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Criticality Computation with Finite Element Method on Non-Conforming Meshes

In this work, we proposed and study a method to use non-conforming meshing for core reactor simulation. This consists in a domain decomposition with Lagrange multipliers of the well known Raviart-Thomas finite element method. Here, we provide an a priori error estimate for criticality computation.

I. INTRODUCTION

The steady state of a nuclear reactor is characterised by its criticality. In order to compute this value one has to solve a generalised eigenvalue problem. From the Krein-Rutman [START_REF] Krein | Linear Operators Leaving Invariant a Cone in a Banach Space[END_REF] theorem we know that the only physical solution is the eigenfunction associated with the smallest eigenvalue (the fundamental mode). The usual way to compute this solution is to use the inverse power iteration, which consists in solving a source problem generated by the solution from the previous iterations.

APOLLO3 R is a common neutronic platform of CEA and EDF. It includes different deterministic solvers. We present here a new development in the MINOS solver [START_REF] Baudron | MINOS: A Simplified Pn Solver for Core Calculation[END_REF] which is based on the Raviart-Thomas-Nédélec (or RTN) finite element method (or FEM) for Cartesian and hexagonal grids and includes a domain decomposition method (or DDM). The method currently implemented is an optimised Schwarz DDM [START_REF] Jamelot | Domain Decomposition for the S P N Solver MINOS[END_REF][START_REF] Jamelot | Domain Decomposition for the Neutron SP N Equations[END_REF][START_REF] Jamelot | Fast Non-Overlapping Schwarz Domain Decomposition Methods for Solving the Neutron Diffusion Equation[END_REF].

The macroscopic cross sections used to solve the SP N equations are homogenised assembly by assembly or cell by cell. Therefore the cross sections are modelled separately on each materials, thus where three or more materials intersect the solution can be of low-regularity [START_REF] Costabel | Singularities of Electromagnetic Fields in Polyhedral Domains[END_REF]. The low-regularity of a function can be interpreted as a function with a non-smooth gradient. The areas where the solution is no more regular are called singularities. To obtain a better estimate of the solution, one can refine the mesh where the singularities occur. Refining a Cartesian grid quickly increases the number of degrees of freedom. Thus, it is interesting to use a DDM with local conforming grids but non-conforming meshes at the interfaces. To do that, we use a DDM with Lagrange multipliers [START_REF] Wohlmuth | Discretization Methods and Iterative Solvers Based on Domain Decomposition[END_REF][START_REF] Ciarlet | Domain Decomposition Methods for the Diffusion Equation with Low-Regularity Solution[END_REF] which is algebraically equivalent to the Schur complement method.

Moreover, this adaptation helps for modelling Cartesian plate reactors and fast neutron reactors. Indeed, these reactors have non-conforming geometry and to mesh them one has to extrude lines all over the geometry of the reactor. The resulting number of cells can be reduced by meshing each assembly independently. For instance in Figure 1, one can notice that the non-conforming mesh contains nearly half cells than the conforming one. This illustrate that non-conforming meshes can be used to reduce the memory usage of the solver.

To validate this method, one needs to do its numerical analysis. Indeed, this analysis proves that the method converges to the solution we are looking for. Moreover, a priori error estimations help to calibrate the solver and it is the first step to evaluate the propagation of uncertainties in it.

The functional framework of the numerical analysis is given by the so-called Sobolev's spaces. Those functional spaces generalised differentiability to functions in L 2 (squareintegrable functions). Here, we use the following Sobolev's spaces, for a domain Ω in R d , d = 2, 3 and r a real in ]0, 1[:

H 1 (Ω) = u ∈ L 2 (Ω), ∇u ∈ L 2 (Ω) H 1 0 (Ω) = u ∈ H 1 (Ω), u| ∂Ω = 0 H r (Ω) = u ∈ L 2 (Ω), Ω×Ω |u(x) -u(y)| 2 x -y d+2r dxdy < ∞
The mathematical theory of the mixed problem discretisation was done for at least piecewise H 1+r solutions, with r > 1/4. H 1+r is the space of all functions in H 1 such that their gradients are in H r . But as the cross sections are highly heterogeneous the solution is no more regular than H 1+r max where r max can be smaller than 1/4 and depends on the geometry and the cross sections. The mathematical theory has then to be extended for both source and eigenvalue problems. This is the purpose of this paper for the following cases: the SP 1 /diffusion equations without or with non-conforming DDM and the SP N multigroup equations with DDM.

