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Preference Elicitation with Uncertainty: Extending Regret
Based Methods with Belief Functions

Pierre-Louis Guillot1 and Sebastien Destercke1

Heudiasyc laboratory, Compiègne 60200, France

Abstract. Preference elicitation is a key element of any multi-criteria decision analysis
(MCDA) problem, and more generally of individual user preference learning. Existing effi-
cient elicitation procedures in the literature mostly use either robust or Bayesian approaches.
In this paper, we are interested in extending the former ones by allowing the user to express
uncertainty in addition of her preferential information and by modelling it through belief
functions. We show that doing this, we preserve the strong guarantees of robust approaches,
while overcoming some of their drawbacks. In particular, our approach allows the user to con-
tradict herself, therefore allowing us to detect inconsistencies or ill-chosen model, something
that is impossible with more classical robust methods.

Keywords: Belief Functions · Preference Elicitation · Multicriteria Decision.

1 Introduction

Preference elicitation, the process through which we collect preference from a user, is an important
step whenever we want to model her preferences. It is a key element of domains such as multi-
criteria decision analysis (MCDA) or preference learning [7], where one wants to build a ranking
model on multivariate alternatives (characterised by criteria, features, . . . ). Our contribution is
more specific to MCDA, as it focuses on getting preferences from a single user, and not a population
of them.

Note that within this setting, preference modelling or learning can be associated with various
decision problems. Such problems most commonly include the ranking problem that consists in
ranking alternatives from best to worst, the sorting problem that consists in classifying alternatives
into ordered classes, and finally the choice problem that consists in picking a single best candidate
among available alternatives. This article only deals with the choice problem but can be extended
towards the ranking problem in a quite straightforward manner – commonly known as the iterative
choice prodecure – by considering a ranking as a series of consecutive choices [1].

In order for the expert to make a recommendation in MCDA, she must first restrict her search
to a set of plausible MCDA models. This is often done accordingly to a priori assumptions on the
decision making process, possibly constrained by computational considerations.

In this paper, we will assume that alternatives are characterised by q real values, i.e. are rep-
resented by a vector in Rq, and that preferences over them can be modelled by a value function
f : Rq → R such that a � b iff f(a) > f(b). More specifically, we will look at weighted averages. The
example below illustrate this setting. Our results can straightforwardly be extended to other evalu-
ations functions (Choquet integrals, GAI, . . . ) in theory, but would face additional computational
issues that would need to be solved.

Example 1 (choosing the best course). Consider a problem in which the DM is a student wanting to
find the best possible course in a large set of courses, each of which has been previously associated
a grade from 0 to 10 – 0 being the least preferred and 10 being the most preferred – according
to 3 criteria: usefulness, pedagogy and interest. The expert makes the assumption that the DM
evaluates each course according to a score computed by a weighted sum of its 3 grades. This is a
strong assumption as it means for example that an increase of 0.5 in usefulness will have the same
impact on the score regardless of the grades in pedagogy and interest. In such a set of models, a
particular model is equivalent to a set of weights in R3. Assume that the DM preferences follow the
model given by the weights (0.1, 0.8, 0.1), meaning that she considers pedagogy to be eight time as
important as usefulness and interest which are of equal importance. Given the grades reported in
Table 1, she would prefer the Optimization course over the Machine learning course, as the former
would have a 5.45 value, and the later a 3.2 value.
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Machine learning :
usefulness pedagogy interest

8.5 1.5 10
Optimization:

usefulness pedagogy interest

3 5.5 2

Linear algebra:
usefulness pedagogy interest

7 5 5.5
Graph theory :

usefulness pedagogy interest

1 2 6

Table 1. Grades of courses

Beyond the choice of a model, the expert also needs to collect or elicit preferences that are
specific to the DM, and that she could not have guessed according to a priori assumptions. In-
formation regarding preferences that are specific to the DM can be collected by asking them to
answer questions in several form such as the ranking of a subset of alternatives from best to worst
or the choice of a preferred candidate among a subset of alternatives.

Example 2 (choosing the best course (continued)). In our example, directly asking for weights
would make little sense (as our model may be wrong, and as the user cannot be expected to be
an expert of the chosen model). A way to get this information from her would therefore be to
ask her to pick her favorite out of two courses. Let’s assume that when asked to choose between
Optimization and Graph theory, she prefers the Optimisation course. The latter being better than
the former in pedagogy and worse in interest, her answer is compatible with weights (0.05, 0.9, 0.05)
(strong preference for pedagogy over other criteria) but not with (0.05, 0.05, 0.9) (strong preference
for interest over other criteria). Her answer has therefore given the expert additional information
on the preferential model underlying her decision. We will see later that this generates a linear
constraint over the possible weights.

Provided we have made some preference model assumptions (our case here), it is possible to
look for efficient elicitation methods, in the sense that they solve the decision problem we want to
solve in a small enough, if not minimal number of questions. A lot of work has been specifically
directed towards active elicitation methods, in which the set of questions to ask the DM is not
given in advance but determined on the fly. In robust methods, this preferential information is
assumed to be given with full certainty which leads to at least two issues. The first one is that
elicitation methods thus do not account for the fact that the DM might doubt her own answers,
and that they might not reflect her actual preferences. The second one, that is somehow implied
by the first one, is that most robust active elicitation methods will never put the DM in a position
where she could contradict either herself or assumptions made by the expert, as new questions will
be built on the basis that previous answers are correct and hence should not be doubted. This
is especially problematic when inaccurate preferences are given early on, or when the preference
model is based on wrong assumptions.

