
Learning from Imprecise Data: Adjustments of
Optimistic and Pessimistic Variants
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Abstract. The problem of learning from imprecise data has recently at-
tracted increasing attention, and various methods to tackle this problem
have been proposed. In this paper, we discuss and compare two quite op-
posite approaches, an “optimistic” one that interprets imprecise data in
a way that is most favourable for a candidate model, and a “pessimistic”
one in which model choice is guided by the most unfavourable interpre-
tation. To avoid an overly extreme behaviour, a modified version of the
latter has recently been proposed, which we complement by an adjusted
version of the optimistic approach. By presenting the various methods
within a common (loss minimization) framework and discussing illustra-
tive examples, we hope to provide some insight into important properties
and differences, thereby paving the way for a more formal analysis.

1 Introduction

Superset learning is a specific type of learning from weak supervision, in which
the outcome (response) associated with a training instance is only characterized
in terms of a set of possible candidates. There are numerous applications in which
supervision is partial in that sense [9]. Correspondingly, the superset learning
problem has received increasing attention in recent years, and has been studied
under various names, such as learning from ambiguously labelled examples or
learning from partial labels [10, 2]. The contributions so far also differ with regard
to their assumptions on the incomplete information being provided, and how it
has been produced. In this paper, we only assume the actual outcome to be
covered by the subset—hence the name superset learning.

In spite of the ambiguous, set-valued training data, the goal that is commonly
considered in superset learning is to induce a unique model, or a set of models
that are all deemed optimal (in the sense of fitting the observed data equally
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well) and not differentiated any further. This differs from approaches that allow
for a set of incomparable, undominated models, resulting for instance from the
interval order induced by set-valued loss functions [3], or by the application of
conservative, imprecise Bayesian updating rules [11].

In this paper, we reconsider the principle of generalized loss minimization
based on the so-called optimistic superset loss (OSL) as introduced in [7]. To
better understand its nature and possible deficiencies, we contrast the latter
with another, in a sense diametral approach based on a “pessimistic” inference
principle. Moreover, to compensate for a bias that might be caused by an overly
optimistic attitude, we propose an adjustment of the OSL, which can be seen as
a counterpart of a corresponding modification of the pessimistic approach [6].
Presenting the various methods within a common framework of loss minimization
in supervised learning allows us to highlight some important properties and
differences through illustrative examples.

2 Preliminaries

2.1 Setting and Notation

The OSL was introduced in a standard setting of supervised learning with an
input (instance) space X and an output space Y. The goal is to learn a mapping
from X to Y that captures, in one way or the other, the dependence of outputs
(responses) on inputs (predictors). The learning problem essentially consists of
choosing an optimal model (hypothesis) h∗ from a given model space (hypothesis
space) H, based on a set of training data

D =
{

(xn, yn)
}N
n=1

∈ (X × Y)N . (1)

More specifically, optimality typically refers to optimal prediction accuracy, i.e.,
a model is sought whose expected prediction loss or risk

R(h) =

∫
L
(
y, h(x)

)
dP(x, y) (2)

is minimal; here, L : Y × Y −→ R is a loss function, and P is an (unknown)
probability measure on X ×Y modeling the underlying data generating process.

In the following, we assume hypotheses to be uniquely defined in terms of a
parameter θ from an underlying parameter space Θ: H = {hθ | θ ∈ Θ}, where
hθ is the hypothesis associated with θ. Selecting an optimal hypothesis h∗ ∈ H
thus reduces to estimating an optimal parameter θ∗ ∈ Θ.

We are interested in the case where parts of the data are not observed pre-
cisely. More specifically, focusing on the output values4 yn ∈ Y, we assume that
only supersets Yn ⊆ Y are observed. Thus, the learning algorithm does not

4 The principles of optimistic (and likewise pessimistic) loss minimization also extend
to the case of imprecision in the instance features.
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have direct access to the (precise) data (1), but only to the (imprecise, coarse,
ambiguous) observations

O =
{

(xn, Yn)
}N
n=1

∈ (X × 2Y)N . (3)

In the following, we denote by Y = Y1×Y2×· · ·×YN the (Cartesian) product
of the supersets observed for x1, . . . ,xN . Moreover, each y = (y1, . . . , yN ) ∈ Y
is called an instantiation of the imprecisely observed data. More generally, we
call a sample D in (1) an instantiation of O if the instances xn coincide and
yn ∈ Yn for all n ∈ [N ] ..= {1, . . . , N}.

