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Abstract 

The grey partridge Perdix perdix is an important gamebird in Europe. Its 

numbers have decreased dramatically during the XXth century and releases 

are commonly undertaken for the conservation of the populations and/or 

hunting purposes in Western Europe. However, this practice that generally 

involves birds from commercial farms raises several concerns, among which a 

potential hybridization between farmed and wild individuals. Herein, based on 

microsatellite markers, we characterize the genetic patterns of farmed birds 

in view of wild birds of the two French subspecies (P. p. armoricana in central-

northern France and P. p. hispaniensis in the Pyrenees). Hence, we estimate 

the risk of genetic introgression between wild and farmed birds. Our results 

highlight a genetic divergence between both subspecies—in accordance with 

the known evolutionary history of the grey partridge during the Quaternary. 

In central-northern France, a slight but significant difference in the genetic 

signature between wild and farmed partridges is detected. This difference 

however does not seem prone to alter the gene pool of wild birds if farmed 

birds are released in the wild and reproduce. On the contrary, in the Pyrenees, 

the large and significant genetic difference between wild and farmed birds 

represents a real risk of genetic introgression. This threat should be taken into 

account in population management. 
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Introduction 
To face biodiversity erosion, release programs are commonly employed to 

reinforce the effective size and consequently the resilience of collapsing 

populations of threatened species (Armstrong et al. 2015; IUCN/SSC 2013). In 

such programs genetic considerations play a crucial role (Frankham et al. 

2010). Indeed, genetic diversity represents the raw material for adaptive 

evolutionary changes, notably because its loss can lead to reduction in 

reproductive fitness, as it can be observed in populations suffering from 

inbreeding depression (Frankham et al. 2010). Even if inbreeding effects on 

wild populations are complex, there are now ample evidences that inbreeding 

depression can reduce population’s viability via a decrease in survival and/or 

reproduction abilities of individuals (Frankham et al. 2010). Thus, releases of 

individuals carrying potentially new alleles are expected to increase 

population fitness by restoring adaptive variations and removing possible 

inbreeding effects. However, the use of individuals from non-local stocks 

might also cause losses of local genetic adaptations (i.e. genetic swamping), 

resulting from an outbreeding depression. In such case, hybrid descendants 

have a lower fitness than their parents (Randi 2007; Sutherland et al. 2006). 

This outbreeding depression can appear when genetic differences between 

the source and target populations are too important. Such differences can 

result from the combined effect of a genetic drift and the disappearance of 

specific adaptations that have occurred during the evolutionary process (Randi 

2007). Insofar as possible, a compromise should be found between the 

maintenance of the genetic diversity, on the one hand, and the risk of 

outbreeding depression, on the other hand, in order to the genetic criteria 

may be prone to play a crucial role for the success of release programs. These 

considerations are now part of the risk assessment that should be considered 

before a release program is implemented (i.e. “gene escape”, (IUCN/SSC 

2013). Thus, the challenge lies in finding a “source population” sufficiently 

different to rehabilitate the genetic diversity of the target population, without 

being inconsistent and causing an outbreeding depression into the hybrid 

offspring. This compromise may be a special challenge when released 

individuals come from conservative breeding program centers or commercial 

farms. Indeed, captive stocks are generally founded with few individuals 

whose genetic pattern is not well characterised. In addition, whatever the 

origin of founders, inbreeding and genetic drift increase with successive 

generations and are likely to modify the genetic signature of captive stocks. 

Such genetic effects have already been highlighted as potential concerns for 

the grey partridge (Blanc et al. 1986; Effenberger and Suchentrunk 1999). 

France supports almost 50% of the European stock of this species 

(BirdLife_International 2015). It mainly occurs in central northern plains (Bro 

and Crosnier 2012) and in the Pyrenees above 1000 m above sea level (OGM 



  

2011), respectively, as two biogeographical and genetic subspecies (Perdix p. 

armoricana and P. p. hispaniensis, Martin et al. 2003). Both subspecies 

experienced an important decline since World War II, that still goes on 

nowadays (BirdLife_International 2015; EBCC 2015; Reitz and Mayot 2017). 