This paper presents an extension of the Current Solution Strategy [3] that includes uncertainty
in the answers of the DM by using the framework based on belief functions presented in [5].
Section 2 will present necessary preliminaries on both robust preference elicitation based on regret
and uncertainty management based on belief functions. Section 3 will present our extension and
some of the associated theoretical results and guarantees. Finally Section 4 will present some first
numerical experiments that were made in order to test the method and its properties in simulations.

2 Preliminaries

2.1 Formalization

Alternatives and models: We will denote X the space of possible alternatives, and X ⊆ X the
subset of available alternatives at the disposal of our DM and about which a recommendation
needs to be made. In this paper we will consider alternatives summarised by q real values corre-
sponding to criteria, hence X ⊆ Rq. For any x ∈ X and 1 ≤ i ≤ q, we denote by xi ∈ R the
evaluation of alternative x according to criterion i. We also assume that for any x, y ∈ X such that
xi > yi for some i ∈ {1, . . . , q} and xl ≥ yl,∀l ∈ {1, . . . , q} \ {i}, x will always be strictly preferred
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to y – meaning that preferences respect ceteris paribus monotonicity, and we assume that criteria
utility scale is given.

X is a finite set of k alternative such that X = {x1, x2, . . . , xk} with xj the j-th alternative of
X. Let P(X) be a preference relation over X, and x, y ∈ X be two alternatives to compare. We will
state that x �P y if and only if x is strictly preferred to y in the corresponding relation, x 'P y
if and only if x and y are equally preferred in the corresponding relation, and x �P y if and only
if either x is strictly preferred to y or x and y are equally preferred.

Preference modelling and weighted sums: In this work, we focus on the case where the
hypothesis set Ω of preference models is the set of weighted sum models1. A singular model ω
will be represented by its vector of weights in Rq, and ω will be used to describe indifferently the
decision model and the corresponding weight vector. Ω can therefore be described as:

Ω =

{
ω ∈ Rq : ωi ≥ 0 and

q∑
i=1

ωi = 1

}
.

Each model ω is associated to the corresponding aggregating evaluation function

fω(x) =

q∑
i=1

ωixi,

and any two potential alternatives x, y in X can then be compared by comparing their aggregated
evaluation:

x �ω y ⇐⇒ fω(x) ≥ fω(y) (1)

which means that if the model ω is known, Pω(X) is a total preorder over X, the set of existing
alternatives. Note that Pω(X) can be determined using pairwise relations �ω. Weighted averages
are a key model of preference learning whose linearity usually allows the development of efficient
methods, especially in regret-based elicitation [2]. It is therefore an ideal starting point to explore
other more complex functions, such as those that are linear in their parameters once alternatives
are known (i.e., Choquet integrals, Ordered weighted averages).

2.2 Robust preference elicitation

In theory, obtaining a unique true preference model requires both unlimited time and unbounded
cognitive abilities. This means that in practice, the best we can do is to collect information iden-
tifying a subset Ω′ of possible models, and act accordingly. Rather than choosing a unique model
within Ω′, robust methods usually look at the inferences that hold for every model in Ω′. Let Ω′

be the subset of models compatible with all the given preferential information, then we can define
PΩ′(X), a partial preorder of robust preferences over X, as follows:

x �Ω′ y ⇐⇒ ∀ω ∈ Ω′ fω(x) ≥ fω(y). (2)

The research question we address here is to find elicitation strategies that reduce Ω′ as quickly as
possible, obtaining at the limit an order PΩ′(X) having only one maximal element2. In practice,
one may have to stop collecting information before that point, explaining the need for heuristic
indicators of the fitness of competing alternatives as potential choices.

Regret based elicitation: Regret is a common way to assess the potential loss of recommending
a given alternative under incomplete knowledge. It can help both the problem of making a recom-
mendation and finding an efficient question. Regret methods use various indicators, such as the
regret Rω(x, y) of choosing x over y according to model ω, defined as

Rω(x, y) = fω(y)− fω(x). (3)

1 In principle, our methods apply to any value function with the same properties, but may have to solve
computational issue that depends on the specific chosen hypothesis.

2 Or in some cases a maximal set {x1, . . . , xp} of equally preferred elements s.t. x1 ' . . . ' xp
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From this regret and a set Ω′ of possible models, we can then define the pairwise max regret as

PMR(x, y,Ω′) = max
ω∈Ω′

Rω(x, y) = max
ω∈Ω′

(fω(y)− fω(x)) (4)

that corresponds to the maximum possible regret of choosing x over y for any model in Ω′. The
max regret for an alternative x defined as

MR(x,Ω′) = max
y∈X

PMR(x, y,Ω′) = max
y∈X

max
ω∈Ω′

(fω(y)− fω(x)) (5)

then corresponds to the worst possible regret one can have when choosing x. Finally the min max
regret over a subset of models Ω′ is

mMR(Ω′) = min
x∈X

MR(x,Ω′) = min
x∈X

max
y∈X

max
ω∈Ω′

(fω(y)− fω(x)) (6)

Picking as choice x∗ = arg min mMR(Ω′) is then a robust choice, in the sense that it is the one
giving the minimal regret in a worst-case scenario (the one leading to max regret).