The outline of the paper is as follows: first we do the numerical analysis for the SP 1 /diffusion equation, then we show how to extend it to the SP N equations. Finally we present some realistic numerical results.

II. THE SP 1 /DIFFUSION EQUATION

We denote the domain of the reactor by R. R is supposed to be a bounded, connected and open subset of R d , d = 2, 3.b We choose to treat zero flux boundary condition but our work could be extended to other conditions (symmetry, reflexive. . . ). The SP 1 /diffusion equation reads: Find (p, φ, k eff ) such that:

         D -1 p + gradφ = 0 in R, div p + Σ a φ = 1 k eff νΣ f φ in R, φ| ∂R = 0 on ∂R. (1) 
Above, p represents the neutron current and φ the neutron scalar flux. We denote by Σ 0 s (resp. Σ 1 s ) the zero-th (resp. first) angular moment of the scattering cross section. If we let Σ t be the total cross section, then Σ a = Σ t -Σ 0 s is the absorption cross section. We have D = (3Σ t ) -1 for the diffusion equation and D = (3(Σ t -Σ 1 s )) -1 for the SP 1 equation. We recall that the cross sections and the diffusion coefficient are required to have only a piecewise regularity, for example to be piecewise polynomial.

Inverse Power Iteration

After some initial guess (p 0 , φ 0 , k 0 eff ) is provided, at iteration number m + 1, we deduce (p m+1 , φ m+1 , k m+1 eff ) from (p m , φ m , k m eff ) by solving (1) with a source term. The inverse power iteration reads:

Set (p 0 , φ 0 , k 0 eff ), m = 0 Until convergence, do: m ← m + 1 Solve :

           D -1 p m+1 + gradφ m+1 = 0 div p m+1 + Σ a φ m+1 = 1 k m eff νΣ f φ m φ| m+1 ∂R = 0 (2) Compute: k m+1 eff = k m eff R (Σf φ m+1 ) 2 R (Σf φ m+1 Σ f φ m ) 2 End
At each iteration the so-called source problem has to be solved with (p m+1 , φ m+1 ) as unknowns. Let us study the RTN FEM on Cartesian grids.

Finite Element Method

From now on, let us consider the source problem [START_REF] Baudron | MINOS: A Simplified Pn Solver for Core Calculation[END_REF] where we replace the left hand side of the problem (1) by S f :

         D -1 p + gradφ = 0 in R, div p + Σ a φ = S f in R, φ = 0 on ∂R. (3) 
We recall that under additional mild assumptions on the parameters, the solution φ, for any source S f in L 2 (R), has some extra regularity (see [START_REF] Ciarlet | Domain Decomposition Methods for the Diffusion Equation with Low-Regularity Solution[END_REF], Proposition 1). Indeed, if the cross sections are piecewise polynomial, thus there exists r max > 0 such that the solution φ is in H 1+r max (R). From now on we suppose that r max is less than 1/2. This is the case for low-regular solutions.

We denote by Q the space of functions in L 2 (R)

d with their divergence in L 2 (R):Q = H(div , R). The solution (p, φ) is looked for in X = Q × L 2 (R). The space X can be normed with ( p, φ) 2 X = p 2 Q + φ 2 L 2
(4) The system (3) can be written as a variational problem on X:

∀(q, ψ) ∈ X, a(p, q) + b(q, φ) = 0, b(p, ψ) + t(φ, ψ) = (S f , ψ). (5) 
With:

• a(p, q) = -R D -1 p • q • b(q, ψ) = R div qψ • t(φ, ψ) = R Σ a φψ
To simplify the notations, we use in the following another form of (5) given by