This ongoing trend is both observed in intensively cultivated lowlands as well 

as in Pyrenean mountain tops due to an array of environmental causes among 

which the global climatic and habitat changes (Bro and Reitz 2014; Godin and 

Bro 2017; Novoa 1998; Reitz and Mayot 2017). As a consequence, both 

subspecies have been red listed as “Near threatened” in some French regions 

(CSRPN 2013; UICN-France et al. 2016). In turn, releases are commonly 

performed for conservation or hunting purposes, using birds from 

conservative breeding programs or commercial farms (Bro et al. 2016, 2017; 

SNPGC—Syndicat National des Producteurs de Gibier de Chasse 2019). This 

practice raises several concerns, among which a potential genetic 

introgression resulting from hybridizations between farmed and wild 

individuals, as already highlighted in the subspecies P. p. hispaniensis (Bech et 

al. 2012; Martin et al. 2003) and in P. p. lucida (Liukkonen 2006). However, this 

conservation concern may also be raised with the European western 

subspecies, the so-called P. p. armoricana since farmed birds may evolve in 

strains/lineages presenting some specific genetic profiles due to selection and 

some degree of drift/inbreeding (Blanc et al. 1986; Liukkonen 2006). 

In this context, we examine herein the genetic structure of farmed grey 

partridges from a diversity of conservative breeding program centers and 

commercial farms and compare it to several French wild populations. 

 

 

Materials and methods 
Sample 

We collected 753 wings of harvested wild birds from both subspecies of grey 

partridge: Perdix perdix hispaniensis occuring in the Pyrenees (n = 604, from 

1986 to 2008) and P. p. armoricana occurring in the Central northern France 

(n = 149, from 2007 to 2014). We geolocated each individual according to the 

coordinates of the municipality where the bird was hunted (longitude and 

latitude in the World Geodetic System 1984 (WGS 84)). Based on geographical 

distances, individuals from the Pyrenees were gathered into 17 groups for 

analyses conducted at the scale of the population, and those from Central 

northern France into 5 groups (Table 1; Fig. 1).  

We also collected samples from 230 harvested farmed individuals released 

in the wild (ringed birds): 41 in the Pyrenees from three different farms, 189 

in central northern France from nine different farms. Moreover, we also 

analysed individuals from two conservative breeding programs, one: in the 



  

Pyrenees [i.e. “Pallars Sobirà”, 57 individuals (F1/F2)] and one in central 

northern France [11 individuals (F1)]. 

Hence, our total of 1051 individuals were gathered into 36 groups 

representing either a wild population, a farm or a conservative breeding 

program center (hereafter “groups”). This large and diversified sample 

allowed us to robustly picture the genetic signature of both wild and farmed 

individuals. 

 

Molecular markers 

We extracted DNA from all samples using silica columns (e.Z.N.A from OMEGA 

BIOTEK), according to the manufacturer protocol. Because mitochondrial 

markers have only a maternal inheritance and thus the signal of the genetic 

introgression is lost when wild females mate, we genotyped all samples using 

12 nuclear molecular markers: microsatellites: MNT412, MNT12, MNT477, 

MNT404, MNT467, MNT408 (Bech et al. 2010), Aru1G4, Aru1F25 (Ferrero et 

al. 2007), ADL142, LEI31, LEI319 (Mautner 2001) and BG15 (Piertney and 

Höglund 2001). We amplified the relevant DNA fragments using the 

Polymerase Chain Reaction (PCR) and the QIAGEN multiplex kit. The PCR 

amplifications were carried out according to the manufacturer standard 

microsatellite amplification protocol in a final volume of 10 μL and at 57 °C for 

annealing temperature. Moreover, the PCR amplifications of loci MNT412, 

MNT12 and BG15 were grouped in the multiplex 1; loci MNT477, MNT404, 

ADL142, LEI31 and LEI319 were grouped in the multiplex 2; loci Aru1G4, 

Aru1F25 and MNT408 were grouped in the multiplex 3 and finally, the last 

microsatellite marker MNT467 was amplified alone. We added 1 μL of PCR 

product to 9 μL formamide and 0.5 μL 600 LIZ standard (Life Technologies) and 

visualized it by electrophoresis on an ABI PRISM 3130 Genetic analyser. We 

determined amplification product size using Genemapper software (Applied 

Biosystems), followed by visual verification. 

