) Partial Overlap (E) Multiple Victim
Accesses [8].

2.3. RSA − Exploitation by Flush+Reload Attack

RSA is a cryptographic cipher typically used for encryption
and signing. It computes modular exponents in order to encrypt
or sign data. There are many implementations of RSA distin-
guished upon the procedure used for computation of modular
exponents. One of the computation procedure found in RSA is
known as Square-and-Multiply. We skip math behind this pro-
cedure because cache side-channel attacks exploit implemen-

tation rather than math behind procedure. Therefore, we dis-
cuss the implementation details of Square-and-Multiply only.
Algorithm 1 shows the part of the Square-and-multiply imple-
mentation of RSA. This code takes s (boolean array of secret
bits), x (character of plain text) and m (value of modulus) as
an input, and it returns result of xs mod m (modular exponent)
as an output. To compute such exponent, this code executes
Square (Line 4), Multiply (Line 7) and Barrett (Lines 5 and
8) operations in each iteration of loop (Line 3). The sequence
of these operations depend on a bit value of s (Lines 3-10)
in each iteration, i.e, computing sequence of Square-Barrett-
Multiply-Barrett on HIGH bit of s but computing only Square-
Barrett on LOW bit of s. Intuitively, each of these operations
accesses different memory locations during execution, which
means accessing of specific memory location corresponds the
activation of secret-dependent operations (Square, Multiply or
Barrett). In the view of attacker who can extract the memory
access traces via cache side-channel attacks, it can recover the
secret bits by back tracing the memory accesses. For example,
Figure 2 shows the sequence of operations made by Square-
and-Multiply implementation of RSA that are extracted through
Flush+Reload attack and back traced bits of key. In this fig-
ure, red, purple and green colors represent the memory accesses
by Square, Multiply and Barrett operations respectively. Addi-
tionally, the horizontal length of each color indicates multiple
memory accesses taken per one activation of specific operation
because attacker has targeted the loops in the each procedure.
The consecutive Square-Barrett operations indicate skipping of
Multiply-Barrett operation because the condition of ”If” state-
ment in Algorithm 1 (Line 6) is false, thereby recovering the
LOW secret-bit against first Square-Barrett operation.

Algorithm 1 Square-and-Multiply implementation of RSA

1: procedure Squ–Mul-Exp (s[], x, m)
2: r← 1;
3: for i from n − 1 downto 0 do
4: r← SQUARE(r); . square operation
5: r←Mod(r,m); . barrett operation
6: if s[i] == 1 then
7: r←Multiply(r, x); . multiply operation
8: r←Mod(r,m); . barrett operation
9: end if

10: end for
11: end procedure

3. Flush+Prefetch −Proposed Countermeasure

Flush+Reload is a category of cache-based SCAs that has
demonstrated the extraction of cryptographic key by monitor-
ing cache accesses generated by RSA decryption process. The
Flush+Prefetch countermeasure takes benefit from two limita-
tions of Flush+Reload type of attacks. The first limitation is the
fact that such attacks cannot identify the source (thread) that has
fetched data in cache line. This limitation can be elaborated in a
situation where the attacker thread is targeting a cache line that

3

Figure 2: Graphical representation of memory accesses of RSA extracted via
cache side-channel.

is shared between multiple concurrent threads. The attacker,
in his reload phase, cannot distinguish whether the cache ac-
cesses are being generated by the concerned thread (victim) or
any other concurrent thread. Thus, cache accesses generated
by unconcerned threads, i.e., other than victim, are noise from
the attacker’s perspective. We refer such noise as Positive noise
since it has a positive effect on the execution time of victim
thread due to increased cache hits.

The second limitation is the fact that such attacks cannot de-
tect multiple operations on a particular cache line. Exploiting
this limitation enables the countermeasure to hide or misrepre-
sent the information related to the exact cache accesses of the
victim thread. This limitation can be elaborated in a situation
where the attacker evicts a particular cache line in his first phase
(i.e., eviction) and then waits for the victim to access that cache
line. During this wait phase of the attacker, if the victim or some
other concurrent thread evicts the concerned cache line after be-
ing used by the victim and immediately before the reload phase
of the attacker, it will result in a cache miss for the attacker,
which was otherwise supposed to be a cache hit from the at-
tacker’s perspective. This increases the attacker’s likelihood of
missing cache accesses by victim. Thus, the pattern shown in
Figure 2 that is required by the attacker is either hidden or mis-
represented. We refer such noise as Negative noise since it has a
negative effect on the execution time of victim thread due to the
possibility of increased cache miss for the victim. Eviction of
the concerned cache lines by an independent concurrent thread
can potentially effect the hit rate of both victim and attacker
threads.

The term Noise refers to the extraneous memory/cache oper-
ations that are used to obfuscate memory access information of
application leaking via cache side-channel attacks. Depending
on the type of memory/cache operations, we introduced two
types of noises, i.e. (1) Positive noise that is generated using
memory read operations and (2) Negative noise that is gener-
ated using cache flush operations. Given that the application
having temporal locality and is under attack, the word positive
and negative with noise indicate the decreasing and increasing
effect on the execution time of the application under attack re-
spectively, which is discussed in detail in Section 3.1 and 3.2.

The Flush+Prefetch countermeasure against Flush+ Reload
attack on Square-and-Multiply implementation of RSA cryp-
tosystem uses both positive and negative noise and their com-
bination to preserve confidentiality. Flush+Prefetch creates in-
dependent concurrent threads for positive and negative noise

that share victim thread’s address space. We have selected the
way of adding noise using independent threads rather than inte-
grating countermeasure (prefech and flush instruction) in RSA
code because of performance reasons. Integration of prefetch
and flush instructions in RSA will greatly degrade the perfor-
mance. This is because we have to fetch all security critical
instructions before use and have to add in critical path of RSA
program (similarly as in single path programming). However,
in our proposed countermeasure, the prefetch and flush instruc-
tions are executing through independent threads generated by
the RSA process and not in the critical path of RSA program.

In contrast to previous countermeasures, Flush+Prefetch
benefits in the following ways. First, the integration of noise
threads does not raise incompatibility with super pages be-
cause it is designed to use standard widely available interfaces
of computer systems without modification, i.e., multithread-
ing environment, multithreading libraries, and instructions like
prefetch and clflush. Second, Flush+Prefetch does not suggest
disabling of SMT feature to mitigate first-level-cache attacks
because it adds noise in all cache levels by prefetching or flush-
ing locations from all the cache levels. Lastly, Flush+Prefetch
mitigates the cache attacks even though the data-deduplication
is allowed in the computer system. Data-deduplication en-
ables the sharing of memory among the process and makes it
easy to launch the cache attacks. Our countermeasure obfus-
cates the secret information extracted through the cache side-
channel. Therefore, the information leaking via cache attacks
using shared or unshared memory becomes irrelevant to our
countermeasure.