2.2 Optimistic and Pessimistic learning

According to [7], a candidate θ ∈ Θ is evaluated optimistically in terms of

ROPTemp (θ) ..= min
y∈Y

1

N

N∑
n=1

L
(
yn, hθ(xn)

)
, (4)

i.e., in terms of the empirical risk of hθ in the case of a most favourable selection of
the outcomes yn. Moreover, given a loss L that is decomposable (over examples),
the “optimism” can be moved into the loss:

θ∗ ..= argmin
θ∈Θ

ROPTemp (θ) = argmin
θ∈Θ

1

N

N∑
n=1

LO
(
Yn, hθ(xn)

)
, (5)

with the optimistic superset loss (OSL)

LO(Y, ŷ) = min
{
L(y, ŷ) | y ∈ Y

}
, (6)

which compares (precise) predictions with set-valued observations. A key moti-
vation of the OSL is the idea of data disambiguation, i.e., the idea of simulta-
neously inducing the true model (parameter θ) and reconstructing the values of
the underlying precise data.

A completely opposite principle is to replace the optimistic minimum in (4)
by a pessimistic maximum [5]. More specifically, this principle was introduced
in the realm of statistical inference (instead of supervised learning) with L the
logistic loss, i.e., in the setting of maximum likelihood inference. The idea is to
evaluate each candidate θ in terms of the worst likelihood it can achieve over all
instantiations y ∈ Y, and to pick the best among these pessimistic evaluations.
Expressed in terms of generic loss functions (possibly but not necessarily the
logistic loss), this principle would amount to considering

RPESSemp (θ) ..= max
y∈Y

1

N

N∑
n=1

L
(
yn, hθ(xn)

)
, (7)
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and (again assuming the loss to be decomposable) choosing

θ∗ ..= argmin
θ∈Θ

RPESSemp (θ) = argmin
θ∈Θ

1

N

N∑
n=1

LP
(
Yn, hθ(xn)

)
(8)

as a presumably best model, with the pessimistic superset loss (PSL)

LP (Y, ŷ) = max
{
L(y, ŷ) | y ∈ Y

}
. (9)

3 Illustrative Examples

Which of the two approaches to superset learning is more reasonable, the opti-
mistic or the pessimistic one? This question is difficult (or actually impossible)
to answer without further assumptions on the coarsening process, i.e., the pro-
cess that turns precise data into imprecise observations. In the following, to get
a better idea of the nature of the two approaches, we illustrate them by some
simple examples. We shall refer to the optimistic approach (based on the OSL)
as OPT and to the pessimistic one (based on the PSL) and PESS.

3.1 Linear Regression

In linear regression, X = Rd, Y = R, and the goal is to learn a linear predictor
h(x) = x>θ = 〈x, θ〉. Training data is typically assumed to be noisy observations
yn = x>θ0 + ε, where θ0 is the ground-truth parameter and ε a noise term
(with zero expectation). Correspondingly, in the setting of superset learning, we
assume observations Yn 3 yn. Note, therefore, that Yn does not necessarily cover
the ideal outcome (e.g., the expected value E(y |xn) = x>θ0); instead, just like
the precise observation yn itself, it might be shifted by the noise.

To evaluate predictions ŷ = h(x), the loss function most commonly used in
linear regression is the squared error loss. For the case of interval-valued data
Y = [ymin, ymax], the OSL (6) is then given as follows (cf. Fig. 1):

LO
(
[ymin, ymax], ŷ

)
=

 (ymin − ŷ)2 if ŷ < ymin
0 if ymin ≤ ŷ ≤ ymax

(ŷ − ymax)2 if ymax < ŷ
(10)

Thus, the loss is 0 if the prediction is inside the interval, i.e., if the regression
function intersects with the interval, and grows quadratically with the distance
from the interval outside. A small one-dimensional example of a set of interval-
valued data together with a regression line minimizing (5) is shown in Fig. 2
(left).

The PSL version (9) of the squared error loss is given as follows (cf. Fig. 1):

LP
(
[ymin, ymax], ŷ

)
=

{
(ymax − ŷ)2 if ŷ < 1

2 (ymin + ymax)
(ŷ − ymin)2 if ŷ ≥ 1

2 (ymin + ymax)
(11)
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Fig. 1. The OSL (solid line in blue) and PSL (dashed line in red) as extensions of the
squared error loss (gray line) in the case of an interval-valued observation (here the
interval [−1, 1], indicated by the vertical lines).