∀(q, ψ) ∈ X, c((p, φ), (q, ψ)) = (S f , ψ). ( 6 
)
where c is defined over X × X by

c((p, φ), (q, ψ)) = a( p, q) + b(q, φ) + b( p, ψ) + t(φ, ψ). ( 7 
)
With the help of an inf-sup condition on the bilinear form c, one can prove the well posedness of the continuous problem [START_REF] Babuška | Error-Bounds for Finite Element Method[END_REF][START_REF] Schneider | Éléments Finis Mixte Duaux Pour La Résolution Numérique de l'Équation de La Diffusion Neutronique En Géométrie Hexagonale[END_REF][START_REF] Jamelot | Fast Non-Overlapping Schwarz Domain Decomposition Methods for Solving the Neutron Diffusion Equation[END_REF]. We recall that (p,φ) is the solution to (5) associated to the source term S f . Taking (q, ψ)

= (-p, φ 2 + 1 2Σ a div p) in X, one can find (q, ψ) X ( p, φ) X . (8) 
Apply ( 6) with (q, ψ), we find the following estimation

|c((p, φ), (q, ψ))| ( p, φ) X (q, ψ) X . (9) 
One can easily conclude to the following in-sup condition, there exists a constant β > 0 which depends only on the geometry such that inf

( p,φ) sup (q,ψ) |c((p, φ), (q, ψ))| > β (10) 
Let set Q h the space of discretisation of Q by RTN FEM [START_REF] Raviart | A Mixed Finite Element Method for 2-Nd Order Elliptic Problems[END_REF][START_REF] Nédélec | Mixed Finite Elements in R3[END_REF]. The space used to discrete the flux φ is L k h , which contains all the piecewise polynomials with a degree smaller than k over the mesh. The discrete variational problem over

X h = Q h × L k h reads then: ∀(q h , ψ h ) ∈ X h , a(p h , q h ) + b(q h , φ h ) = 0, b(p h , ψ h ) + t(φ h , ψ h ) = (S f , ψ h ). ( 11 
)
As we proved the well posedness of the continuous problem (6), we have the following inf-sup condition for the discrete problem, with β h > 0 converging uniformly to 0 when h tends to 0,

inf ( p h ,φ h ) sup (q h ,ψ h ) |c(( p h , φ h ), (q h , ψ h ))| > β h . (12) 
To obtain an error estimate, we suppose from now on that the source term S f is in H µ with µ lower than r max . This implies a better regularity on the current:

• p ∈ H(div , R) ∩ H µ (R) • div p ∈ H µ (R)
According to first Strang's lemma [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF] the error reads:

( p, φ) -( p h , φ h ) X inf (q h ,ψ h )∈X h ( p, φ) -(q h , ψ h ) X . ( 13 
)
Let us bound the different contributions in the right-hand side of ( 13) for some appropriately chosen discrete field u h = (q h , ψ h ). Recall that u = ( p, φ).

• Consider the following orthogonal projection operators Π 0 : L 2 (R) → L 0 h . There exists C independent of h such that ( [START_REF] Ern | Theory and Pratice of Finite Elements[END_REF], Proposition 1.135):

∀ψ ∈ H 1 (R), ψ -Π 0 (ψ) L 2 (R) h ψ H 1 (R) . (14) 
• Let q ∈ H r (R), such that div q ∈ H s (R), 0 < r, s < r max and q R be its RTN interpolant [START_REF] Bermúdez | Approximation Properties of Lowest-Order Hexahedral Raviart-Thomas Finite Elements[END_REF]. Thus it stands ([14], Lemma 3.3):

q -q R L 2 (R) (h r |q| H r (R) + h div q L 2 (R) ), div (q -q R ) L 2 (R) h s |div q| H s (R) . (15) 
Using ( 13) with ( 14)-( 15), one can easily conclude that under the assumptions on the cross sections, it holds, with

r max < 1/2: ∀µ ∈]0, r max [, ∀S f H µ (R), u -u h X h µ S f H µ (R) . (16) 
One can notice that the previous analysis can be extended to the case where r max is in [1/2, 1] and µ < r max (or µ ≤ 1 if r max = 1).