Example 3 (choosing the best course (continued)). Let X = [0, 10]3 be the set of valid alternatives
composed of 3 grades from 0 to 10 in respectively pedagogy, usefulness and interest. Let X =
{x1, x2, x3, x4} be the set of available alternatives in which x1 corresponds to the Machine learning
course, x2 corresponds to the Optimization course, x3 corresponds to the Linear algebra course
and x4 corresponds to the Graph theory course, as reported in table 1. Let x, y ∈ X be two
alternatives and Ω the set of weighted sum models, PMR(x, y,Ω) can be computed by optimizing
maxω∈Ω

[
ω1(x1 − y1) + ω2(x2 − y2) + ω3(x3 − y3)

]
. As this linear function of ω is optimized over

a convex polytope Ω, it can easily be solved exactly using linear programming (LP). Results
of PMR(x, y,Ω) and MR(x,Ω) are shown in Table 2. In this example, x1 is the alternative with
minimum max regret, and the most conservative candidate to answer the choice problem according
to regret.

@
@@x
y
x1 x2 x3 x4

x1 0 4 3.5 0.5

x2 8 0 4 4

x3 4.5 0.5 0 0.5

x4 7.5 3.5 6 0

x MR

x1 4

x2 8

x3 4.5

x4 7.5

Table 2. Values of PMR(x, y,Ω) (left) and MR(x,Ω) (right)

Regret indicators are also helpful for making the elicitation strategy efficient and helping the
expert ask relevant questions to the DM. LetΩ′ andΩ′′ be two sets of models such that mMR(Ω′) <
mMR(Ω′′). In the worst case, we are certain that x∗Ω′ the optimal choice for Ω′ is less regretted
than x∗Ω′′ the optimal choice for Ω′′, which means that we would rather have Ω′ be our set of

models than Ω′′. Let I, I ′ be two pieces of preferential information and ΩI , ΩI
′

the sets obtained
by integrating this information. Finding which of the two is the most helpful statement in the
progress towards a robust choice can therefore be done by comparing mMR(ΩI) and mMR(ΩI

′
).

An optimal elicitation process (w.r.t. minimax regret) would then choose the question for which
the worst possible answer gives us a restriction on Ω that is the most helpful in providing a
robust choice. However, computing such a question can be difficult, and the heuristic we present
next aims at picking a nearly optimal question in an efficient and tractable way.

The Current Solution Strategy: Let’s assume that Ω′ is the subset of decision models that is
consistent with every information available so far to the expert. Let’s restrict ourselves to questions
that consist in comparing pairs x, y of alternatives in X. The DM can only answer with I1 = x � y
or I2 = x � y. A pair helpful in finding a robust solution as fast as possible can be computed as
a solution to the following optimization problem that consists in finding the pair minimizing the
worst-case min max regret :

min
(x,y)∈X2

WmMR({x, y}) = min
(x,y)∈X2

max
{

mMR(Ω′ ∩Ωx�y),mMR(Ω′ ∩Ωx�y)
}

(7)
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The current solution strategy (referred to as CSS) is a heuristic answer to this problem that has
proved to be efficient in practice [3]. It consists in asking the DM to compare x∗ ∈ arg mMR(Ω′)
the least regretted alternative to y∗ = arg maxy∈X PMR(x∗, y, Ω′) the one it could be the most
regretted to (its ”worst opponent”). CSS is efficient in the sense that it requires the computation
of only one value of min max regret, instead of the O(q2) required to solve (7).

Example 4 (Choosing the best course (continued).). Using the same example, according to table 2,
we have mMR(Ω) = MR(x1, Ω) = PMR(x1, x2, Ω), meaning that x1 is the least regretted alterna-
tive in the worst case and x2 is the one it is most regretted to. The CSS heuristic consists in asking
the DM to compare x1 and x2, respectively the Machine learning course and the Optimization
course.

2.3 Uncertain preferential information

Two key assumptions behind the methods we just described are that (1) the initial chosen set Ω
of models can perfectly describe the DM’s choices and (2) the DM is an oracle, in the sense that
any answer she provides truly reflects her preferences, no matter how difficult the question. This
certainly makes CSS an efficient strategy, but also an unrealistic one. This means in particular
that if the DM makes a mistake, we will just pursue with this mistake all along the process and
will never question what was said before, possibly ending up with sub-optimal recommendations.

Example 5 (choosing the best course (continued)). Let’s assume similarly to Example 2 that the
expert has not gathered any preference from the DM yet, and that this time she asks her to compare
alternatives x1 and x2 – respectively the Machine learning course and the Optimization course.
Let’s also assume similarly to Example 1 that the DM makes decisions according to a weighted
sum model with weights ω? = (0.1, 0.8, 0.1). fω?(x2) = 5.45 > 3.2 = fω?(x1), which means that
she should prefer the Optimization course over the Machine learning course. However for some
reason – such as her being unfocused or unsure about her preference – assume the DM’s answer is
inconsistent with ω? and she states that x1 � x2 rather than x2 � x1.

Then Ω′ the set of model consistent with available preferential information is such that Ω′ =
Ωx1�x2 = {ω ∈ Ω :

∑3
i=1 ω

i
(
xi1 − xi2

)
≥ 0} = {ω ∈ Ω : ω2 ≤ 2

3 −
5
24ω

1}, as represented in
Figure 1. It is clear that ω? 6∈ Ω′ : subsequent questions will only ever restrict Ω′ and the expert
will never get quite close to modelling ω?.

