

THERMOMECHANICAL (PHYSICAL) PERFORMANCES OF SIC/SIC COMPOSITES FOR NUCLEAR APPLICATIONS

F. Bourlet, C. Lorrette, T. Guilbert, C. Sauder

DEN-Section for Applied Metallurgy Research, CEA, Université Paris-Saclay, F91191 Gif-sur-Yvette, France

And G. Vignoles

Université de Bordeaux, LCTS, Allée de la Boétie, 33600 Pessac, France

EUROMAT 2017 Thessaloniki

SEPTEMBER, 17-22 2017

www.cea.fr

OVERVIEW

CONTEXT

Requirements to be use as material in nuclear power plant LWR, SFR and GFR-He

- High temperature resistance : 300/550/1000°C (nominal) & 1200-2000°C (accidental)
- Microstructure stability under fast neutron flux (75-150 dpa)
- Neutron transparency and low activation
- Corrosion resistance
- Tolerance to damage (safety requirements)

While preserving behavior in nominal condition

INTRODUCTION

R&D ISSUES

F. BOURLET ET AL. | EUROMAT, SEPTEMBER 17-22, 2017 – THESSALONIKI, GREECE | PAGE 3

INTRODUCTION

R&D ISSUES

F. BOURLET ET AL. | EUROMAT, SEPTEMBER 17-22, 2017 – THESSALONIKI, GREECE | PAGE 4

OBJECTIVES

SIC CLADDING CONCEPT : « SANDWICH » DESIGN AS A SOLUTION FOR LEAK-TIGHTNESS ISSUE

OBJECTIVES

F. BOURLET ET AL. | EUROMAT, SEPTEMBER 17-22, 2017 – THESSALONIKI, GREECE | PAGE 7

MECHANICAL BEHAVIOR

Testing methods for mechanical behavior assessment of ceramic composites tubes

INTERNAL PRESSURE TEST

TENSILE TEST

MECHANICAL BEHAVIOR (1/4)

INTERNAL PRESSURE TEST (RT)

Elastic damageable mechanical behavior characteristic of most ceramic composites

Significant residual strains but possibly related to structural effect

• Greater density of microcracks in inner surface comparatively to the outer

(Difference of curvature radius)

Behavior in line with longitudinal tensil tests

NEUTRAL ENVIRONMENT : MECHANICAL TEST REALISED AT HIGH TEMPERATURE

Damage indicators

- High mechanical strength in temperature / non-zero up to 1600 ° C
- Mechanical behavior stability demonstrated up to 1000 °C Higher residual strain for mechanical test realised at 1400 °C
- Weakening of mechanical poperties beyond to 1000 °C

F. BOURLET ET AL. | EUROMAT, SEPTEMBER 17-22, 2017 – THESSALONIKI, GREECE | PAGE 11

MECHANICAL BEHAVIOR (3/4)

LWR - LOCA CONDITIONS : POST-EXPOSURE MECHANICAL BEHAVIOR

After 110 hours under steam at high temperature

500 **Breaking fracture** 450 \+ 1400 °C As recieved 400 1200°C 350 Stress (MPa) 300 1400°C 250 200 150 100 50 det 0,2 0,4 0,6 Strain (%)

- Retention of mechanical comportment "Non-linear elastic damage" of ceramic composites Same breaking deformation / Slight decrease of young's modulus and breaking stress
- Protective comportment of silicon carbide matrix in these conditions :

PyC interface stay efficient to deflect craks

Interest confirmed of SiC/SiC for Accident Tolerance Fuel application

MECHANICAL BEHAVIOR (4/4)

QUENCHING EFFECTS : POST-EXPOSURE MECANICAL BEHAVIOR

After high temperature treatment and quenching

After high temperature oxidation ramp followed by water quenching (1500°C under steam 200-1200s)

	EP (GPa)	σ _Y (MPa)	σ _m (MPa)	ε _m (%)
SiC/SiC As-received	285 ± 3	97 ± 6	252 ± 8	0,95 ± 0.03
Quenched SiC/SiC 1500°C, 200 s	280	104	283	0.95
Quenched SiC/SiC after 1500°C, 1200 s	280	93	233	0.83

Pyrocarbon interphase stays efficient to deviate cracks

Matrix micro-cracking saturation did not occur before ultimate failure (singles regime of EA detected)

Preservation of the « non-linear elastic damageable » behavior characteristic of ceramic composites

MECHANICAL BEHAVIOR (4/4)

QUENCHING EFFECTS : METALLOGRAPHICS OBSERVATIONS

After high temperature treatment and quenching

SiO₂ SiC_xO_y SiC

THERMAL PROPERTIES

THERMAL CONDUCTIVITY MEASURMENT

New testing method developed for thermal characterization of ceramic composite tubes

Originality of the measurements are based on the simultaneous treatment of both the front and rear faces of tubular specimens (To overcome the highly anisotropic character of ceramic composites)

Pulse « Flash method » (IR thermography, periscope)
Acces to both transverse and in-plane diffusivities

Textures	Generation	αf(%)	Density	Diffusivity	Conductivity
			(m².s⁻¹)	(m⁻².s⁻¹)	(W.m⁻¹.K⁻¹)
Filament Winding 30 $^{\rm o}$	2009-2013	44	2,71	5,75.10-6	10,6
2D Braiding 45 $^{\rm o}$		42	2,67	7,43.10-6	13,5
Interlock 3D braiding 30 $^{\rm o}$		34	2,05	7,40.10-6	10,3
2D Braiding 45 °	from 2014	45	2,83	1,51.10 ⁻⁶	28,9

Conductivity had to be higher than 10 W.m⁻¹.K⁻¹

Values would satisfy requierements for SiC_f/SiC-based nuclear cladding

THERMAL CONDUCTIVITY MEASURMENT

New testing method developed for thermal characterization of ceramic composite tubes

Thermal paths

Thermal properties closely dependent on the nature of the SiC fibers (*TSA*₃ or *H-NS*), the processing route for densification and the fibrous architecture...

THERMAL PROPERTIES (1/2)

LWR CONDITIONS: POST-EXPOSURE MEASURMENTS

Measured at 25 °C on undamaged SiC/SiC exposed in dynamic conditions (Loop, AREVA Facility)

No effect of oxidation on the thermal behavior after 80 days

Conductivity stays widely higher than the required minimal value of 10 W.m⁻¹.K⁻¹

Coherent with absence of damage and the very low sample recession

LWR conditions (Out of pile) do not significant degrade the thermal properties of SiC/SiC

No changement expected for longer times...

THERMAL PROPERTIES (2/2)

LIMITATION : MECHANICAL DAMAGE EFFECT ON THERMAL PROPERTIES

Evaluated on tubular composite specimen submitted to a tensile loading (in-situ testing)

Confirmation of a close relation between thermal properties and mechanical damage

CONCLUSION

LWR

- Low influence of steam oxidation up to 1500°C followed by water quenching on mechanical properties
- No significant influence of nominal oxidation on thermal properties

Preservation of high mechanical behavior (strength, strain) beyond the 1000/1400°C range

Highlighted limitation

Thermal properties degraded by mechanical damage

SiC/SiC composites are very interesting materials

...but there is still a long way to go before industrialization

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex Direction de l'énergie nucléaire

Etablissement public à caractère industriel et commercial R.C.S Paris B 775 685 019