3.1. Positive Noise

The positive noise thread uses prefetch instructions to fetch
memory locations in the cache to add extraneous memory ac-
cesses. These extraneous memory accesses are independent
of the security critical information and therefore obfuscate the
memory access information. This noise thread is designed to
execute concurrently with the victim thread. Therefore, dif-
ferent cases are possible based on memory accesses made by
positive noise thread relative to victim thread. Figure 3 shows
these possibilities.

Case-A shows that positive noise thread has only generated
the memory access during wait phase of the attacker. The at-
tacker, in this case, cannot distinguish the source of access (pos-
itive noise or victim) and takes memory access as generated by
the victim. This confusion results in loss of temporal pattern
of cache accesses (discussed in Section 2.2). Hence, the vic-
tim achieves confidentially through obscurity. Case-A is further
elaborated in Figure 4 with real execution trace. Figure 4 shows
the cache access pattern captured by attacker in the presence of
positive noise, which is introduced in Square operations of RSA
(Square-and-Multiply implementation). In Figure 4, square hits
in the highlighted area are due to the prefetching of positive
noise thread instead of square operations being performed by
the victim thread. During reload phase of the attacker, the pos-
itive noise thread makes it difficult for the attacker thread to
distinguish between actual square operations performed by the

4

Figure 3: Timing information of Flush+Prefetch: Different cases of positive
noise.

victim thread and the prefetching operations performed by the
positive noise thread.

Figure 4: Cache access pattern: Prefetching by positive noise thread in Square
& Multiply loops.

Case-B in Figure 3 shows that both positive noise thread and
victim thread have generated the memory access during wait
phase of the attacker. During reload phase, the attacker deduces
correct information that victim has actually generated a mem-
ory access. In this case, positive noise thread is acting only as
a prefetch for the victim thread. This particular case does not
help improving confidentiality. However, given that the victim
having temporal locality, the latency of some memory access
made by victim is reduced because of prefetching victim’s data
in cache and this results in faster execution of victims program
under attack.

Case-C in Figure 3 is similar to Case-B except the positive
noise thread is executed after the victim thread. This situation
contributes neither in achieving confidentiality nor in improv-
ing the execution time of victim thread. Same as in Case-B,
both positive noise and victim threads have accessed the mem-
ory during the wait phase of attacker. Therefore, during reload
phase, the attacker deduces correct information that victim has
actually generated a memory access. Also, in the wait phase,
the positive noise thread is executed after the victim thread that
does not help victim to prefetch data from main memory. Thus,
the execution time remains the same as without positive noise
thread.

Given that the application is under attack, cases A,B and C
occur multiple times in the presence of positive noise. The over-

all effect of these cases results in obfuscating the memory ac-
cess trace leaked via cache side channel attack and improved
execution time of application under attack.

3.2. Negative Noise
The negative noise thread uses cflush instruction to evict the

cache lines targeted by the attacker. The negative noise thread
executes concurrently with other threads similar to the positive
noise thread. Therefore, different cases are possible based on
instant of execution of negative noise thread relative to other
threads. Figure 5 shows these possibilities.

Figure 5: Timing information of Flush+Prefetch: Different cases of negative
noise.

Case-A in Figure 5 shows that, during the wait phase of at-
tacker, the negative noise thread is executed after the victim
thread. In this case, the negative noise thread evicts the shared
cache line that victim thread had cached earlier and used. The
attacker, in its reload phase, would still register a cache miss
as it will not find information cached by the victim. Thus, the
attacker deduces incorrect information about the victim’s ac-
cess pattern as victim has actually generated a memory access,
which is evicted by the negative noise thread immediately after
use. This causes the victim’s access invisible to attacker.

Case-B in Figure 5 shows that the negative noise thread is ex-
ecuted before the victim’s thread. This situation does not con-
tribute in hiding victim thread’s access pattern from the attacker
in reload phase. The attacker, in its reload phase, would register
a cache hit that is correct information about victim’s access pat-
tern. This helps the attacker to capture some of the accesses by
victim as shown in highlighted area in Figure 6 and the negative
noise will not be useful. Figure 6 shows negative noise being
introduced in the Barrett operation of RSA.

Figure 6: Cache access pattern: Eviction by negative noise thread in Barrett
loop.

Another expected case between victim and noise threads is
that both request the same memory location at the same time.

5

The bus arbiter makes such concurrent memory accesses of
both threads in a sequence of which order depends on the ar-
biter policy. Therefore, this case ends up becoming either Case
B or C of Figure 3 or either Case A or B of Figure 5.

3.3. Design Cases for Square-and-Multiply implementation of
RSA

Square-and-Multiply implementation of RSA is vulnerable
because of the existence of relation between key bits and ac-
cesses form instruction-cache (or I-cache), particularly related
to the Square procedure in Algorithm 1, as discussed in Section
2.3.

There are three vulnerable procedures in Algorithm 1 that
relate to the secret key , i.e, Square, Multiply and Barrett, .
From Attacker’s perspective, the activation pattern of Square
and Multiply procedures reveal information related to the length
of secret key and the number of HIGH bits in the key, respec-
tively. Activation of Barrett procedure indirectly relates to the
key because it is activated after every individual activation of
Square and Multiply procedures. For example, if the length of
key is 1024 bits with 505 HIGH bits in it, then the activation of
Square, Multiply and Barrett procedures will be 1024, 505 and
1529 (= 1024 + 505) times, respectively.

The rationale for Flush+Prefetch technique is motivated from
the fact that blind noise injection will not preserve confidential-
ity even when the relationship between key bits and access of
instruction-cache lines is known. We argue that, it might seem
as if injecting noise in I-cache lines that belong to Square pro-
cedure of Algorithm 1 will preserve the confidentiality of pri-
vate key, but it is not sufficient. To support this argument, we
consider an example of execution of three threads namely; an
Attacker thread with Flush+Reload technique, a Victim thread
containing Square-and-Multiply implementation of RSA, and
a Positive Noise thread targeting cache lines related to Square
procedure. Figure 4 shows the resulting pattern captured by the
attacker. The attacker was able to capture the ”hit square” and
”hit multiply”, which represent cache accesses for instructions
of Square and Multiply procedures, respectively, as shown in
the highlighted zone. Since Square-and-Multiply algorithm is
not designed to execute any two procedures in parallel, there-
fore, the actual cache accesses for execution of Square proce-
dure can be easily separated by ignoring the ”hit square” that
occur in parallel to ”hit multiply” and secret key information
can still be retrieved. Nevertheless, the attacker needs to mod-
ify Flush+Reload technique to perform this separation of access
type. It is imperative, however, to add noise in an intelligent
manner in cache lines belonging to all procedures that some-
how relate to the key to ensure confidentiality. Along with the
security, performance is the another aspect that need to be taken
care while the selection of noises for memory locations. Neg-
ative noise negatively impacts the performance if added on the
memory locations that are most frequently accessed by RSA
within the short period of time. Whereas, positive noise posi-
tively impacts the performance either the memory locations is
frequently or least frequently accessed by RSA. To find which
type of noise should be used for interested memory location, it

is required to analyze the impact on performance experimen-
tally by individually adding each noises on interested memory
locations. Based on this experiment, we have shown that mem-
ory locations belonging to barrett procedure of RSA can be used
with negative noise in section 4.1.