0
ω1

1

ω2

1

2
3 11

19

8
19

0.1

0.8
Ω

Ω′

ω?

Fig. 1. Graphical representation of Ω, Ω′ and ω?

A similar point could be made if ω∗, the model according to which the DM makes her decision,
does not even belong to Ω the set of weighted sums models that the expert chose.

As we shall see, one way to adapt min-max regret approaches to circumvent the two above
difficulties can be to include a simple measure of how uncertain an answer is.

The belief function framework In classical CSS, the response to a query by the DM always
implies a set of consistent models Ω′ such that Ω′ ⊆ Ω. Here, we allow the DM to give alongside
her answer a confidence level α ∈ [0, 1], interpreted as how confident she is that this particular
answer matches her preferences. In the framework developed in [5], such information is represented
by a mass function on Ω′, referred to as mΩ′

α and defined as :



6 P.L. Guillot et al.

mΩ′

α (Ω) = 1− α, mΩ′

α (Ω′) = α.

Such mass assignments are usually called simple support [13] and represent elementary pieces of
uncertain information. A confidence level of 0 will correspond to a vacuous knowledge about the
true model ω∗, and will in no way imply that the answer is wrong (as would have been the case in
a purely probabilistic framework). A confidence level of 1 will correspond to the case of certainty
putting a hard constraint on the subset of models to consider.

Remark 1. Note that values of α do not necessarily need to come from the DM, but can just be
chosen by the analyst (in the simplest case as a constant) to weaken the assumptions of classical
models. We will see in the experiments of Section 4 that such a strategy may indeed lead to
interesting behaviours, without necessitating the DM to provide confidence degrees if she thinks
the task is too difficult, or if the analyst thinks such self-assessed confidence is meaningless.

Dempster’s rule Pieces of information corresponding to each answer will be combined through
non-normalized Dempster’s rule +∩. At step k, mk the mass function capturing the current belief
about the DM’s decision model can thus be defined recursively as :

m0 = mΩ
1 . . . mk = mk−1 +∩ m

Ωk
αk
. (8)

This rule, also known as TBM conjunctive rule, is meant to combine distinct pieces of information.
It is central to the Transferable Belief Model, that intends to justify belief functions without using
probabilistic arguments [14].

Note that an information fusion setting and the interpretation of the TBM fit our problem
particularly well as it assumes the existence of a unique true model ω∗ underlying the DM’s
decision process, that might or might not be in our predefined set of models Ω. Allowing for
an open world is a key feature of the framework. Let us nevertheless recall that non-normalized
Dempster’s rule +∩ can also be justified without resorting to the TBM [11, 8, 9].

In our case this independence of sources associated with two mass assignments mΩi
αi

and m
Ωj
αj

means that even though both preferential information account for preferences of the same DM,
the answer a DM gives to the ith question does not directly impact the answer she gives to the
jth question : she would have answered the same thing had their ith answer been different for
some reason. This seems reasonable, as we do not expect the DM to have a clear intuition about
the consequences of her answers over the set of models, nor to even be aware that such a set –
or axioms underlying it – exists. One must however be careful to not ask the exact same question
twice in short time range.

Since combined masses are all possibility distributions, an alternative to assuming independence
would be to assume complete dependence, simply using the minimum rule [6] which among other
consequences would imply a loss of expressivity 3 but a gain in computation 4.

As said before, one of the key interest of using this rule (rather than its normalised version)
is to allow m(∅) > 0, notably to detect either mistakes in the DM’s answer (considered as an
unreliable source) or a bad choice of model (under an open world assumption). Determining where
the conflict mainly comes from and acting upon it will be the topic of future works. Note that in
the specific case of simple support functions, we have the following result:

Proposition 1. If mΩk
αk

are simple support functions combined through Dempster’s rule, then

m(∅) = 0⇔ ∃ω, P l({ω}) = 1

with Pl({ω}) =
∑
E⊆Ω,ω∈Em(E) the plausibility measure of model ω.

Proof. (Sketch) The ⇐ part is obvious given the properties of Plausiblity measure. The ⇒ part
follows from the fact that if m(∅) = 0, then all focal elements are supersets of

⋂
i∈{1,...,k}Ωi, hence

all contains at least one common element.

This in particular shows that m(∅) can, in this specific case, be used as an estimate of the
logical consistency of the provided information pieces.

3 For instance, no new values of confidence would be created when using a finite set {α1, . . . , αM} for
elicitation

4 The number of focal sets increasing only linearly with the number of information pieces.
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Consistency with robust, set-based methods : when an information I is given with full
certainty α = 1, we retrieve a so-called categorical mass mk

(
ΩI
)

= 1. Combining a set I1, ..., Ik
of such certain information will end up in the combined mass

mk

 ⋂
i∈{1,...,k}

Ωi

 = 1

which is simply the intersection of all provided constraints, that may turn up either empty or
non-empty, meaning that inconsistency will be a Boolean notion, i.e.,

mk (Ø) =

{
1 if

⋂
i∈{1,...,k}Ωi = ∅

0 otherwise

Recall that in the usual CSS or minimax regret strategies, such a situation can never happen.