We used the software Micro-Checker (Oosterhout et al. 2004) to identify 

the presence of null alleles or scoring errors due to stuttering. The level of 

significance was adjusted using a Bonferroni correction as implemented in the 

software. 

Departures from Hardy–Weinberg expectations as well as linkage 

disequilibria were assessed using exact tests (1200 permutations) 

implemented in Fstat v.2.9.3.2. (Goudet 2001). The level of significance for 

multiple testing was adjusted using the Chandler correction because 

Bonferroni’s procedure is considered too conservative when strictly applied. 

We used an error rate of 10% as suggested by Chandler (1995). 

 



  

Analysis of the global genetic structure  
Genetic diversity 

We estimated the polymorphism of each of the 36 groups of birds. For this 

purpose, we computed over all loci the allelic richness (AR), the expected 

heterozygosity (He) (Weir and Cockerham 1984) and the Fis using FSTAT 

v.2.9.3.2. We performed Anova tests for AR and He between each pairwise 

groups to detect potential differences in genetic variations. 

 

Genetic structure 

We examined the global genetic structure of the 1051 individuals using the 

Bayesian approach implemented in Structure v.2.0 (Pritchard et al. 2000). We 

chose the admixture model and the option of correlated allele frequencies 

among groups. This software assigns each individual to a given genetic cluster, 

the number of genetic clusters varied from 1 to 5. Each simulation was 

replicated 20 times as recommended (Evanno et al. 2005), with 10 000 burn-

in iterations followed by 500 000 sample iterations. 

The likely number of independent genetic clusters (K) was obtained using 

Structure Harvester software version 0.6.1 (Earl and vonHoldt 2012). It 

compares the likelihood of the dataset for the different values of K. We also 

described the distribution of microsatellite variability using a Factorial 

Correspondence Analysis (FCA) based on the birds’ genotypes. Finally, to 

estimate the genetic differentiation between all pairwise groups, we used the 

software Fstat v.2.9.3.2. to calculate Fst values according to Weir and 

Cockerham (1984). The level of significance of the tests was adjusted for 

multiple testing using the Chandler correction and an error rate of 10% 

(Chandler 1995). 

 

Genetic differences between wild and farmed individuals 

We selected 103 individuals assigned to the “wild” genetic cluster and 16 to 

the “farmed” one, using the proportions of ancestry inferred from the 

Bayesian approach implemented in Structure v.2.0 (i.e. qi-value > 0.97). 

The genotypes of these selected individuals were implemented as ‘parent 

genotypes’ in the software Hybridlab v1.0 (Nielsen et al. 2006) which simulates 

random mattings and supplies the genotypes of artificial hybrids. By this way 

we built 100 artificial F1 hybrids and 100 artificial F2 hybrids (i.e. F1 × F1). 

The genetic signatures of these 200 artificial hybrids were pooled with the 

ones of the 1051 biological birds and implemented into the Newhybrids 

software (Anderson and Thompson 2002) to assign each “individual”to one of 

the four categories: each pure subspecies (i.e. “Pure_P.p.hispaniensis” and 

“Pure_P.p.armoricana”) and hybrids (i.e. “F1 hybrids” and “F2 hybrids”). 

NewHybrids was run with 10 000 burn-in iterations followed by 1 000 000 

Markov chain Monte Carlo iterations. Analyses did not use prior allele 



  

frequency information but considered uniform prior distributions for θ and p 

parameters (Anderson and Thompson 2002). This procedure allowed us (1) to 

test the reliability of our approach, i.e. by checking the inference of our 200 

known artificial hybrids to the suitable hybrid category, and (2) to estimate the 

frequency of the four genotypic categories with true birds. 

 

Genetic structure of groups of wild Pyrenean birds 

We only report here the genetic structure of groups of wild grey partridges 

collected in the Pyrenees, as exactly the same work has already been 

published with wild birds from central northern France (Bech et al. 2014). 