The Flush+Prefetch technique presents two cases of noise
injection in multiple cache lines of vulnerable procedures to
ensure confidentiality with minimum performance degradation.
In the first case, Flush+Prefetch technique introduces positive
noise in cache lines belonging to all vulnerable procedures
(Square, Multiply, and Barrett) simultaneously, as illustrated in
Figure 7. From the perspective of confidentiality, such noise
makes it difficult for the attacker to extract an otherwise obvi-
ous access pattern. Another advantage of such noise injection
is that it decreases cache misses for the victim and therefore
improves its execution time as discussed in Case-B of Section
3.1.

 Victim Thread

Attacker Thread

Positive Noise

Thread

Barrett Cache Location

Square Cache Location

Multiply Cache Location

Figure 7: Design Case 1: Positive noise in Square, Multiply & Barrett loops.

 Victim Thread

Attacker Thread

Positive Noise

Thread

Negative Noise

Thread

Barrett Cache Location

Square Cache Location

Multiply Cache Location

Figure 8: Design Case 2: Positive noise in Square & Multiply loops, negative
noise in Barrett loop.

In the second case, Flush+Prefetch technique proposes to in-

6

ject mixed noise using both positive and negative noise threads.
In this case, the negative noise is injected in cache lines be-
longing to Barrett procedure and the positive noise is injected
in cache lines belonging to Square and Multiply procedures as
illustrated in Figure 8. From the perspective of confidential-
ity, mixing negative noise with positive noise on selected pro-
cedures makes it very difficult for the attacker to extract any
specific access pattern. A potential drawback of negative noise
injection could be the increased performance penalty as the vic-
tim will have increased cache misses. Flush+Prefetch tech-
nique addresses this issue by injecting negative noise in cache
lines belonging to Barrett procedure only as the number of ac-
cesses generated for cache lines belonging to Barrett procedure
are much less than Square and Multiply procedures.

4. Experimental Evaluation

All experiments were performed on workstation with an Intel
Xeon E5-2643 CPU, operating at a fixed clock of 3.40 Ghz, and
256 GB of RAM. The operating system used was Ubuntu 16.04
LTS. The size of L1 cache is 32KB, L2 cache is 256KB, and
L3 cache is 10MB. The size of each cache line is 64 bytes. On
average the number of instructions per cache line are 18 for the
case of RSA program used in our experimental setup. In RSA
code, total number of cache lines belong to Square, Multiply
and Barrett procedures are 8, 9 and 20 respectively.

We had enabled super-pages, data-deduplication and
simultaneous-multithreading and created four threads namely;
Victim, Attacker, Negative Noise, and Positive Noise. Victim
was a small SSL web-server developed by axTLS Embedded
SSL using Square-and-Multiply implementation of RSA [36].
This was configured to use the key for cryptographic opera-
tion of 1024 bits in length comprising 505 HIGH bits. In these
experiments, Attacker thread monitors the web-server process
using Flush+Reload technique [37] after every 500 cycles (or
time slot). The threshold used in attack to differentiate between
cache hit and miss is set to 80 cycles. Positive and negative
noise threads are developed using pre f etch and cl f lush in-
structions, respectively, and these are set to high priority than
the other threads. We performed 100, 000 iterations and mon-
itored confidentiality and execution time of web application
using cryptographic operations with and without the proposed
noise for each loop of vulnerable procedures.

Another important configuration of noise threads is to set the
memory addresses, which are pointed by prefetch or clflush in-
structions. Memory addresses used by noise threads typically
divided into two parts, i.e. offset (static part) and base addresses
(dynamic part). To obtain offsets, we used assembly file gen-
erated using objdump command. As base address of victim ap-
plication changes on each execution depending on the frame
availability in main memory, we used dlsym function while ex-
ecution of victim application to get base address. Then these
obtained base and offsets addresses are added to calculate the
exact memory addresses, which are used by prefetch or clflush
instructions in the noise threads.

To evaluate the security of proposed solution, we have devel-
oped the baseline by obtaining the results of attacker without

(a) Reference for Square

(b) Reference for Multiply

(c) Reference for Barrett

Figure 9: Activation pattern without noise, taken as a reference for confiden-
tiality of (a) Square procedure (b) Multiply procedure (c) Barrett procedure.

noise. Results are shown in Figure 9a,9b and 9c. Figure 9a
shows that square-activations are 1024 which is equal to the
key length (i.e. 1024 bits). Figure 9b shows that multiply-
activations are 505 which is equal to the number of HIGH bits
in key (i.e. 505 bits). Figure 9c shows that barrett-activations
are about 1529 which is equal to the sum of total length (i.e.
1024 bits) and the number of HIGH bits (i.e. 505 bits) in the
key. Later on, we show that such relation vanishes in the pres-
ence of the positive or negative noises. Figure 9a also illustrates
that the attacker has captured multiple cache hits (i.e. usually
8 − 11) on each square-activation. This is because the attacker
are designed to target the loop within the square procedure.

To evaluate the performance, execution times of web sever in
the presence and absence of attacker was computed for 100, 000
turns and its mean taken as lower and upper bound of execution
times, respectively, for cryptographic operation in the rest of
experiments. Figure 10a shows the execution time of crypto-

7

(a)

(b)

Figure 10: Execution time distribution of (a) victim thread alone (b) victim
thread in the presence of attacker thread.

graphic operation when only victim is operating. We observe
that 90% runs of cryptographic operation complete in 15 ms.
The mean of distribution is 15.13 ms, which is taken as a lower
bound of execution time for cryptographic operation. Deviation
in execution time is because of the fact that underlying pro-
cessor architecture has components such as pipelines, branch
prediction and other speculative components [38]. We then ex-
ecuted victim thread in the presence of attacker thread and ob-
served that most of the runs lie at 20 ms which is roughly 70%
of our total 100, 000 runs and only 22.4% of total runs lie on
15 ms. Hence the execution time of cryptographic operation is
increased by 24% in the presence of attacker thread as shown in
Figure 10b. The mean of distribution in this case is 18.64 ms,
which is taken as an upper bound of execution time for cryp-
tographic operation. This increase in execution time is because
attacker evicts the cache lines, which increases the cache misses
for victim thread as discussed in Section 2.2. Figure 11 shows
a graphical representation of cache hits and misses captured by
the attacker thread for instructions belonging to loop in Square,
Multiply and Barrett procedures in the absence of any noise.
We refer them as square loop, multiply loop, and barrett loop
in the results.

4.1. Confidentiality and Performance Evaluation under Noise
Injection in Single Procedure

This section presents activation pattern and effect on execu-
tion time of web application by injecting either positive or neg-
ative noise alone in cache lines that belong to each procedure
individually. These results prepare the ground for selection of

Figure 11: Graphical representation of cache access pattern without noise.

positive or negative noise for procedures in our design cases
discussed in Section 3.3.