As can be seen in Fig. 1, the PSL targets the midpoint of the interval as an
optimal “compromise value”; this point minimizes the maximal prediction er-
ror possible, and hence the loss function. Moreover, the larger the interval, the
stronger the loss function increases. Therefore, PESS is very similar to weighted
linear regression, where the weight of an example increases with the width of the
corresponding interval. The OSL behaves in a quite different way: the larger the
interval, the smaller the loss function. Moreover, OSL does not prefer any values
inside the interval (e.g., the midpoint) to any other values. Note that, if the data
is completely coherent with a (noise-free) linear model, i.e., if there is a regres-
sion function intersecting all intervals, then any such function will be optimal
for OPT, while this is not necessarily the case for PESS, as PESS may prefer
a function not intersecting all intervals (see Fig. 2 (right) for an illustration).
Obviously, since the OSL is no longer strictly convex (in contrast with PSL), the
optimisation problem solved by OPT may no longer have a unique solution.

Fig. 2. Left: Linear regression with interval-valued data. Right: Comparison between
PESS and OPT for linear regression.
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We can also compare OPT and PESS from the point of view of model updating
or revision in the case where new data is observed. Imagine, for example, that
a new data point (xN+1, YN+1) is added to the data seen so far. OPT will
check for how compatible its current model is with the interval YN+1 and make
adjustments only if necessary. In particular, if ŷN+1 = hθ(xN+1) ∈ YN+1, i.e.,
the interval includes the current prediction, the model will not be changed at all,
as it is considered fully coherent with the new observation. This also implies that
an extremely wide interval will be ignored as being completely uninformative.
PESS, on the other side, will always change its current estimate θ, unless ŷN+1 =
hθ(xN+1) corresponds exactly to the midpoint of YN+1; this is because any
deviation from this “perfect” prediction is considered as a mistake (or at least a
suboptimal choice) that ought to be mitigated.

From the above comments, it is clear that the two strategies may behave
quite differently on the same data. OPT assumes that Yn is a set of candidate
values, one of which corresponds to the true measurement. Therefore, fitting
one of these candidates, namely the one that is maximally coherent with the
model assumption and the rest of the data, is enough. As opposed to this, PESS
seeks to fit all values yn ∈ Yn simultaneously, i.e., to find a good compromise
prediction ŷn that is not in conflict with any of the candidates.

It appears that OPT proceeds from a disjunctive interpretation of the set
Yn, and considers that the true data will not be chosen so as to systematically
put the assumed model in default. In contrast, PESS is more in line with a
conjunctive interpretation, which makes sense if all the candidates are indeed
guaranteed to be possible measurements. One could imagine, for example, that
xn actually characterizes a whole set of entities, and that Yn is the collection of
outputs associated with these entities. As an illustration, suppose we would like
to learn a control rule that prescribes an autonomous car the strength of braking
depending on its current speed x. Since the optimal strength will also depend
on other factors (such as weather conditions), which are ignored (or “integrated
out”) here, training examples might be interval-valued. For example, depending
on further unknown conditions, the optimal strength could be in-between ymin
and ymax for a speed of x Km/h. Adopting a “cautious” model, which minimizes
the worst mistake it can make, may look like a reasonable strategy then.

3.2 Logistic Regression

In logistic regression, the goal is to learn a probabilistic classifier

hθ(x) =
1

1 + exp(−〈θ,x〉)
, (12)

where hθ(x) is an estimate of the (conditional) probability p(y = 1 |x) of the
positive class. Inference is done on the basis of the maximum likelihood principle,
wich is equivalent to minimizing the log-loss on the training data:

θ∗ = argmin
θ∈Θ

N∑
n=1

L(yn, hθ(xn))
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with

L(y, p) = − log
(
py + (1− p)(1− y)

)
=

{
− log(p) if y = 1
− log(1− p) if y = 0

Using the representation (12) for the probability p, and the class encoding Y =
{−1,+1} instead of Y = {0, 1}, the loss can also be written as follows:

L(y, s) = log
(
1 + exp(−ys)

)
,

where s = 〈θ,x〉 is the predicted score and ys is the margin, i.e., the distance
from the decision boundary (to the right side).

Fig. 3. OSL (blue, solid line) and PSL (red, dashed line) for the logistic loss function.