3 Extending CSS within the belief function framework

We now present our proposed extension of the Current Solution Strategy integrating confidence
degrees and uncertain answers. Note that in the two first Sections 3.1 and 3.2, we assume that the
mass on the empty set is null in order to parallel our approach with the usual one not including
uncertainties. We will then consider the problem of conflict in Section 3.3.

3.1 Extending regret notions

Extending PMR: when uncertainty over possible models is defined through a mass function
2Ω → [0, 1], subsets of Ω known as focal sets are associated to a value m(Ω′) that correspond to
the knowledge we have that ω belongs to Ω′ and nothing more. The extension we propose averages
the value of PMR on focal sets weighted by their corresponding mass :

EPMR(x, y,m) =
∑
Ω′⊆Ω

m(Ω′).PMR(x, y,Ω′) (9)

and we can easily see that in the case of certain answers (α = 1), we do have

EPMR(x, y,mk) = PMR

x, y,
 ⋂
i∈{1,...,k}

Ωi

 (10)

hence formally extending Equation (4). When interpreting m(Ω′) as the probability that ω belongs
to Ω′, EPMR could be seen as an expectation of PMR when randomly picking a set in 2Ω .

Extending EMR: Similarly, we propose a weighted extension of maximum regret

EMR(x,m) =
∑
Ω′⊆Ω

m(Ω′).MR(x,Ω′) =
∑
Ω′⊆Ω

m(Ω′).max
y∈X
{PMR(x, y,Ω′)} . (11)

EMR is the expectation of the maximal pairwise max regret taken each time between x and
y ∈ X its worst adversary – as opposed to a maximum considering each y ∈ X of the expected
pairwise max regret between x and the given y, described by MER(x,m) = maxy EPMR(x, y,m).
Both approaches would be equivalent to MR in the certain case, meaning that if αi = 1 then

EMR(x,mk) = MER(x,mk) = MR

x,
 ⋂
i∈{1,...,k}

Ωi

 . (12)

However EMR seems to be a better option to assess the max regret of an alternative, as under the
assumption that the true model ω∗ is within the focal set Ω′, it makes more sense to compare x
to its worst opponent within Ω′, which may well be different for two different focal sets. Indeed, if
ω∗ the true model does in fact belong to Ω′, decision x is only as bad as how big the regret can
get for any adversarial counterpart yΩ′ ∈ X.
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Extending mMR: we propose to extend it as

mEMR(m) = min
x∈X

EMR(x,m). (13)

mEMR minimizes for each x ∈ X the expectation of max regret and is different from the
expectation of the minimal max regret for whichever alternative x is optimal, described by
EmMR(m) =

∑
Ω′ m(Ω′) minx∈X MR(x,Ω′). Again, these two options with certain answers boil

down to mMR as we have

mEMR(m) = EmMR(m) = mMR

 ⋂
i∈{1,...,k}

Ωi

 . (14)

The problem with EmMR is that it would allow for multiple possible best alternatives, leaving us
with an unclear answer as to what is the best choice option, (arg min EmMR) not being defined.
It indicates how robust in the sense of regret we expect any best answer to the choice problem to
be, assuming there can be an optimal alternative for each focal set. In contrast, mEMR minimizes
the max regret while restricting the optimal alternative x to be the same in all of them, hence
providing a unique argument and allowing our recommendation system and elicitation strategy to
give an optimal recommendation.

Extending CSS: our Evidential Current Solution Strategy (ECSS) then amounts, at step k with
mass function mk, to perform the following sequence of operations:

– Find x∗ = arg mEMR(mk) = arg minx∈X EMR(x,mk);
– Find y∗ = arg maxy∈X EPMR(x∗, y,mk);

– Ask the DM to compare x∗, y∗ and provide αk, obtaining mΩk

αk
;

– Compute mk+1 := mk +∩ m
Ωk

αk

– Repeat until conflict is too high (red flag), budget of questions is exhausted, or mEMR(mk) is
sufficiently low

Finally, recommend x∗ = arg mEMR(mk). Thanks to Equations (10), (12) and (14), it is easy to
see that we retrieve CSS as the special case in which all answers are completely certain.

Example 6. Starting with intial mass function m0 such that m0(Ω) = 1, the choice of CSS coin-
cides with the choice of ECSS (all evidence we have is commited to ω ∈ Ω). With the values of
PMR reported in Table 2 the alternatives the DM is asked to compare are x1 the least regretted
alternative and x2 its most regretted counterpart. In accordance with her true preference model
ω∗ = (0.1, 0.8, 0.1), the DM states that x2 � x1, i.e., she prefers the Optimization course over
the Machine learning course, with confidence degree α = 0.7. Let Ω1 be the set of WS mod-
els in which x2 can be preferred to x1, which in symmetry with example 5 can be defined as
Ω1 = {ω ∈ Ω : ω2 ≥ 2

3 −
5
24ω

1}, as represented in Figure 2.

0
ω1

1

ω2

1

2
3 11

19

8
19

0.1

0.8
Ω1

Ω

ω?

Fig. 2. Graphical representation of Ω, Ω1 and ω?