(a)

(b)

(c)

Figure 12: Graphical representation of cache hits and misses with positive noise
in (a) Square procedure (b) Multiply procedure (c) Barrett procedure.

In this case, we have observed the activation pattern and exe-
cution time of web application in the presence of positive noise
thread targeting cache lines related to all three loops of inter-
est, i.e., Square, Multiply, and Barrett loops. Results given
in Figures 12a-12c are related to positive noise injection in all
loops. Considering square loop for instance, Figure 12a shows
that inactive intervals between consecutive activations of square
procedure are now filled by cache accesses generated by the
positive noise thread. Therefore, from attacker’s perspective,
the square instruction is perceived as being continuously ac-
cessed by victim thread. Results in Figure 13a shows num-
ber of cache hits per each instance of square-activation, which
is different than reference pattern given in Figure 9a (i.e., our
reference pattern). First difference is that the total number

8

(a)

(b)

(c)

Figure 13: Activation patterns in the presence of positive noise in (a) Square
procedure (b) Multiply procedure (c) Barrett procedure.

of square-activations captured by the attacker are 125, which
is 87.8% less than the square-activation-pattern given in Fig-
ure 9a. This is because the attacker can no more distinguish-
ably identify each and every activation and captures much less
instances. The attacker can only capture an accumulated set
of instances and registers them as a single instance. Conse-
quently, the second difference is that the number of cache hits
are enormously increased in each (accumulated single) instance
of square-activation captured by the attacker. Based on these
results, if the attacker considers the total number of activation
instances, it cannot extract secret key due to much less cap-
tured instances. Similarly, the number of cache hits in each
such captured instance is out of proportion with the reference
pattern given in Figure 9a (cache hits shown on y-axis for each
instance).

Results shown in Figure 14a present the execution time and
its mean is given in Table 1. This concludes that the mean

(a)

(b)

(c)

Figure 14: Execution time distribution of victim’s process with attacker and
positive noise in (a) Square procedure (b) Multiply procedure (c) Barrett proce-
dure.

execution time is 0.9 ms less than the mean execution time
of cryptographic operation in the presence of attacker thread
alone. Execution time is reduced because the positive noise has
increased cache hits for the victim thread, as discussed in the
Case-B of Section 3.1.

Similar to the square loop, we have repeated the experiment
and injected positive noise in cache lines that belong to multiply
loop. In this case too, results shown in Figure 12b, demonstrate
the absence of inactive intervals between consecutive multiply-
activations. In this case, as shown in Figure 13b, the attacker
was able to capture 117 multiply-activations, which is 77% less
than the reference pattern given in Figure 9b. Figure 13b shows
that number of cache hits for each instance is pretty random and
usually greater than 100, which is different than the usual num-
ber of cache hits (i.e., 12 − 17 hits) in reference pattern (Figure
9b). Figure 14b shows the execution distribution and its mean is

9

given in Table 1. The mean execution time in this case is 1 ms
less than the execution time of cryptographic operation in the
presence of attacker thread alone due to instruction-prefetching
behaviour of positive noise.

Lastly, we have injected positive noise in Barrett loop.
Results in this case, as shown in Figures 12c, 13c and 14c show
similar behaviour as discussed before. Figure 12c show that
the inactive intervals between consecutive barrett-activations
are filled with positive noise accesses. Figure 13c shows that
the attacker was able to capture 108 barrett-activations, which
is 93% less than the reference pattern. Number of cache hits
reported in Figure 14c also showed similar behavior as in case
of square and multiply loops.

(a)

(b)

(c)

Figure 15: Graphical representation of cache hits and misses with negative
noise in (a) Square procedure (b) Multiply procedure (c) Barrett procedure.

Inversely, we also present our observations on the activation
pattern and execution time of web application in the presence
of negative noise thread targeting cache lines related to Square,
Multiply, and Barrett loops separately. Results given in Figures
15a-15c are related to negative noise injection in all loops. Re-
sults in Figure 15a show that attacker is unable to capture most
of the accesses for cache lines that belong to square procedure
because of cache-line eviction by the negative noise thread. Fig-
ure 15a also shows that some of the activations are still captured
by the attacker because of the reason discussed in Case B of
Section 3.2. Results in Figure 16a present execution-time dis-
tribution that shows the significant execution time degradation
of 11.8 ms greater than the execution time in the presence of

(a)

(b)

(c)

Figure 16: Execution time distribution of victim’s process with attacker and
negative noise in (a) Square procedure (b) Multiply procedure (c) Barrett pro-
cedure.

attacker alone. This is because of the negative noise evicts the
cache lines that web application is accessing frequently. Al-
though negative noise does create confusion for the attacker,
this case is not practically viable because of the significant ex-
ecution time degradation.

In the second step, we inject negative noise in multiply loop.
In this case, the results in Figure 15b show that the attacker
is unable to capture most of the accesses for cache lines that
belong to Multiply procedure. However, just like the case of
square loop, some of the activations are still captured by the
attacker as shown in Figure 15b for similar reasons. As far
as the execution time distribution is concerned, results shown
in Figure 16b depict a significant shift of execution time over
higher values and results in high mean value. Its mean is given
in Table 1, which is 14.5 ms greater than the execution time in
the presence of attacker alone.

10

Lastly, we inject negative noise in barrett loop and observe
the effects. Results in Figure 15c show that the attacker is now
unable to capture most of the barrett-activations. This result is
different than the noise injection in square and multiply loops in
a way that the attacker, in most of the attempts, cannot capture
even one cache access per barret-activation. This is because
the cache accesses made by each barrett-activation is much less
than square and multiply activations. Figure 15c shows that
very few of the barrett-activations, however, are still captured
by the attacker because of the reason discussed in Case B of
Section 3.2. Figure 17 shows that the barrett-activations being
captured are 77, which is 5% of the reference pattern shown
in Figure 9c. As far as the execution time distribution is con-
cerned, results shown in Figure 16c depict minor shift of exe-
cution time towards higher values. Its mean is given in Table
1, which concludes that the mean execution time is about 1.6
ms greater than the execution time in the presence of attacker
alone.

4.2. All-Positive and Mix-Noise Cases

Based on the results obtained for noise injection in individ-
ual instructions loops, we introduce two specific design cases
of Flush+Prefetch. These design cases are developed with the
aim of achieving confidentiality with minimum possible per-
formance overhead. In the following, we discuss these cases
one-by-one.

4.2.1. Design Case-1: Concurrent Positive Noise in all Instruc-
tions (Square, Multiply, and Barrett loops)

Figure 17: Barrett pattern in presence of negative noise.

In this design case, positive noise is injected in all vulnerable
cache lines related to Square, Multiply, and Barrett procedures
simultaneously. Results in Figure 19b show the attacker cap-
tured cache access pattern, which depicts that the victim had
executed all procedures in parallel. In fact, the positive noise
fills the inactive intervals between consecutive activations of all
the procedures.