Since Y = {−1,+1} contains only two elements, there is only one imprecise
observation that can be made, namely Y = {−1,+1} = Y, and the setting
reduces to so-called semi-supervised learning (with a part of the data being
precisely labeled, and another part without any supervision). Thus, the OSL is
given by

LO(Y, s) =

 L(−1, s) if Y = {−1}
L(+1, s) if Y = {+1}

min{L(−1, s), L(+1, s)} if Y = {−1,+1}
,

and the pessimistic version LP by the same expression with min in the third case
replaced by max. As a consequence, if an imprecise observation is made, OPT
will try to disambiguate, i.e., to choose θ such that ys = y〈θ,x〉 is large (and
hence p is close to 0 or close to 1); this is in line with a large margin approach,
i.e., the learner tries to move the decision boundary away from the data points.
Indeed, the generalized loss LO can be seen as the logistic version of the “hat
loss” that is used in semi-supervised learning of support vector machines [1].

As opposed to this, PESS will try to choose θ such that s ≈ 0 and hence
p ≈ 1

2 . Obviously, this may lead to drastically different solutions. An example
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is shown in Fig. 4, where a few labeled training examples are given (positive
in blue and negative in red) and many unlabeled. OPT seeks to maximize the
margin of the decision boundary, and hence puts it in-between the two clusters.
This is in line with the goal of disambiguation: ideally, the unlabeled examples
are far from the decision boundary, which means they are clearly identified as
positive or negative. PESS is doing exactly the opposite and tries to have the
unlabeled examples close to the decision boundary.

OPT

PESS

Fig. 4. Logistic regression in a semi-supervised setting: Solutions for OPT and PESS.

This example suggests that PESS is not really appropriate for tackling dis-
criminative learning tasks. To be fair, however, one has to acknowledge that
PESS may produce more reasonable results in other scenarios. For example, if
the unlabeled examples are not chosen arbitrarily but indeed correspond to those
cases that are very close to the true decision boundary, i.e., for which the pos-
terior probability is indeed close to 1

2 , and which could hence be hard to label,
then PESS is just doing the right thing.

As another rather extreme example, suppose that the precise observations
in Fig. 4 are just the “noisy” cases, whereas all “normal” cases are hidden (the
blue class is actually in the upper right and the red class in the lower left). One
can imagine, for example, an “adversarial” coarsening process that coarsens all
normal cases and only reveals the noise in the data. In this scenario, it is clear
that OPT will be completely misled and produce exactly the opposite of the
right model. In such adversarial settings [8], PESS (and more generally minimax
approaches) may indeed be considered a more reasonable strategy, as it may
provide some guarantees in terms of protection with regard to the coarsening
process. Anyway, what all these examples are showing is that the reasonableness
of an approach strongly depends on which assumptions about the coarsening
process can be considered as plausible.
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3.3 Statistical Parameter Estimation

As already said, OPT and PESS have been introduced in different contexts.
While generalized loss minimization with the OSL was mainly motivated by
problems of supervised machine learning, PESS has mostly been considered in a
setting of statistical parameter estimation, such as the estimation of the param-
eter θ of a Bernoulli distribution in coin tossing. In these cases, OPT may tend
to produce rather extreme estimates. For example, consider a sample such as

1, 0, ?, 0, ?, 1, 1, 1, ?, ? ,

with p positive outcomes indicated by a 1 (e.g., a coin toss landing heads up),
n negative outcomes indicated by a 0, and u unknowns indicated by a ?. One
can check that, in the case where p > n, OPT will produce the estimate θ∗ =
p+u/p+u+n, based on a corresponding disambiguation in which each unknown
is replaced by a positive outcome. More generally, in a multinomial case, all
unknowns are supposed to belong to the majority of the precise part of the data.
This estimate maximizes the likelihood or, equivalently, minimizes the log-loss

L(θ) = −
N∑
n=1

Xi log(θ) + (1−Xi) log(1− θ) .

Such an estimate may appear somewhat implausible. Why should all the un-
knowns be positive? Of course, one may not exclude that the coarsening process
is such that only positives are hidden. In that case, OPT will exactly do the
right thing. Still, the estimate remains rather extreme and hence arguable.

In contrast, PESS would try to maximize the entropy of the estimated dis-
tribution [4, Corollary 1], which is equivalent to having θ∗ = 1/2 in the example
given above. While such an estimate may seem less extreme and more reason-
able, there is again no compelling reason to consider it more (or less) legitimate
than the one obtained by POSS, unless further assumptions are made about
the coarsening process. Finally, note that neither POSS nor PESS can produce
the estimate obtained by the classical coarsening-at-random (CAR) assumption,
which would give θ∗ = 2/3.