Aubin-Nitsche-type estimates

We recall also that we denote (p, φ) (resp. (p h , φ h )) the solution of the continuous (resp. discrete) variational problem (5) (resp. ( 11)). To derive improved estimates on the error φφ h L 2 (R) , we shall rely on the illuminating work of Falk-Osborn [START_REF] Falk | Error Estimates for Mixed Methods[END_REF], which provides such an estimate for an RTNdiscretisation in H(div , R) × L 2 (R) of the diffusion equation with smooth solution.

We recall that for any q in Q, its RTN-interpolant is denoted by q R and satisfies for any

ψ h in L h : b(q -q R , ψ h ) = 0 ( 17 
)
We also need to introduce the adjoint problem associated to [START_REF] Jamelot | Fast Non-Overlapping Schwarz Domain Decomposition Methods for Solving the Neutron Diffusion Equation[END_REF]:

For d ∈ L 2 (R), find (y d , η d ) ∈ X such that ∀(q, ψ) ∈ X: a(y d , q) + b(q, η d ) + b(y d , ψ) + t(η d , ψ) = R dψ. ( 18 
)
Adapting the methodology of [START_REF] Falk | Error Estimates for Mixed Methods[END_REF] as done in [START_REF] Ciarlet | Numerical Analysis of the Mixed Finite Element Method for the Neutron Diffusion Eigenvalue Problem[END_REF], using the adjoint problem [START_REF] Boffi | Optimal Convergence of Adaptive FEM for Eigenvalue Clusters in Mixed Form[END_REF], one can prove that, for any source S f in H µ (R), µ < r max , we have the a priori error estimate:

φ -φ h L 2 (R) h 2µ S f H µ (R) (19) 
This is the best convergence rate of the method for low regularity solutions. This illustrates the fact that using higher order near the singularities is not efficient in practice to estimate them. Indeed, the ratio is given by the regularity of the solution and not by the order of the finite elements.

Eigenvalue Problem

With the help of the previous analysis, we can do the numerical analysis of the FEM for the approximation of the eigenvalue problem. We first have to show the convergence of the method in the spirit of the Osborn's theory in [START_REF] Osborn | Spectral Approximation for Compact Operators[END_REF]. Then we find a better rate of convergence by adapting the work of Boffi et al. in [START_REF] Boffi | Optimal Convergence of Adaptive FEM for Eigenvalue Clusters in Mixed Form[END_REF].

Let µ denote the regularity of the eigenfunction, i.e. φ ∈ H 1+µ (R), and B µ (resp. B h µ ) the operator which associates to a source S f the continuous (resp. discrete) scalar flux,

B µ S f = φ (resp. B h µ S f = φ h ).
To prove the convergence of the method, we only need to show the norm convergence of the operator B h µ to B µ [START_REF] Osborn | Spectral Approximation for Compact Operators[END_REF]. This convergence is enough since they are compact operators from H µ (R) to itself. This condition is fulfilled thanks to the convergence of the source problem.

We then obtain a convergence rate in h µ . Following the work of [START_REF] Boffi | Optimal Convergence of Adaptive FEM for Eigenvalue Clusters in Mixed Form[END_REF], we can enhance this rate. The idea is to restrict the operators on the eigenspace E. Considering operators on finite dimension spaces, the trick is to use the equivalence of all norms. We obtain a norm convergence on the eigenspace given by:

B µ -B h µ L(E) ≤ Ch 2µ (20) 
Then we can conclude that the convergence rate of the first eigenvalue is at least 2µ.

Non-Conforming Meshes

As said above, the solution can be singular where three or more materials intersect. In this case the mesh must be refined to have a better approximation. Because we work in a code that already contains a conforming DDM, we decided to adapt it so that it supports non-conforming meshes between subdomains.