Results in Figures 18a, 18b and 18c show the number of
cache hits per each vulnerable procedure activation captured by
the attacker respectively. These results are different from the
reference activation patterns in two ways. First, there is lack
of consistency in the resulting pattern as compared to reference

pattern for all procedures. Second, the captured activation in-
stances of all procedures are much less as compared to refer-
ence activation patterns.

This is because of the fact that, earlier, the attacker used to
determine the completion of an instance activation based on
inactive intervals between any two consecutive activation in-
stances. These inactive intervals, in this case, are now filled by
the positive noise. As a result, the attacker perceives a conti-
nuity of activation instance without finding any inactive inter-
val and thus, cannot determine the completion of an activation
instance. Figures 18a, 18b and 18c also show that now the at-
tacker is capable of capturing the square, multiply and barrett
activations only up to 195, 74 and 242, which are 19%, 14.5%
and 15.8% of the reference patterns respectively. These results
reveal that the attacker will capture a random number of activa-
tion instances. Moreover, these captured instances will have no
correlation with actual key bits anymore.

Results in Figure 20b and Table 1 show the execution time
distribution and its mean of Design Case-1 respectively. Thanks
to the positive noise, victim does not experience any perfor-
mance overhead in terms of execution time as compared to per-
formance in the presence of attacker alone. Mean execution
time in this design case is 1.9 ms less than the execution time
of cryptographic process in the presence of attacker alone. This
results in 10.2% improvement in execution time of web server
application (victim process) while under Flush+Reload attack
(given in Figure 20a).

4.2.2. Design Case-2: Concurrent Positive Noise in Square &
Multiply Loops and Negative Noise in Barrett Loop

In this design case, results are obtained by injecting two types
of noise, simultaneously, i.e., positive noise in Square and Mul-
tiply loops and negative noise in Barrett loop. Figure 19c shows
the cache access pattern in this design case. These results show
two effects as compared to results given in Figure 19a (case with
no noise injection). First effect is the elimination of inactive
intervals between consecutive square and multiply-activations
due to positive noise as discussed in the Design Case-1 as well.
Second effect is the cache misses between consecutive barrett-
activations due to negative noise injection as discussed in Case-
A of Section 3.2.
Results in Figures 18d and 18e show number of cache hits per
square and multiply activation captured by the attacker, respec-
tively. These results are similar to the ones discussed in Figures
18a and 18b. Positive noise injection fills the inactive intervals,
which leads to a cache access pattern with much less activation
instances and much higher hit rates for the attacker. Figures 18d
and 18e show that square and multiply activations captured by
attacker are only 229 and 59, which are 22.3% and 11.6% of
reference square and multiply activation patterns respectively.

Results in Figure 18f show the number of cache hits per
barrett-activation captured by the attacker. We obtained a sig-
nificant reduction in the number of captured activation instances

11

(a) Square pattern of Design Case 1 (b) Multiply pattern of Design Case 1 (c) Barrett of Design Case 1

(d) Square pattern of Design Case 2 (e) Multiply pattern of Design Case 2 (f) Barrett pattern of Design Case 2

Figure 18: Activation patterns for Design Cases Design Case-1 (a)-(c) and Design Case-2 (d)-(f) +Squ: Positive noise in Square loop, +Mul: Positive noise in
Multiply loop, +Bar: Positive noise in Barrett loop, and -Bar: Negative noise in barrett loop

(a) Reference (b) Design Case 1 (c) Design Case 2

Figure 19: Graphical representation of cache hits and misses of reference and design cases.

(a) Reference (b) Design Case 1 (c) Design Case 2

Figure 20: Execution time distributions of reference and design cases

compared to the reference pattern. This is due to the nega-
tive noise injection in vulnerable cache lines related to Barrett
procedure. Barrett-activations captured by attacker are 77, as
shown in Figure 18f, which are about 95% less as compared to
the number of activations in reference pattern.

Results in Figures 18d, 18e and 18f reveal that the attacker
will capture an even more random number of activation in-
stances for all instructions compared to Design Case-1. More-
over, these captured instances will have even lesser correlation
with actual key bits as well. Calculated mixing of positive and
negative noise enhances the confidentiality aspect of the crypto-
graphic operations with a significant margin in this design case.

Results in Figure 20c show the execution time distribution
and Table 1 shows its mean for Design Case-2. Mean of this
distribution is 17.1 ms, which indicates 8% improvement in ex-
ecution time of web server application (victim process) when
under attack (given in Figure 20a).

5. Security and Performance Comparison

To the best of our knowledge, we have found that single
path programming based countermeasure [24] outperforms
as compared to previous application level countermeasures
[10, 35]. Therefore, we have compared the security and

12

Table 1: Comparison of effect of positive and negative noises on execution time
(Legends are such as +Squ: Positive noise in Square loop, +Mul: Positive noise
in Multiply loop, +Bar: Positive noise in Barrett loop, -Squ: Negative noise in
square loop, -Mul: Negative noise in multiply loop and -Bar: Negative noise in
barrett loop).

Mean (ms)

Victim alone (Reference Design) 15.1
Victim+Attacker 18.6
+Squ 17.7
+Mul 17.6
+Bar 17.8
−Squ 30.4
−Mul 33.1
−Bar 18.3
Design Case 1 (+Squ,+Mul,+Bar) 16.7
Design Case 2 (+Squ,+Mul,−Bar) 17.1

Table 2: Security Comparison

Countermeasures NCD

Single path programming 0.746
Flush+Prefetch 0.762

performance of Flush+Prefetch with single path programming
based countermeasure.

For security and performance comparison, we have con-
verted the Square-and-Multiply implementation of RSA given
in web-server by axTLS [36] into the single path as shown
in Algorithm 2. All the inputs and outputs of Algorithm 2
are same as compared to unmodified implementation given in
Algorithm 1. The main difference of Algorithm 2 as compared
to original Algorithm 1 is that it operates the same sequence
of operations Square-Barrett-Multiply-Barrett (Line 5 to 8)
whether the bit value of secret is LOW or HIGH. For correct
operation, after executing operations, code updates the variable
depending on the key value (Line 9).

For security comparison of single-path programming with
our countermeasure, we have computed the Normalized Com-
pression Distance (NCD) between original and retrieved keys
form each countermeasure. NCD is used to measure the sim-
ilarity between two objects and it ranges from 0 to 1 where 0
means identical and 1 means completely different [39]. In our
case, we use this to show the effectiveness of obfuscation in-
troduced by each countermeasure by showing the dissimilarity
introduced in side channel information in the presence of coun-
termeasure, this is same method used in [40] to prove the effec-
tiveness of its countermeasure. Table 2 shows the NCD for both
countermeasures. This shows that Flush+Prefetch countermea-
sure achieves same security as single-path programming.