We tested the occurrence of isolation-by-distance (IBD) using a regression 

analysis of the genetic distance (Fst values of pairwise wild groups, see above) 

against the Euclidian distance (simple Mantel test implemented in GENALEX 

software, Peakall and Smouse 2006). Moreover, we used Structure software 

in the same conditions as previously in order to estimate the likely number of 

genetic clusters corresponding to our wild birds collected in the Pyrenees. 

 

Results 
Validation of molecular markers 

33 of the 432 tests exhibited null alleles but they were randomly distributed 

across loci and groups. Only two groups revealed deviations from Hardy–

Weinberg expectations (P-value threshold after Chandler correction: P = 

0.0002) (Supplementary file 1). Moreover, no evidence of linkage 

disequilibrium was detected (P-value threshold after Chandler correction: P = 

0.001). As deviations from Hardy–Weinberg and null alleles were inconsistent 

across loci, we retained all loci in the analyses. 

 

Global genetic structure 

All microsatellite markers were polymorphic within all groups. The allelic 

richness ranged from 1.767 to 6.379 and the genetic diversity ranged from 

0.232 to 0.944 (Supplementary file 1). Genetic diversities were similar across 

all groups (P = 0.34 for He and P = 0.11 for AR). Fis values revealed that two 

groups had a heterozygosity excess, and one a heterozygosity deficit (P-value 

threshold after Chandler correction: P = 0.0002). 

 

Number of genetic clusters of wild birds 

The highest posterior probability for the number of genetic clusters was given 

for K = 2, corresponding to the two subspecies. Indeed, individuals collected 

in wild populations in the Pyrenees revealed high proportions of ancestry into 

the genetic cluster 1 (mean ± SD: 0.847 ± 0.001) while individuals collected in 

wild populations in central northern France revealed high proportions of 

ancestry into the genetic cluster 2 (mean ± SD: 0.838 ± 0.001) (Fig. 2). This 



  

clear-cut genetic differentiation between both subspecies can be visualised in 

the FCA output (Fig. 3) and is quantified by a mean Fst value = 0.072 (Table 2; 

Supplementary file 2). 

 

Genetic difference between farmed and wild birds 

Fst values comparing wild and farmed birds revealed a significant genetic 

differentiation, both in central northern France (mean Fst value = 0.026) and 

in the Pyrenees (mean Fst value = 0.108). The FCA depicts a distinct 

distribution between the centroids of the groups of wild Pyrenean birds and 

the groups of farmed birds, with farmed birds being located among centroids 

of the groups of wild birds sampled in central northern France (Fig. 3). This 

suggests that farmed birds released in the Pyrenees belong to the subspecies 

P. p. armoricana or to a close related subspecies. 

 

Detection and repartition of hybrids  
In the Pyrenees 

We selected genotypes from 103 wild and 16 ringed released individuals to 

depict the wild and farmed genetic signatures and then to artificially generate 

hybrids. We had some difficulties to infer genotypes of artificially generated 

hybrids using Newhybrid software. Indeed, only 29 over 100 F1 hybrids and 12 

over 100 F2 hybrids have been inferred to suitable predefined F1 and F2 

genetic categories, respectively. 

However, as far as wild birds are concerned, 504 birds over 604 were 

inferred into 1 of the 4 predefined genetic categories. Accurately, 472 birds 

were inferred into the “Pure_P. p. hispaniensis” category, 19 into the “Pure_P. 

p. armoricana” and 13 into a hybrid classes (i.e. 2 into F1 class and 11 to the 

F2 class). The 100 other birds showed ambiguous genotypes making inferences 

difficult. 

39 over 41 farmed birds released in the Pyrenees were inferred into 

the“Pure_P. p. armoricana” category. Finally, among the 57 individuals 

collected from Pyrenean conservation breeding programs, 8, 9, 1 and 10 were 

inferred into the “Pure_P. p. hispaniensis”, “Pure_P. p. armoricana”, “F1” and 

“F2” categories, respectively. The other birds showed ambiguous genetic 

profiles making inferences difficult to any class. 

 

In central northern France 

We could not discriminate wild and farmed birds as the posterior probabilities 

inferred all of them to a same genetic cluster. In this way, we have not been 

able to infer hybrids within sampling localities. 