We take a partition (R i ) N i=1 of the reactor R, we denote by Γ i j the interface between two subdomains R i and R j . We define the interface Γ S by

Γ S = N i=1 N j=i+1 Γ i j . (21) 
We denote φ i (resp. p i and S f,i ) the restriction of the flux φ (resp. the current p and the source S f ) onto the domain R i , φ S the restriction of the flux φ over all the interfaces Γ S . The jump jump of the current p on Γ i j is defined by

p • n i j = k=i, j p k • n k | Γ i j . (22) 
Problem (1) with the domain decomposition can be written as:

               D -1 p i + gradφ i = 0 in R i ∀i, div p i + Σ a φ i = S i f in R i ∀i, φ i = φ S on ∂R i ∩ Γ S ∀i, p • n = 0 on Γ S . (23) 
We present below an innovative approach to derive the variational formulation, the space of the current p is chosen to be

Q = q ∈ PH(div, R)| p • n ∈ L 2 (Γ S )
, where PH(div, R) is the space of the piecewise H(div, R) functions. The flux φ is searched in L 2 (R). The last unknown φ S is just searched in L 2 (Γ S ).

The variational formulation derived from (23) reads:

Find (p, φ, φ S ) ∈ Q × L 2 (R) × L 2 (Γ S ) such that ∀(q, ψ, ψ S ) ∈ Q × L 2 (R) × L 2 (Γ S ):          a(p, q) + b(q, φ) -l S (q, φ S ) = 0, b(p, ψ) + t(φ, ψ) = (S f , ψ), l S (p, ψ S ) = 0. ( 24 
)
with:

• l S (q, ψ S ) = Γ S [p • n]ψ S
In standard approach, φ S ∈ H 1 2 (Γ S ) and the discrete of the resulting variational formulation are not conforming which leads to technical difficulties when one wants to derive error estimates. In (24), taking p ∈ Q allows to derive a conforming discretisation since φ S and φ h S belong to L 2 (Γ S ). Thus error estimates are derived from the inf-sup condition.

On each subdomain R i the current is in H(div, R i ), so that p is discretised by local RTN elements. Thus each subdomain can be meshed separately by a Cartesian grid.

All the previous analysis holds true for (24) as done in [START_REF] Ciarlet | Domain Decomposition Methods for the Diffusion Equation with Low-Regularity Solution[END_REF][START_REF] Ciarlet | Numerical Analysis of the Mixed Finite Element Method for the Neutron Diffusion Eigenvalue Problem[END_REF].

Then, it remains to mesh the interfaces between subdomains. To do that we can just take the intersection of the neighbouring subdomain meshes at the interface as shown in figure 2.

Fig. 2. Mesh of an interface between two subdomains with different mesh sizes.

The order of the elements used for the Lagrange multiplier is the same as the one used for the restriction of the current (p) on the interface. For instance, with RT0 elements, φ S is piecewise constant.

Another way to mesh the Lagrange multiplier φ S is to use the coarse mesh instead of the intersection with a higher finite element for φ S (see figure 3) as proposed by Wheeler and Yotof in [START_REF] Wheeler | A Posteriori Error Estimates for the Mortar Mixed Finite Element Method[END_REF]. The interest of this version is to derive an a posteriori error estimate.

From (24), one can derive the discrete problem to solve. We give here the form of the discrete problem for two subdo-Fig. 3. Mesh of an interface proposed by Wheeler and Yotof in [START_REF] Wheeler | A Posteriori Error Estimates for the Mortar Mixed Finite Element Method[END_REF] for RT0 finite elements. mains R 1 and R 2 :

                   A 1 B 1 0 0 C 1,2 T B 1 T 1 0 0 0 0 0 A 2 B 2 C 2,1 0 0 T B 2 T 2 0 T C 1,2 0 T C 2,1 0 0                                       P 1 Φ 1 P 2 Φ 2 Λ 1,2                    =                    0 S f 1 0 S f 2 0                    . ( 25 
) For n = 1, 2, P n (resp. Φ n ) is the discrete current (resp. flux) R n . Λ 1,2
is the discrete Lagrange multiplier on the interface between the subdomains 1 and 2. The matrices A n (resp. B n , T n , C 1,2 ) are constructed from a (resp. b, t, l S ).