We have evaluated the performance of both Flush+Prefetch
and single path programming based countermeasure on the
same computing setup used for security evaluation. Addition-

Table 3: Execution Time Comparison with Unmodified Web Server

Execution Time Overhead
Versus Unmodified Web

Server

Single path programming ×1.72
Flush+Prefetch ×1.10

ally, libpfm-4.10.0 library is used to measure the execution time
of both countermeasures. We have taken the measurements of
100, 000 runs of both systems. Then mean of these measure-
ments are calculated and compared. Table 3 shows the exe-
cution overhead of both countermeasures. We observed that
execution time of RSA modified to single path programming
overhead as compared to unmodified RSA is 72%. In case
of Prefetch+Flush countermeasure, execution time overhead as
compared to to unmodified RSA is only 10%. Flush+Prefetch
outperforms 62% as compared to RSA modified to single path
programming. The execution time of single path approach is
significantly larger because it executes costly multiply opera-
tion in each iteration of loop regardless of the secret bit.

Algorithm 2 Single Path implementation of RSA

1: procedure Squ–Mul-Exp (s[], x, m)
2: r← 1;
3: r2← r;
4: for i from n − 1 downto 0 do
5: r← SQUARE(r); . square operation
6: r←Mod(r,m); . barrett operation
7: r2←Multiply(r, x); . multiply operation
8: r2←Mod(r,m); . barrett operation
9: r← (s[i] == 1) ? r2 : r ;

10: end for
11: end procedure

6. Discussion

6.1. Synchronization of Threads

Synchronization between threads can enhance the security.
However, synchronization introduces a performance overhead.
Our work has shown that synchronization between victim and
noise thread is not necessary till assumption of fair scheduler re-
mains valid. Linux OS scheduler schedules each thread fairly,
which directly ensures the addition of noise. Our results are jus-
tifying that the access-trace of vulnerable cache addresses be-
comes unintelligible to the attacker while relying on OS sched-
uler and without synchronization.

6.2. Generalization of Technique

As we discussed in related work, the countermeasure that
prefetches the AES tables [10] incorporated the prefetch in-
struction within the application’s execution flow. This requires

13

modifying application radically to introduce prefetch instruc-
tion within the application. Hence, a generalization of this
countermeasure is difficult for each application. But in our
countermeasure, the prefetch instruction is independent of the
application execution flow. Only memory addresses targeted
by the attacker are required. These addresses can be figured out
by seeing assembly files. These addresses are taken as input to
noise threads and launched independently.

6.3. Secret Information Leakage form Data Cache
Flush+Prefetch countermeasure can obfuscate the leakage of

secret information from data cache as well. This is because
Flush+Prefetch countermeasure obfuscates accesses of inter-
ested cache lines only based on memory addresses, regardless
of the fact that these addresses are mapped to instruction cache
or data cache. For example in case of AES, memory accesses
of T-table elements, which are cached in data cache, depend
on the secret key. So prefetch and flush threads are provided
with memory addresses that are mapped to T-tables. This will
obfuscate the cache access footprint of AES algorithm.

Leakage of secret information depends on the algorithm. For
example in case of RSA, execution of square and multiply in-
structions depends on key bits but operates on the same data.
Therefore, instruction cache access will reveal key bits and
data will be accessed in both cases whether the key is HIGH
or LOW, so sequence of data cache accesses does not leak se-
cret information. In contrast to RSA, AES secret key is leaked
in exactly opposite to that of RSA. In case of AES, instruction
access is same and data access varies depending on the secret
key. Therefore, data cache accesses is interesting for the at-
tacker. Our countermeasure takes memory addresses irrelevant
to whatever the memory contain instruction or data. To counter
data leakage using proposed countermeasure, the prefetch and
flush threads target the memory addresses that are mapped to
security critical data (such as T-table in AES) in data cache.

6.4. Mitigating Prime+Probe Attack using Flush+Prefetch
Countermeasure

Prime+Probe attack also has three phases same as Flus-
h+Reload attack but the way of probing the cache is different.
In first phase of Prime+Probe attack, attacker initializes the in-
terested cache line state by filling the interested cache lines.
Then in second phase, attacker waits for predefined time inter-
val while that the victim executes and utilizes the cache. In third
phase, attacker reads again the cache lines and measures the
read latency. If victim has loaded some cache lines in second
phase, it will evict the cache lines and results in increase in read
access latency by attacker in third phase, indicating the access
of cache line by victim. In our countermeasure, prefetch thread
loads the cache line similarly as victim, so prefetch thread also
causes eviction and results in increase in access latency mea-
sured by attacker in third phase. Moreover, flush thread in our
countermeasure also causes eviction of the cache lines and re-
sults in increase in access latency measured by attacker in third
phase. Access pattern obtained using Prime+Probe will include
the cache line accesses generated by victim, prefetch and flush
threads, hence, the access pattern is obfuscated.

6.5. Core Utilization
For instance, it looks like that proposed countermeasure

will occupy additional cores and performance overhead will
be large. However, today SMT feature of CPU is disabled in
servers because of the collocation of multiple threads can raise
cache-based side-channel attacks. Disabling SMT feature un-
derutilized the CPU resources because of data and control de-
pendencies between instructions in the program. Therefore, in-
structions of noise threads, which are independent to RSA in-
structions (as in our countermeasure), can be fetched in single
core along with RSA instructions and results in use of under-
utilized resources to mitigate the cache attacks in case of SMT
enabled CPU.

We have measured the instructions per cycle (IPC) of axtls
application to evaluate the underutilization of CPU. CPU hav-
ing the top speed of 4.0 IPC while executing the axtls applica-
tion can execute on average 2.92 instructions per cycle, which
means that the axtls application under utilizing CPU of about
27% (= (1 − 2.92/4)). The under-utilization of CPU can be
used to execute instructions for security. In our case, we have
limited the utilization of CPU by noise instructions (prefetch
and clflush) by up to 1 IPC, which is within the range of mea-
sured underutilization of CPU, and observes sufficient addition
of noise for security as shown by the results in Figures 19b and
19c.

7. Conclusions and Future Work

This paper proposes a novel application-level coun-
termeasure technique, called Flush+Prefetch, against the
Flush+Reload category of cache-based side-channel attacks.
The proposed countermeasure is easily deployable and works
without the requirement of specialized hardware features or any
profound changes to system-level software. Flush+Prefetch
technique uses intelligent noise injection to improve confiden-
tiality of the victim process, i.e., the applied cryptosystem.
The countermeasure uses independent threads that consist of
pre f echt and c f lush instructions to generate noise. As a re-
sult, the cache access pattern of victim application is encoded
in such a way that the attacker, using Flush+Reload attack,
cannot capture the actual cache access pattern. We have eval-
uated the confidentiality and performance of Flush+Prefetch
countermeasure technique on Intel Xeon E5-2643 processor us-
ing 100, 000 cryptographic rounds of Square-and-Multiply im-
plementation of RSA cryptosystem. Our experimental results
show that the confidentiality of cache accesses made by RSA
is preserved under Flush+Prefetch technique as the leakage of
information is reduced to 22.3% only as compared to 96.7%
bits recovery reported by Flush+Reload attack in a single de-
cryption round. Results show that the leaked information is
scattered and does not contain any specific pattern, i.e., either
bit position or bit value, that can facilitate the establishment of
secret key for RSA cryptosystem even if the attacker intends to
do multiple iterations. Our results show that the performance,
in terms of average execution time, is improved by 10.2% for
best design case compared to the system under Flush+Reload
attack.

