

EUROMAT 2017

18-22/09/2017

Mechanical properties at micro-scale applied to nuclear fuel model material

R. HENRY¹, I. ZACHARIE-AUBRUN², J.M. GATT², C. LANGLOIS¹, S. MEILLE¹

¹ INSA-Lyon, MATEIS CNRS UMR 5510, 69621 Villeurbanne, France ² CEA, DEN, DEC, Cadarache, 13108 St Paul Lez Durance, France

- 1. The nuclear fuel and its modeling
- 2. Mechanical properties at the micro-scale
- 3. Strategy and goal

II. Numerical & Experimental approach

- 1. Numerical modeling
- 2. Specimen preparation
- 3. Mechanical tests
- III. Results : fracture toughness of 8Y-FSZ grains

IV. Conclusion and perspectives

CONTEXT Modeling of fuel's behavior

Good understanding of its behavior is needed

CONTEXT *Mechanical properties at the micro-scale*

Testing the material at the micro-scale

- ➔ To avoid cracks and pores
- ➔ To measure the « true » mechanical properties

Cross-sectional optical micrograph of irradiated fuel pellet

Vickers indentation test on irradiated UO₂

Indentation

- Handy solution
- Studied before (N. Leroux; Post-doc)
- ➔ A <u>calibration is needed</u>

adiated UO2Micro-cantilever1st step : Set up and validate the method

Notched μ -cantilever for fracture toughness measurement (ZrO₂)

- Closer to a bending test
- Fabrication with FIB/SEM
- Mechanical testing with a nanoindenter
- Modeling is necessary

20/	09	/20	17
-----	----	-----	----

Context

Experimental approach

Results

METHOD Numerical modeling

7

Numerical modeling : why?

- To calculate fracture toughness
- To adjust cantilever dimensions
- To be able to adapt to :

FEM analysis (Castem[®] (CEA, France))

→ Modeling of the cantilever's test

Finally we need :

- Fracture load
- Dimensions of the beam and the notch

20/09/2017	Context	Experimental approach	Results

FIB milling with 30 kV Ga⁺ ions

Zeiss Nvision 40 (Oberkochen, Germany)

Dimensional measurements

Depth measurement

> After cantilever's break

20/09/2017	Context	Experimental approach	Results	8
------------	---------	-----------------------	---------	---

METHOD Specimens preparation

DE LA RECHERCHE À L'INDUSTRIE

Selection of crystallographic-planes

SEM picture of the mapped area

2. Beam fabrication around the notch

Precautions are necessary !

➔ Follow the shape of the grain during the milling process

EBSD map

Doing the notch at the beginning helps to avoid any edge effect : the notch is straight

Stereographic projection

→ Targeted plane is normal to the sample's surface

20/09/2017

> Agilent Technologies G200 (Santa Clara, California, USA)

Optical micrograph of a targeted cantilever

Target with an optical microscope :

Main source of error

Correction of the indentation is performed

3,5 3,28 mN 3 2,5 -Raw curve 2 Load (mN) 1,5 Indentation curve 1 0,5 Corrected flexion curve 0 100 200 300 400 500 -0,5 287 nm **Displacement (nm)**

Linear load-displacement curve

Elastic behavior up to fracture

20/09/2017	Context	Experimental approach	Results	10
------------	---------	-----------------------	---------	----

Subtraction of indentation curve to the raw curve

RESULTS Fracture toughness of 8Y-FSZ grains

No significant differences between two families of planes

Planes	{100}	{111}
K _{IC} (MPa.m ^{0,5})	1,51 ± 0,14	1,60 ± 0,19
Number of beams	5	9

Comparison with other sources (high variability of results)

- Results are in good agreement with planes fracture toughness
- Macroscopic value is more than twice microscopic value (single grain)

→ Probably grain boundaries and pores enhance fracture resistance

Planes	{100}	{100}	{111}	macroscopic
K _{IC} (MPa.m ^{0,5})	1,9 ± 0,1	1,3	1,48 ± 0,07	3,0 ± 0,1
Author	Pajares and al. (1988)	Morscher and al. (1991)	Stanescu and al. (1992)	Soulacroix (CEA) (2012)

20/09/2017	Context	Method	Results	11
------------	---------	--------	---------	----

CONCLUSION & PERSPECTIVES

Initial aim of the work :

- Set up a method of fracture properties measurements on FIB prepared specimens
 - > Allows measurements of fracture toughness of a single grain in a bulk material
- Validate this method on 8Y-FSZ
 - Validated by comparison with experiments reported on single crystals

Improvements:

- Chevron notch
 - Propagation of the crack before the cantilever breaks [1]
 - Reduction of ion beam effects [2]Optimization issues
 - Preparation is more difficult
 - Load to fracture is very low
 - No proof of crack propagation

SEM micrograph of a chevron notch on a broken cantilever

Chevron notch in a cantilever

[1] M. G. Mueller, V. Pejchal, G. Zagar, A. Singh, M. Cantoni, and A. Mortensen, *Acta Mater.*, vol. 86, pp. 385–395, 2015.
[2] A. D. Norton, S. Falco, N. Young, J. Severs, and R. I. Todd, *J. Eur. Ceram. Soc.*, vol. 35, no. 16, pp. 4521–4533, 2015.

20/09/2017

CONCLUSION & PERSPECTIVES

DE LA RECHERCHE À L'INDUSTRIE

Use of equipment dedicated to nuclear fuels

- Microscope FIB/SEM Zeiss Auriga 40 (Oberkochen, Germany)
 - Nuclearized : protection against radiations
- In-situ nano-indenter CSM NHT² (Peseux, Switzerland)
 - Preparation and testing of specimens in SEM

Vision at SEM during an indentation loading

SEM micrograph of a notched cantilever in fresh UO₂

Measurements on nuclear fuels

- Apply the cantilever method (straight notch)
 - On different types of fuels (fresh and irradiated)
 - On fuels with different combustion rates

Thank you for your attention

ronan.henry@insa-lyon.fr