As the matrices T n are diagonal due to the RTN finite element, one can easily remove the unknowns Φ n from (25). We denote

W n = A n + B n T -1 n T B n , thus it stands:           W 1 0 C 1,2 0 W 2 C 2,1 T C 1,2 T C 2,1 0                     P 1 P 2 Λ 1,2           =           T -1 1 S f 1 T -1 2 S f 2 0           . ( 26 
)
And we also have:

T n φ n = T B n P n + S f n (27) 
From system (26), we derive a system only on Λ 1,2 :

T C 1,2 W -1 1 C 1,2 + T C 2,1 W -1 2 C 2,1 Λ 1,2 = T C 1,2 W -1 1 T -1 1 S f 1 + T C 2,1 W -1 2 T -1 2 S f 2 . ( 28 
)
One can notice that the matrix on the left hand side is positive definite symmetric, this can be solved by the gradient conjugate method which is parallelisable. Moreover the P n can be computed at the same time.

III. THE SP N MULTIGROUP PROBLEM

To derive the SP N multigroup model one can suppose that the angular flux and the cross sections are piecewise constant over a discrete energy set and expand the angular flux over the spherical harmonics [START_REF] Pomraning | Asymptotic and Variational Derivations of the Simplified P N Equations[END_REF]. The new unknowns are denoted by φ g (resp. p g ) the vector containing the even (resp. odd) moments of the angular flux. Thus the equations read, for every energy group g: Find (p g , φ g , k eff ), for all g in {1..G}, such that:

                               (T g o ) -1 p g + Hgradφ g = g g S g →g o p g in R, t Hdiv p g + S g e φ g = g g S g →g e φ g + χ g k eff g M g f φ g in R,
φ g = 0 on ∂R.

(29) In the previous equations, the unknowns are vectors where each component is an harmonic. The matrices Σ are the diagonal matrices formed by the moments of the corresponding cross sections. The link between odd and even moments is done by the matrix H which is an upper bidiagonal matrix with only ones.

In order to extend the previous results to this model, one has to consider the one-speed SP N problem, which reads: Find (p, φ), for every source (S p S φ ), such that:

           D -1 p + Hgradφ = S p in R, t Hdiv p + Σ a φ = S φ in R, φ g = 0 on ∂R. (30) 
The theory done for the diffusion case works in this case as long as the diagonal matrix operators D and σ a satisfy the same regularity as for the diffusion case. The inf-sup condition holds thanks to the coercivity of the matrix H. Indeed, one can easily prove that, there exists α > 0 such that, for all x in R d :

(Hx|x) ≥ α x 2 (31) 
Moreover, as the adjoint problem is the source problem with only a source on the second equation, the Aubin-Nitschetype estimate still holds. Thus, we have the same result on the monospeed model as on the diffusion model.

In order to consider the energy dependence we have to make the following assumption: the nuclear fissions emit only neutrons in the first energy group. Under this assumption, two cases appear. In the case of no up-scattering, one can use the Gauss algorithm to rewrite equation (29) with the form of (30) with S p and S φ depending only on the first group unknowns ( p 1 , φ 1 ) and the criticality k eff .

In the other case, one can decomposed the problem to use the case without up-scattering. One can rewrite (29) with one operator, thus it stands:

A             ( p 1 , φ 1 )
. . .

(p G , φ G )             =                 (0, χ 1 k eff g ν g Σ g f φ g ) 0 0                 . ( 32 
)
The operator A can be decomposed as A = L+U such that L is a triangular inferior operator and U is strictly triangular superior operator. The problem is still wellposed if one is not a eigenvalue of L -1 U.

IV. RESULTS

We first verify the convergence rate for a conforming mesh without DDM. Then we present results with a conforming mesh and the DDM for a nuclear reactor. We finish with an illustration of a non-conforming mesh.

Verification of the Convergence Rate

We adapt the benchmark described in [START_REF] Costabel | Singularities of Electromagnetic Fields in Polyhedral Domains[END_REF][START_REF] Dauge | Benchmark Computations for Maxwell Equations for the Approximation of Highly Singular Solutions[END_REF]. The problem can be written as:

         D -1 p + gradφ = 0 in R, div p + φ = 1 k eff φ in R, φ = 0 on ∂R. ( 33 
)
Coefficient D is taken piecewise constant as shown on figure 4.

D=1 D=5 D=1 D=5

Fig. 4. Geometry for a discontinuous coefficient case.