14

Flush+Prefetch technique practically demonstrates that
noise-based solutions are viable countermeasures and good
candidates for quick-patch solution against precision attacks
like Flush+Reload. The proposed countermeasure can be
extended for other types of cache-based SCAs such as
Prime+Probe in the future. Moreover, as a future work, we in-
tend to integrate detection mechanisms with our proposed coun-
termeasure in order to further improve performance.

References

References

[1] V. Millnert, J. Eker, E. Bini, Feedback for increased robustness of for-
warding graphs in the cloud, Journal of Systems Architecture 80 (2017)
68 – 76. doi:https://doi.org/10.1016/j.sysarc.2017.09.005.
URL http://www.sciencedirect.com/science/article/pii/

S138376211730070X

[2] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, M. Chen, Cost and makespan-
aware workflow scheduling in hybrid clouds, Journal of Systems Archi-
tecture (2019) 101631doi:https://doi.org/10.1016/j.sysarc.2019.08.004.
URL http://www.sciencedirect.com/science/article/pii/

S1383762119302954

[3] G. Irazoqui, T. Eisenbarth, B. Sunar, S$A: A Shared Cache Attack That
Works Across Cores and Defies VM Sandboxing – and Its Application to
AES, SP ’15, IEEE Computer Society, Washington, DC, USA, 2015, pp.
591–604. doi:10.1109/SP.2015.42.
URL http://dx.doi.org/10.1109/SP.2015.42

[4] F. Liu, Y. Yarom, Q. Ge, G. Heiser, R. B. Lee, Last-Level
Cache Side-Channel Attacks are Practical, 2015, pp. 605–622.
doi:10.1109/SP.2015.43.

[5] Y. Zhang, A. Juels, A. Oprea, M. K. Reiter, HomeAlone: Co-residency
Detection in the Cloud via Side-Channel Analysis, 2011, pp. 313–328.
doi:10.1109/SP.2011.31.

[6] Y. Zhang, A. Juels, M. K. Reiter, T. Ristenpart, Cross-Tenant Side-
Channel Attacks in PaaS Clouds, CCS ’14, ACM, New York, NY, USA,
2014, pp. 990–1003. doi:10.1145/2660267.2660356.
URL http://doi.acm.org/10.1145/2660267.2660356

[7] N. Eltayieb, R. Elhabob, A. Hassan, F. Li, An efficient attribute-based
online/offline searchable encryption and its application in cloud-based re-
liable smart grid, Journal of Systems Architecture 98 (2019) 165 – 172.
doi:https://doi.org/10.1016/j.sysarc.2019.07.005.
URL http://www.sciencedirect.com/science/article/pii/

S1383762119300402

[8] Y. Yarom, K. Falkner, FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack, USENIX Association, San Diego,
CA, 2014, pp. 719–732.

[9] D. Boneh, Twenty Years of Attacks on the RSA Cryptosystem, Vol. 46(2),
1999, pp. 203–213.

[10] E. Brickell, G. Graunke, M. Neve, J.-P. Seifert, Software mitigations to
hedge aes against cache-based software side channel vulnerabilities, jean-
pierre.seifert@intel.com 13192 received 13 Feb 2006 (2006).
URL http://eprint.iacr.org/2006/052

[11] M. Godfrey, M. Zulkernine, A Server-Side Solution to Cache-
Based Side-Channel Attacks in the Cloud, 2013, pp. 163–170.
doi:10.1109/CLOUD.2013.21.

[12] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, M. M. Swift,
Resource-freeing Attacks: Improve Your Cloud Performance (at Your
Neighbor’s Expense), CCS ’12, ACM, New York, NY, USA, 2012, pp.
281–292. doi:10.1145/2382196.2382228.
URL http://doi.acm.org/10.1145/2382196.2382228

[13] J. Shi, X. Song, H. Chen, B. Zang, Limiting Cache-based Side-channel
in Multi-tenant Cloud Using Dynamic Page Coloring, DSNW ’11,
IEEE Computer Society, Washington, DC, USA, 2011, pp. 194–199.
doi:10.1109/DSNW.2011.5958812.
URL http://dx.doi.org/10.1109/DSNW.2011.5958812

[14] T. Kim, M. Peinado, G. Mainar-Ruiz, STEALTHMEM: System-level
Protection Against Cache-based Side Channel Attacks in the Cloud, Se-

curity’12, USENIX Association, Berkeley, CA, USA, 2012, pp. 11–11.
URL http://dl.acm.org/citation.cfm?id=2362793.2362804

[15] M. M. Real, P. Wehner, V. Migliore, V. Lapotre, D. Ghringert, G. Gog-
niat, Dynamic spatially isolated secure zones for NoC-based many-core
accelerators, 2016, pp. 1–6. doi:10.1109/ReCoSoC.2016.7533900.

[16] Z. Wang, R. B. Lee, A Novel Cache Architecture with Enhanced Perfor-
mance and Security, MICRO 41, IEEE Computer Society, Washington,
DC, USA, 2008, pp. 83–93. doi:10.1109/MICRO.2008.4771781.
URL http://dx.doi.org/10.1109/MICRO.2008.4771781

[17] F. Liu, R. B. Lee, Random Fill Cache Architecture, MICRO-47,
IEEE Computer Society, Washington, DC, USA, 2014, pp. 203–215.
doi:10.1109/MICRO.2014.28.
URL http://dx.doi.org/10.1109/MICRO.2014.28

[18] F. Liu, H. Wu, K. Mai, R. B. Lee, Newcache: Secure cache architecture
thwarting cache side-channel attacks, IEEE Micro 36 (5) (2016) 8–16.
doi:10.1109/MM.2016.85.

[19] Z. B. Aweke, T. M. Austin, Øzone: Efficient execution with zero
timing leakage for modern microarchitectures, 2018, pp. 1123–1128.
doi:10.23919/DATE.2018.8342179.
URL https://doi.org/10.23919/DATE.2018.8342179

[20] M. Taram, A. Venkat, D. M. Tullsen, Mobilizing the Micro-Ops : Ex-
ploiting Context Sensitive Decoding for Security and Energy Efficiency,
2018.

[21] X. Jin, H. Chen, X. Wang, Z. Wang, X. Wen, Y. Luo, X. Li, A Sim-
ple Cache Partitioning Approach in a Virtualized Environment, 2009, pp.
519–524. doi:10.1109/IS PA.2009.47.

[22] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, R. B. Lee, CAT-
alyst: Defeating last-level cache side channel attacks in cloud computing,
2016, pp. 406–418. doi:10.1109/HPCA.2016.7446082.