Available information on her decision model after step 1 is represented by mass function m1 with

m1( Ω ) = 0.3
m1( Ω1 ) = 0.7
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@
@@x
y

x1 x2 x3 x4

x1 0 4 3.5 0.5

x2 0 0 53
38
' 1.39 −1

x3 − 5
6
' −0.83 0.5 0 − 11

6
' −1.83

x4
109
38
' 2.87 3.5 81

19
' 4.26 0

x MR

x1 4

x2
53
38
' 1.39

x3 0.5

x4
81
19
' 4.26

Table 3. Values of PMR(x, y,Ω1) (left) and MR(x,Ω1) (right)

@
@@x
y

x1 x2 x3 x4

x1 0 4 3.5 0.5

x2 2.4 0 827
390
' 2.18 0.5

x3
23
30
' 0.77 0.5 0 − 68

60
' −1.13

x4
809
190
' 4.26 3.5 909

190
' 4.78 0

x MR

x1 4

x2
1283
380
' 3.38

x3
23
30
' 0.7

x4
1389
380
' 5.23

Table 4. Values of EPMR(x, y,m1) (left) and EMR(x,m1) (right)

The values of PMR and MR on Ω1 can be computed using LP as reported in table 3. Values of
PMR and MR and have been previously computed on Ω as reported in Table 2. Values of EPMR
and EMR can be then be deduced by combining them according to Equations (9) and (11), as
reported in Table 4. In this example x3 minimizes both MR and EMR and our extension agrees
with the robust version as to which recommendation is to be made. However the most regretted
counterpart to which the DM has to compare x3 in the next step differs, as ECSS would require
that she compares x3 and x1 rather than x3 and x2 for CSS.

3.2 Preserving the properties of CSS

This section discusses to what extent is ECSS consistent with three key properties of CSS:

1. CSS is monotonic, in the sense that the minmax regret mMR reduces at each iteration.
2. CSS provides strong guarantees, in the sense that the felt regret of the recommendation is

ensured to be at least as bad as the computed mMR.
3. CSS produces questions that are non-conflicting (whatever the answer) with previous answers.

We would like to keep the first two properties at least in the absence of conflicting information, as
they ensure respectively that the method will converge and will provide robust recommendations.
However, we would like our strategy to raise questions possibly contradicting some previous an-
swers, so as to raise the previously mentioned red flags in case of problems (unreliable DM or bad
choice of model assumption). As shows the next property, our method also converges.

Proposition 2. Let mk−1 and mΩk

αk
be two mass functions on Ω issued from ECSS such that

mk(Ø) =
[
mk−1 +∩ m

Ωk

αk

]
(Ø) = 0, then

1. EPMR(x, y,mk) ≤ EPMR(x, y,mk−1)
2. EMR(x,mk) ≤ EMR(x,mk−1)
3. mEMR(mk) ≤ mEMR(mk−1)

Proof. (sketch) The two first items are simply due to the combined facts that on one hand we
know [15] that applying +∩ means that mk is a specialisation of mk−1, and on the other hand
that for any Ω′′ ⊆ Ω′ we have f(x, y,Ω′′) ≤ f(x, y,Ω′) for any f ∈ {PMR,MR}. The third item
is implied by the second as it consists in taking a minimum over a set of values of EMR that are
all smaller.

Note that the above argument applies to any combination rule producing a specialisation of
the two combined masses, including possibilistic minimum rule [6], Denoeux’s family of w-based
rules [4], etc. We can also show that the evidential approach, if we provide it with questions
computed through CSS, is actually more cautious than CSS:
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Proposition 3. Consider the subsets of models Ω1, . . . , Ωk issued from the answers of the CSS

strategy, and some values α1, . . . , αk provided a posteriori by the DM. Let mk−1 and mΩk

αk
be two

mass functions issued from ECSS on Ω such that mk(∅) = 0. Then we have

1. EPMR(x, y,mk) ≥ PMR(x, y,
(⋂

i∈{1,...,k}Ωi

)
)

2. EMR(x,mk) ≥ MR(x,
(⋂

i∈{1,...,k}Ωi

)
)

3. mEMR(mk) ≥ mMR(
(⋂

i∈{1,...,k}Ωi

)
)

Proof. (sketch) The first two items are due to the combined facts that on one hand all focal

elements are supersets of
(⋂

i∈{1,...,k}Ωi

)
and on the other hand that for any Ω′′ ⊆ Ω′ we have

f(x, y,Ω′′) ≤ f(x, y,Ω′) for any f ∈ {PMR,MR}. Any value of EPMR or EMR is a weighted

average over terms all greater than their robust counterpart on
(⋂

i∈{1,...,k}Ωi

)
, and is therefore

greater itself. The third item is implied by the second as the biggest value of EMR is thus necessarily
bigger than all the values of MR.

This simply shows that, if anything, our method is even more cautious than CSS. It is in that
sense probably slightly too cautious in an idealized scenario – especially as unlike robust indicators
our evidential extensions will never reach 0 – but provides guarantees that are at least as strong.

While we find the two first properties appealing, one goal of including uncertainties in the DM
answers is to relax the third property, whose underlying assumptions (perfectness of the DM and
of the chosen model) are quite strong. In Sections 3.3 and 4, we show that ECSS indeed satisfies
this requirement, respectively on an example and in experiments.

3.3 Evidential CSS and conflict

The following example simply demonstrates that, in practice, ECSS can lead to questions that are
possibly conflicting with each others, a feature CSS does not have. This conflict is only a possibility:
no conflict will appear should the DM provide answers completely consistent with the set of models
and what she previously stated, and in that case at least one model will be fully plausible5 (see
Proposition 1).