In this case we do not know the analytic solution. Thus, to obtain the convergence rate, we use the k eff computed on a fine mesh. The obtained value is k eff 0.99512708.

For problem (33) it is known that the first eigenfunction is regular. Thus we expect a convergence rate of 2 with RT0 FEM.

In table I, we show, for different numbers of degrees of freedom N, the number of power iterations N iter , the k h eff computed, the error on the k eff in pcm (10 -5 ) and the experimental convergence rate of the method τ for the eigenvalue. All resolutions are done on uniform meshes with only squares. The experimental convergence rate is near 2 as we expected.

N N

The strange behaviour of the convergence rate for the finest mesh comes from the machine epsilon. The computations are done with single precision, thus, for the finest mesh the error is near to the machine epsilon.

DDM for a large heavy steel reactor

Here we illustrate the DDM on a large heavy steel reactor described in figure 5. The computations are done with two groups of energy and with the diffusion model. The conforming meshes used has 115 309 cells. In table II, we present the number of power iterations N iter , the criticity computed k h eff , the error in pcm and the computational time in second for different number of domains. With this DDM the number of power iterations stay closed to the one without DDM. This fact comes from the use of the gradient conjugate method to solve the problem on the Lagrange multiplier. Moreover this DDM does not deteriorate the computation precision.

DD

As the method is not parallelised yet, the time cost of the DDM increases as the number of domains increases. But if we look at the time by domain, with a perfect parallelisation, one can obtain a decrease of the computation time for the same precision.

Resolution with a Non-Conforming Mesh

In this case we evaluate the criticity for a simple reactor given in figure 6. We use the DDM to compute the flux on the mesh of the geometry. Each assembly is a domain with is own mesh. Fig. 6. Geometry for a discontinuous coefficient case.

In table III, we show results for different meshes. The first line and the last one correspond to conforming mesh derived from the geometry. In the second and third lines we used the non-conforming mesh described by the assemblies. The difference between this to computation is the number of power iterations. Indeed, in the first one we stop at the same number as the conforming mesh. Whereas in the second case we stop when the convergence criterium was satisfy. The columns in table III correspond to the number of cells N, the number of power iterations N iter , k h eff computed, the error in pcm on the eigenvalue and the computational time in second.

The conforming mesh derived from this geometry has 1 936 cells while the mesh of the geometry has only 1 248 cells. Moreover the precision is nearly the same between the conforming and non-conforming mesh. Thus one can conclude that the use of the non-conforming is a way to reduce memory cost for the same precision. But the computation time is nearly double between this two meshes. This can be improved by parallelised the method.

V. CONCLUSIONS AND PERSPECTIVES

In this work we studied some diffusion like models of a nuclear core. Those models are the SP 1 /diffusion case and the multigroup SP N one. We studied them to ensure that they have good mathematical properties as the well-posedness and the convergence. Then we developed a non-conforming DDM with Lagrange multiplier. We confirmed the theory and the use of non-conforming mesh with two numerical tests. The method can still be improved by an a posteriori error estimate to adapt the mesh to each iteration of the power inverse algorithm [START_REF] Vohralik | A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretization of Convection-Diffusion-Reaction Equations[END_REF]. For singular solution one can also use singular complement method as it exists in electromagnetism [START_REF] Assous | Resolution of the Maxwell Equations in a Domain with Reentrant Corners[END_REF]. 

N

Fig. 1 .

 1 Fig. 1. Plate reactor conforming mesh (left) with 390 cells and non-conforming mesh (right) with 212 cells.

Fig. 5 .

 5 Fig. 5. Geometry of a large heavy steel reactor.

TABLE III .

 III Comparison between non-conforming and uniform refinement for problem(33) 

			N iter	k h eff	|k eff -k h eff |/k eff Time
	Conforming	1 936	75	1.23589	5.60	1.29
	Non-conforming	1 248	75	1.23603	5.77	2.27
	Non-conforming	1 248	97	1.23602	4.69	3.09
	Reference 193 600		1.23596		

VI. ACKNOWLEDGEMENTS

We gratefully acknowledge EDF for its long time partnership and the support.