[23] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, J. Emer,
Dawg: A defense against cache timing attacks in speculative ex-
ecution processors, in: 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018, pp. 974–987.
doi:10.1109/MICRO.2018.00083.

[24] A. Rane, C. Lin, M. Tiwari, Raccoon: Closing digital side-channels
through obfuscated execution, in: 24th USENIX Security Symposium
(USENIX Security 15), USENIX Association, Washington, D.C., 2015,
pp. 431–446.
URL https://www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/rane

[25] O. Aciiçmez, Yet Another MicroArchitectural Attack:: Exploiting I-
Cache, CSAW ’07, ACM, New York, NY, USA, 2007, pp. 11–18.
doi:10.1145/1314466.1314469.
URL http://doi.acm.org/10.1145/1314466.1314469

[26] D. Gruss, C. Maurice, K. Wagner, S. Mangard, Flush+Flush: A Fast and
Stealthy Cache Attack, DIMVA 2016, Springer-Verlag New York, Inc.,
New York, NY, USA, 2016, pp. 279–299. doi:10.1007/978-3-319-40667-
1 14.

[27] D. Gullasch, E. Bangerter, S. Krenn, Cache Games – Bringing Access-
Based Cache Attacks on AES to Practice, SP ’11, IEEE Computer Soci-
ety, Washington, DC, USA, 2011, pp. 490–505. doi:10.1109/SP.2011.22.
URL http://dx.doi.org/10.1109/SP.2011.22

[28] E. Tromer, D. A. Osvik, A. Shamir, Efficient Cache Attacks on AES, and
Countermeasures, Vol. 23, 2010, pp. 37–71. doi:10.1007/s00145-009-
9049-y.
URL http://dx.doi.org/10.1007/s00145-009-9049-y

[29] D. A. Osvik, A. Shamir, E. Tromer, Cache Attacks and Countermeasures:
The Case of AES, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006,
pp. 1–20. doi:10.1007/11605805 1.
URL http://dx.doi.org/10.1007/11605805 1

[30] G. Irazoqui, M. S. Inci, T. Eisenbarth, B. Sunar, Wait a Minute! A
fast, Cross-VM Attack on AES, Springer International Publishing, Cham,
2014, pp. 299–319. doi:10.1007/978-3-319-11379-1 15.
URL http://dx.doi.org/10.1007/978-3-319-11379-1 15

[31] M. Neve, J.-P. Seifert, Advances on Access-Driven Cache Attacks on
AES, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 147–162.
doi:10.1007/978-3-540-74462-7-11.
URL http://dx.doi.org/10.1007/978-3-540-74462-7-11

[32] L. Moritz, G. Daniel, S. Raphael, M. Clementine, M. Stefan, ARMaged-
don: Cache Attacks on Mobile Devices, Austin, TX, 2016.

[33] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-

15

burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom, Spectre
attacks: Exploiting speculative execution, in: 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[34] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, Meltdown:
Reading kernel memory from user space, in: 27th USENIX Security
Symposium (USENIX Security 18), USENIX Association, Baltimore,
MD, 2018, pp. 973–990.
URL https://www.usenix.org/conference/usenixsecurity18/

presentation/lipp

[35] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, M. Franz, Thwart-
ing cache side-channel attacks through dynamic software diversity., in:
NDSS, 2015, pp. 8–11.

[36] C. Rich, axtls embedded ssl.
URL http://axtls.sourceforge.net

[37] B. David, misc-cache-attacks.
URL https://github.com/polymorf/misc-cache-attacks/

[38] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, P. Stenström, The Worst-case
Execution-time Problem&Mdash;Overview of Methods and Survey of
Tools, Vol. 7, ACM, New York, NY, USA, 2008, pp. 36:1–36:53.
doi:10.1145/1347375.1347389.
URL http://doi.acm.org/10.1145/1347375.1347389

[39] J. Mortensen, J. J. Wu, J. Furst, J. Rogers, D. Raicu, Effect of image
linearization on normalized compression distance, in: International Con-
ference on Signal Processing, Image Processing, and Pattern Recognition,
Springer, 2009, pp. 106–116.

[40] A. Fell, T. Pham, S. K. Lam, Tad: Time side-channel attack defense of
obfuscated source code, 2019. doi:10.1145/3287624.3287694.

16

Biography

Muhammad Asim Mukhtar is currently pursuing his PhD
in Electrical Engineering from Information Technology Univer-
sity, Lahore, Pakistan. His research focuses on development
of countermeasures against side channel attacks for embedded
systems. He has MSc is in Electrical Engineering form The
University of Lahore, Pakistan and BSc in Electrical Engineer-
ing from COMSATS, Lahore, Pakistan. Before undertaking
doctoral studies in 2016, he worked as a Lecturer at The Uni-
versity of Lahore.

Maria Mushtaq received her MS degree in Computer Sci-
ence from CIIT, Pakistan in 2014. She started her PhD in In-
formation Security from University of South Brittany, France
in 2016. Her research area focuses on cryptography, embedded
system security, integration of security into cache-based side
channels, identifying threat models in multi-core architectures
and mainly proposing detection based and scheduling based
mitigations to such attacks.

Muhammad Khurram Bhatti received his MS and PhD de-
grees in Computer Engineering from the University of Nice-
Sophia Antipolis, France, in 2007 & 2011, respectively. He is
the 2014 Marie-Curie Research Fellow (Postdoc) at KTH Royal
Institute of Technology, Sweden. His areas of interest are Em-
bedded system security, Hard Real-time and Mixed Criticality
Systems, Contextaware Computing, Multicore Architectures,
and Parallel Computing Systems. He is currently Director of
Embedded Computing Lab and an Assistant Professor at Infor-
mation Technology University (ITU), Pakistan.

Vianney Lapotre received his M.Sc. and his Ph.D. in Elec-
trical and Computer Engineering from the University Bretagne
Sud, France, in 2010 and 2013 respectively. In 2012 he spent
six months as an invited researcher at the Ruhr-University of
Bochum, Germany. From 2013 to 2014, he was a Postdoctoral
at LIRMM, Montpellier, France. He was involved in the Euro-
pean Mont-Blanc project. He is currently associate professor at
University Bretagne Sud, France. His research interests include
hardware security, reconfigurable and self-adaptive multipro-
cessor architectures.

Guy Gogniat obtained his MSEE degree at the University of
Paris Sud, Orsay, France, in 1995, and his PhD in electrical and
computer engineering at the University of Nice-Sophia, Antipo-
lis, France, in 1997. He is currently a Professor in electrical and
computer engineering at the University of Bretagne-Sud, Lori-
ent, France, where he has been since 1998. In 2005, he spent
one year at the University of Massachusetts, Amherst, USA, as
an invited researcher, where he worked on embedded system
security using Reconfigurable technologies. His work focuses
on the design of an d methods and tools for embedded systems.
He also conducts research in reconfigurable and adaptive com-
puting and embedded system security.

17