Example 7 (Choosing the best course (continued)). At step 2 of our example the DM is asked to
compare x1 to x3 in accordance with Table 4. Even though it conflicts with ω∗ the model underlying
her decision the DM has the option to state that x1 � x3 with confidence degree α > 0, putting
weight on Ω2 the set of consistent model defined by Ω2 = {ω ∈ Ω :

∑q
i=1 ω

i
(
xi1 − xi3

)
≥ 0} =

{ω ∈ Ω : ω2 ≤ 9
16 −

3
8ω

1}. However as represented in figure 3, Ω1 ∩Ω2 = Ø.

0
ω1

1

ω2

1

2
3 11

19

8
19

0.1

0.8
Ω1

Ω

ω?

0
ω1

1

ω2

1

2/3

9/16
11
19

8
19

0.3
0.7

0.1

0.8
Ω1

Ω2

Ω

ω?

Fig. 3. Graphical representation of Ω, Ω1, Ω2 and ω?

This means that x1 � x2 and x3 � x1 are not compatible preferences assuming the DM acts

5 This contrasts with a Bayesian/probabilistic approach, where no model would receive full support in
non-degenerate cases.
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according to a weighted sum model. This can be either because she actually does not follow such
a model, or because one of her answers did not reflect her actual preference (which would be the
case here). Assuming she does state that x1 � x3 with confidence α = 0.6, information about the
preference model at step 2 is captured through mass function m2 defined as :

m2 : Ω → 0.12 Ω2 → 0.18
Ω1 → 0.28 Ø → 0.42

Meaning that ECSS detects a degree of inconsistency equal to m2(Ø) = 0.42.

This illustrating example is of course not representative of real situations, having only four
alternatives, but clearly shows that within ECSS, conflict may appear as an effect of the strategy.
In other words, we do not have to modify it to detect consistency issues, it will automatically seek
out for such cases if αi < 1. In our opinion, this is clearly a desirable property showing that we
depart from the assumptions of CSS.

However, the inclusion of conflict as a focal element in the study raises new issues, the first
one being how to extend the various indicators of regret to this situation. In other words, how
can we compute PMR(x, y,Ø), MR(x,Ø) or MMR(Ø)? This question does not have one answer
and requires careful thinking, however the most straightforward extension is to propose a way
to compute PMR(x, y,Ø), and then to plug in the different estimates of ECSS. Two possibilities
immediately come to mind:

– PMR(x, y,Ø) = maxω∈Ω Rω(x, y), which takes the highest regret among all models, and would
therefore be equivalent to consider conflict as ignorance. This amounts to consider Yager’s
rule [16] in the setting of belief functions. This rule would make the regret increases when
conflict appears, therefore providing alerts, but this clearly means that the monotonicity of
Proposition 3 would not longer hold. Yet, one could discuss whether such a property is desirable
or not in case of conflicting opinions. It would also mean that elicitation methods are likely to
try to avoid conflict, as it will induce a regret increase.

– PMR(x, y,Ø) = minω∈Ω max(0,Rω(x, y)), considering ∅ as the limit intersection of smaller
and smaller sets consistent with the DM answers. Such a choice would allow us to recover
monotonicity, and would clearly privilege conflict as a good source of regret reduction.

Such distinctions expand to other indicators, but we leave such a discussion for future works.

3.4 On computational tractability

ECSS requires, in principle, to compute PMR values for every possible focal elements, which could
lead to an exponential explosion of the computational burden. We can however show that in the case
of weighted sums and more generally of linear constraints, where PMR has to be solved through a
LP program, we can improve upon this worst-case bound. We introduce two simplifications that
lead to more efficient methods providing exact answers:

Using the polynomial number of elementary subsets. The computational cost can be
reduced by using the fact that if Pj = {Ωi1 , . . . , Ωik} is a partition of Ωj , then :

PMR(x, y,Ωj) = max
l∈{i1,...,ik}

PMR(x, y,Ωl)

Hence, computing PMR on the partition is sufficient to retrieve the global PMR through a simple
max. Let us now show that, in our case, the size of this partition only increases polynomially.
Let Ω1, . . . , Ωn be the set of models consistent with respectively the first to the nth answer, and
ΩCi , . . . , Ω

C
n their respective complement in Ω.

Due to the nature of the conjunctive rule +∩, every focal set Ω′ of mk = mΩ
1 +∩m

Ω1
α1

+∩ . . .+∩
mΩn
αn

is the union of elements of the partition PΩ′ = {Ω̃1, . . . , Ω̃s}, with :

Ω̃k = Ω
⋂
i∈Uk

Ωi
⋂

i∈{1,...,n}\Uk

ΩCi , Uk ⊆ {1, . . . , n}

Which means that for each Ω′’s PMR can be computed using the PMR of its corresponding
partition. This still does not help much, as there is a total of 2n possible value of Ω̃k. Yet, in the
case of convex domains cut by linear constraints, which holds for the weighted sum, the following
theorem shows that the total number of elementary subset in Ω only increases polynomially.
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Theorem 1. [12, P 39] Let E be a convex bounded subset of F an euclidean space of dimension
q, and H = {η1, . . . , ηn} a set of n hyperplanes in F such that ∀i ∈ {1, . . . , n}, ηi separates F into
two subsets F ηi0 and F ηi1 .