As a first remark, let us repeat that generalized loss minimization based
on OSL was actually not intended, or at least not motivated, by this sort of
problem. To explain this point, let us compare the above (statistical estimation)
example of coin tossing with the previous (machine learning) example of logistic
regression. In fact, the former can be seen as a special case of the latter, with
an instance space X = {x0} consisting of a single instance, such that θ = p(y =
1 |x0). Correspondingly, since X has no structure, it is impossible to leverage
any structural assumptions about the sought model h : X −→ Y, which is the
basis of the idea of data disambiguation as performed by OPT.

In particular, in the case of coin flipping, each ? can be replaced by any
(hypothetical) outcome, independently of all others and without violating any
model assumptions. In other words, every instantiation of the coarse data is
as plausible as any other. This is in sharp contrast with the case of logistic
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Fig. 5. Coarse data (left) together with two instantiations (middle and right).

regression, where the assumption of a linear model, i.e., the assumption that
the probability of success for an input x depends on the spatial position of
that point, lets many disambiguations appear implausible. For example, in Fig.
5, the instantiation in the middle, where half of the unlabeled examples are
disambiguated as positive and the other half as negative, is clearly more coherent
with the assumption of (almost) linearly separable classes than the instantiation
on the right, where all unknowns are assigned to the positive class.

In spite of this, examples like the one of coin tossing are indeed suggesting
that OSL might be overly optimistic in certain cases. Even in discriminative
learning, OSL makes the assumption that the chosen model class is the right
one, which may lead to overly confident results should the model choice be
wrong. This motivates a reconsideration of the optimistic inference principle
and perhaps a suitable adjustment.

4 Adjustments of OSL and PSL

A noticeable property of the previous coin tossing example is a bias of the estima-
tion (or learning) process, which is caused by the fact that a higher likelihood can
principally be achieved with a more extreme θ. For example, with θ ∈ {0, 1}, the
probability of an “ideal” sample is 1, whereas for θ = 1/2, the highest probability
achievable on a sample of size N is (1/2)N . Thus, it seems that, from the very
beginning, the candidate estimate θ = 1/2 is put at a systematic disadvantage.

This can also be seen as follows: Consider any sample produced by θ = 1,
i.e., a sequence of tosses with heads up. When coarsening the data by covering
a subset of the sample, OPT will still produce θ = 1 as an estimate. Roughly
speaking, θ = 1 is “robust” toward coarsening. As opposed to this, when coars-
ening a sample produced with θ = 1/2, OPT will diverge and either produce a
smaller or a larger estimate.

4.1 Regularized OSL

One way to counter a systematic bias in disfavour of certain parameters or hy-
potheses is to adopt a Bayesian approach. Instead of looking at the highest like-
lihood value maxy∈Y p(y | θ) of θ across different instantiations of the imprecise
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data5, one may start with a prior π on θ and look at the highest posterior6

max
y∈Y

p
(
y | θ

)
π(θ)

p
(
y
) ,

or, equivalently,

max
y∈Y

{
log p

(
y | θ

)
−H(θ,y)

}
= max

y∈Y

{
N∑
i=1

log p(yn | θ)−H(θ,y)

}
(13)

with

H(θ,y) ..= log p(y)− log π(θ) (14)

At the level of loss minimization, when ignoring the role of y in (14), this ap-
proach essentially comes down to adding a regularization term to the empirical
risk, and hence to minimizing the regularized OSL

ROPTreg (θ) ..=
1

N

N∑
n=1

LO
(
Yn, hθ(xn)

)
+ F (hθ) , (15)

where F (hθ) is a suitable penalty term.
Coming back to our original motivation, namely that some parameters can

principally achieve a higher likelihood than others, one instantiation of F one
may think of is the maximal (log-)likelihood conceivable for θ (where the sample
can be chosen freely and does not depend on the actual imprecise observations):

F (θ) = − max
y∈YN

logp
(
y | θ

)
(16)

In this case, F (θ) can again be moved inside the loss function LO in (15):

ROPTreg (θ) ..=
1

N

N∑
n=1

LO
(
Yn, hθ(xn)

)
(17)

with

LO(Y, ŷ) ..= min
y∈Y

L(y, ŷ)−min
y∈Y

L(y, ŷ) . (18)

For some losses, such as squared error loss in regression, the adjustment (18)
has no effect, because L(y, ŷ) = 0 can always be achieved for at least one y ∈ Y.
For others, however, LO may indeed differ from LO. For the log-loss in binary

