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Modelling at multiple
time and length scales
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Basic measurements and
separate effect studies

Objective of present work

Study of krypton diffusion in UO, using atomic scale calculations
combined with diffusion models adapted to the system studied [4]
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@ Basic research approach applied to oxide nuclear fuels

@ Actinide fission in reactor produces large quantities of
defects and fission products, in particular fission gases
(e.g. Xe, Kr), which have low solubility in the material

@ Important consequences for fuel behaviour: swelling,
decrease of thermal conductivity, release of radioactivity

@ Further insight still needed into all stages of fission gas
behaviour, starting with elementary diffusion mechanisms
active in segregation and bubble formation

@ Atomic xenon behaviour in UO, quite extensively studied
Fewer data on Kr atomic diffusion
= 2 experiment studies: Auskern 1960 [1], Michel 2011 [2]
= Only 1 empirical potential study: Catlow 1978 [3]
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Study of Kr diffusion in UO,

UO,: binary compound = Further approximations needed to apply the 5-frequency model

Kr: large impurity and high incorporation energy on O sublattice

= Application of five-frequency model to U sublattice only, also a fcc lattice
Reorganization of O sublattice taken into account in pathway calculations

U atoms are then considered to be first nearest neighbours

Distance between 2" nearest neighbours in U lattice is large enough so that defect and impurity are
non-interacting as 2" nearest neighbours

Traps considered: most stable vacancies in UO, and most favourable for Kr incorporation depending on
non-stoichiometry in their most stable charge states; assisting vacancy: V,
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Atomic scale calculations

DFT+U using functional enabling description of Van der

Waals interactions (VdW-DF) [6] combined to occupation

matrix control to avoid convergence to metastable states

@ Defect formation and Kr solution energies

@ Elementary migration energies calculated using NEB:
static method for pathway and saddle-point determination

Pair empirical potential: Buckingham form
Attempt frequencies obtained from phonon modes of defect

at initial and saddle points /

Kr assisted by 2 Vu*

Kr in Vuo, assisted by Vu*
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Investigation of solute diffusion in solids using five-frequency model

@ In crystals, diffusion occurs by succession of atomic hops between

neighbouring sites in the lattice

@ Diffusion models: link between elementary mechanisms at the atomic

scale and macroscopic diffusion (Mehrer [5])

@ Data needed: theoretically all elementary mechanisms
@ Approximation to limit the number of mechanisms: no interaction
beyond 2"? neighbours = 5-frequency model

@ Elementary mechanisms considered

" w, (Ey, vg): vacancy migration between adjacent lattice positions in

absence of impurity

" wq (Ey, v1): vacancy migration between first neighbour sites of the

impurity

" w, (E,, v,): vacancy-impurity exchange
" w5 (E3, v3): transition of the vacancy from a 15t neighbour site to a

29 neighbour site (dissociation)

" wy (E4, v4): reverse transition of w4 (association)
@ Diffusion coefficient D can be obtained from atomic scale calculations

of elementary mechanisms

= Vacancy O= Bulk Material . = Impurity

i
W; = Vi eXp(_k_T

-

(U3 << (Ul << C()O << (1)4_ /

-50

Ln D (m?/s)

-120

Ln D (m?/s)

\

-60 -
70 | Q“'\
-80 | .
90 |
-100 |
-110 |

50 ¢
60
70 |
80 |
90 |
100 |

-110 |

UOZ-K (“0 = '9-86 EV)
1250 K 1000 K 8331 2000 K

Stoichiometric UO, (u,=-7.96 eV)

1250 K 1000 K 8331

2000 K

— KrinVANV® 40 R=<
-= KrinV, /V,* [
b Krin V‘uozcl /VUd
== |nterstitial

50
-60 |

-70

Diffusion mechanism depends on O potential
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Kr diffusion by interstitial mechanism

Eq
D = 6.40 X 1078 X e kT m?/s with E, = 8.01 eV
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@ Mechanisms and trends with non-stoichiometry similar to previous study of Xe by Andersson [7]
e For UO,,,: migration assisted by two V * dominates and 0.73 < E, < 4.09 eV

2+x°

o Available experimental E, (very probably obtained for hyperstoichiometric UO,) are in this interval /
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Calculating diffusion coefficient for impurity migration

General expression for defect-assisted diffusion of an impurity in a cubic structure

Dzé*dzz*fz*P*wz

@ d,:jump distance of the impurity (a/V2, with a UO, cell parameter)

@ p: probability of assisting defect located in neighbouring site of impurity

_(Ef+EB+ER)

p = ne kT

n  number of possible adjacent sites

Er formation energy of vacancy in the bulk

Es binding energy between impurity and vacancy
ER reconfiguration energy

@ f5: solute correlation factor, related to direction impurity is likely to jump next (function of w{, w,, w3)

(Ef+E2+EB+ER)
D=a’v,fre kT
0709P  0799°
In UO,, stable complex between Kr and V(U,O) or V(U,0,) o 06‘0 o 0\60
= no w, mechanism: wdrives the diffusion (Catlow o? o?
Diffusion model was adapted and expression of D was derived V4~ moves close Migration of V= around Kr
to Kr in Schottky defect (wq) inducing Kr migration

1 2 /
D—g*d1 * f1 %D * wq

(Ef+E1+EB+ER)

_ 1.2
D=za"vifie kT

Not generally Arrhenius since prefactor dependson T
= Study of limiting cases which depend on inequalities
between w{, w,, w3
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Activation energies to Kr diffusion vs. oxygen potential

Traps and assisting defects are charged = dependence of energies on oxygen and
electron chemical potential, i.e. stoichiometry and doping level
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Assisting defect and activation energy
depend on O potential
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Conclusions

Determination of diffusion coefficient and corresponding mechanism as a function of non-stoichiometry
Necessary data for higher scale models and for the interpretation of experimental results on defects and

fission gas behaviour

Calculation of entropic contribution
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