To each of the 2n possible U ⊆ {1, . . . , n} a subset FHU = F
⋂
i∈U

F ηi1

⋂
i∈{1,...,n}\U

F ηi0 can be associ-

ated.
Let ΘH =

{
U ⊆ {1, . . . , n} : FHU ∩ E 6= Ø

}
and BH = |ΘH |, then

BH ≤ Λnq = 1 + n+

(
n

2

)
+ · · ·+

(
n

q

)
Meaning that at most Λnq of the FHU subsets have a non empty intersection with E.

In the above theorem (the proof of which can be found in [12], or in [10] for the specific case
of E ⊂ R3), the subsets BH are equivalent to Ω̃k, whose size only grow according to a polynomial
whose power increases with q.

Using the polynomial number of extreme points in the simplex problem. Since we work
with LP, we also know that optimal values will be obtained at extreme points. Optimization on
focal sets can therefore ALL be done by maxing points at the intersection of q hyperplanes. This
set of extreme point is

E = {ω = ηi ∩ · · · ∩ ηq : {i1, . . . , iq} ∈ {1, . . . , n}} (15)

with ηi the hyper-planes corresponding to the questions. We have |E| =
(
n
q

)
∈ O(nq) which is

reasonable whenever q is small enough (typically the case in MCDA). The computation of the
coordinate of extreme points related to constraints of each subset can be done in advance for each
ω ∈ E and not once per subset and pair of alternatives, since EΩ′ the set of extreme points of
Ω′ will always be such that EΩ′ ⊆ E . The computation of the dot products necessary to compute
Rω(x, y) for all ω ∈ E , x, y ∈ X can also be done once for each ω ∈ E , and not be repeated in
each subset Ω′ s.t. ω ∈ EΩ′ . Those results indicate us that when q (the model-space dimension) is
reasonably low and questions correspond to cutting hyper-planes over a convex set, ECSS can be
performed efficiently. This will be the case for several models such as OWA or k-additive Choquet
integrals with low k, but not for others such as full Choquet integrals, whose dimension if we have
k criteria is 2k − 2. In these cases, it seems inevitable that one would resort to approximations
having a low numerical impact (e.g., merging or forgetting focal elements having a very low mass
value).

4 Experiments

To test our strategy and its properties, we proceeded to simulated experiments, in which the
confidence degree was always constant. Such experiments therefore also show what would happen
if we did not ask confidence degrees to the DM, but nevertheless assumed that she could make
mistakes with a very simple noise model.

The first experiment reported in Figure 4 compares the extra cautiousness of EMR when
compared to MR. To do so, simulations were made for several fixed degrees of confidence – including
1 in which case EMR coincides with MR – in which a virtual DM states her preferences with the
given degree of confidence, and the value of EMR at each step is divided by the initial value so
as to observe its evolution. Those EMR ratios were then averaged over 100 simulations for each
degree. Results show that while high confidence degrees will have a limited impact, low confidence
degrees (< 0.7) may greatly slow down the convergence.

The second experiment reported in Figure 5 aims at finding if ECSS and CSS truly generate
different question strategies. To do so, we monitored the two strategies for a given confidence
degree, and identify the first step k for which the two questions are different. Those values were
averaged over 300 simulations for several confidence degrees. Results show that even for a high
confidence degree (α = 0.9) it takes in average only 3 question to see a difference. This shows that
the methods are truly different in practice.
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Fig. 4. Average evolution of min max regret with various degrees of confidence
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Fig. 5. Average position of the first different question in the elicitation process / degrees of confidence

The third experiment reported in Figure 6 is meant to observe how good m(Ø) our measure of
inconsistency is in practice as an indicator that something is wrong with the answers given by a
DM. In order to do so simulations were made in which one of two virtual DMs answers with a fixed
confidence degree and the value of m(Ø) is recorded at each step. They were then averaged over
100 simulations for each confidence degree. The two virtual DMs behaved respectively completely
randomly (RAND) and in accordance with a fixed weighted sum model (WS) with probability
α and randomly with a probability 1 − α. So the first one is highly inconsistent with our model
assumption, while the second is consistent with this assumptions but makes mistakes.
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Fig. 6. Evolution of average inconsistency with a DM fitting the WS model and a randomly choosing DM

Results are quite encouraging: the inconsistency of the random DM with the model assumption
is quickly identified, especially for high confidence degrees. For the DM that follows our model
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assumptions but makes mistakes, the results are similar, except for the fact that the conflict
increase is not especially higher for lower confidence degrees. This can easily be explained that in
case of low confidence degrees, we have more mistakes but those are assigned a lower weight, while
in case of high confidence degrees the occasional mistake is quite impactful, as it has a high weight.

5 Conclusion

In this paper, we have proposed an evidential extension of the CSS strategy, used in robust elici-
tation of preferences.

We have studied its properties, notably comparing them to those of CSS, and have performed
first experiments to demonstrate the utility of including confidence degrees in robust preference
elicitation. Those latter experiments confirm the interest of our proposal, in the sense that it
quickly identifies inconsistencies between the DM answer and model assumptions. It remains to
check whether, in presence of mistakes from the DM, the real-regret (and not the computed one)
obtained for ECSS is better than the one obtained for CSS.

As future works, we would like to work on the next step, i.e., identify the sources of inconsis-
tency (whether it comes from bad model assumption or an unreliable DM) and propose correction
strategies. We would also like to perform more experiments, and extend our approach to other
decision models (Choquet integrals and OWA operators being the first candidates).
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