5 We assume the xn in the data {(xn, yn)}Nn=1 to be fixed.
6 The obtained bound are similar to the upper expectation bound obtained by the

updating rule discussed by Zaffalon and Miranda [11] in the case of a completely
unknown coarsening process and precise prior information. However, Zaffalon and
Miranda discussed generic robust updating schemes leading to sets of probabilities
or sets of models, which is not the intent of the methods discussed in this paper.
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Fig. 6. The adjusted OSL version (19) of the logistic loss (black line) compared to the
original version (red line).

classification, for example, the normalizing term in (18) is min{L(0, p), L(1, p)},
which means that

LO(Y, p) =

 log(1− p)− log(p) if Y = {1}, p < 1/2
log(p)− log(1− p) if Y = {0}, p > 1/2

0 otherwise
. (19)

A graphical representation of this loss function, which can be seen as a combi-
nation of the 0/1 loss (it is 0 for signed probabilities ≥ 1/2) and the log-loss, is
shown in Fig. 6.

4.2 Adjustment of PSL: Min-Max Regret

Interestingly, a similar adjustment, called min-max regret criterion, has recently
been proposed for PESS [6]. The motivation of the latter, namely to assess a
parameter θ in a relative rather than absolute way, is quite similar to ours.
Adopting our notation, a candidate θ is evaluated in terms of

max
y∈Y

{
logp

(
y | θ

)
−max

θ̂
logp

(
y | θ̂

)}
. (20)

That is, θ is assessed on a concrete instantiation y ∈ Y by comparing it to the
best estimation θ̂y on that data, which defines the regret, and then the worst
comparison over all possible instantiations (the maximum regret) is considered.
Like in the case of OSL, this can again be seen as an approximation of (14) with

F (y) = max
θ̂

logp
(
y | θ̂

)
,

which now depends on y but not on θ (whereas the F in (15) depends on θ
but not on y). Obviously, the min-max regret principle is less pessimistic than
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the original PSL, and leads to an adjustment of PESS that is even somewhat
comparable to OPT: The loss of a candidate θ on an instantiation y is corrected
by the minimal loss F (y) that can be achieved on this instantiation. Obviously,
by doing so, the influence of instantiations that necessarily cause a high loss
is reduced. But these instantiations are exactly those that are considered as
“implausible” and down-weighted by OPT (cf. Section 3.3). See Fig. 7 for an
illustrative comparison in the case of coin tossing as discussed in Section 3.3. Note

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

Fig. 7. Loss functions and optimal predictions of θ (minima of the losses indicated
by vertical lines) in the case of coin tossing with observations 0, 0, 1, 1, 1, 1, ?, ?, ?:
solid blue line for OSL, dashed blue for the regularized OSL version (14) with π the
beta(5,5) distribution, solid red for PSL, and dashed red for the adjusted PSL (20).

that (20) does not permit an additive decomposition into losses on individual
training examples, because the regret is defined on the entire set of data. Instead,
a generalization of (20) to loss functions other than log-loss suggests evaluating
each θ in terms of the maximal regret

MReg(θ) ..= max
y∈Y

(
Remp(θ,y)−min

θ̂
Remp(θ̂,y)

)
, (21)

where Remp(θ,y) denotes the empirical risk of θ on the data obtained for the
instantiation y. Computing the maximal regret (21), let alone finding the mini-
mizer θ∗ = argminθ MReg(θ), appears to be intractable except for trivial cases.
In particular, the problem will be hard in cases like logistic regression, where
the empirical risk minimizer minθ̂Remp(θ̂,y) cannot be obtained analytically,
because then even the evaluation of a single candidate θ on a single instantia-
tion y requires the solution of a complete learning task — not to mention that
the minimization over all instantiations y comes on top of this.
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5 Concluding Remarks

The goal of our discussion was to provide some insight into the basic nature of
the “optimistic” and the “pessimistic” approach to learning from imprecise data.
To this end, we presented both of them in a unified framework and highlighted
important properties and differences through illustrative examples.

As future work, we plan a more thorough comparison going beyond anecdotal
evidence. Even if both approaches deliberately refrain from specific assumptions
about the coarsening process, it would be interesting to characterize situations
in which they are likely to produce accurate results, perhaps even with formal
guarantees, and situations in which they may fail. In addition to a formal analysis
of that kind, it would also be interesting to compare the approaches empirically.
This is not an easy task, however, especially due to a lack of suitable (real)
benchmark data. Synthetic data can of course be used as well, but as our exam-
ples have shown, it is always possible to create the data in favour of the one and
in disfavour of the other approach.
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