 



  

Genetic structure in Pyrenean wild populations 
The mean Fst values indicated a significant genetic differentiation across the 

groups revealing a substructure in the Pyrenees (mean Fst: 0.040 ± 0.024; P < 

0.0004). This was corroborated at the individual scale by a significant positive 

correlation between genetic and Euclidian distances  (r2 = 0.0092; P = 0.0001). 

This result indicates a strong isolation by geographical distance. At the 

individual scale, results from both Structure and Structure-Harvester software 

revealed some difficulties to converge toward a defined number of genetic 

clusters K (as Delta K value < 20), suggesting a unique genetic cluster (K = 1) 

and so a unique genetic signature of wild grey partridge in the Pyrenees. 

 

Discussion 
Two distinct genetic subspecies of grey partridges in France 

Although already highlighted with mitochondrial markers (Martin et al. 2003), 

we quantified the differences between P. p. hispaniensis and P. p. armoricana 

wild birds using our set of 12 nuclear microsatellite markers. We both 

deepened the genetic characterization of these two subspecies and calibrated 

the scale for the genetic distance between wild and farmed birds. 

The results presented herein support a divergence between both 

subspecies, estimating a mean Fst of 0.072. This significant genetic 

differentiation is explained by the evolutionary history of the grey partridge 

during the Quaternary. The species experienced changes in its geographic 

distribution in Europe during ice ages (Birkan and Jacob 1988). In France, these 

changes resulted in both subspecies, P. p. armoricana occurring in central 

northern France and P. p. hispaniensis occurring southward in the high-

mountain zones of the Pyrenees (i.e. the meridional refuge to survive to 

quaternary ice caps) (Liukkonen-Anttila et al. 2002). 

 

Genetic structure across subspecies populations 

Within each subspecies, the genetic differentiation between groups of birds 

revealed lower rates of differentiation than between both subspecies. 

However, the genetic structure of wild populations is twice stronger in the 

Pyrenees than in central northern France, with mean Fst values of 0.040 and 

0.019, respectively (Bech et al. 2014). This result is likely to emerge from 

habitat structure. Indeed, even if central northern France represents a 

landscape largely fragmented by human activities, the level of fragmentation 

of suitable habitat for the grey partridge is higher in the Pyrenees. Indeed, for 

species restricted to high-mountain zones, habitat is often referred as ‘sky 

islands’ illustrating patches of suitable habitat surrounded by inappropriate 

landscape (i.e. valley) (Haila 2002). Whatever its level, the habitat 

fragmentation combined with the intrinsic low dispersal abilities of grey 

partridge [maximum distance of 1.5–2 km, with few cases > 10 km as recorded 



  

by telemetry (Bro et al. 2016)] could explain the high isolation by the distance 

detected herein in the Pyrenees compared to what occurs in central northern 

France (Bech et al. 2014). Such a genetic structure is often found in Galliform 

populations, in mountain landscapes [capercaillie Tetrao urogallus 

(Segelbacher et al. 2003), rock ptarmigan Lagopus muta pyrenaica (Bech et al. 

2009)] as well as in plains (greater sage grouse Centrocercus urophasianus 

(Oyler-Mccance et al. 2005)). 

 

Differences between wild and farmed partridges 

In central northern France, even if the genetic differentiation between farmed 

and wild partridges is statistically significant, it is quantitatively weak (i.e. 

mean Fst value = 0.026) and of the same order of magnitude that the genetic 

differentiation observed in the field between wild populations (mean Fst value 

= 0.018). So, farmed birds—such as randomly sampled in our study—are 

genetically closed to the native P. p. armoricana. Thus, their genetic 

background does not seem prone to alter significantly the gene pool of wild 

birds occurring in this area. 

On the contrary, in the Pyrenees, the genetic difference between wild and 

farmed partridges is much larger. Farmed individuals released into the 

Pyrenean wild populations are likely to belong, or to be genetically very closed, 

to the subspecies P. p. armoricana. Thus, there is an important risk of genetic 

introgression if the farmed birds released in nature reproduce with wild 

individuals. This risk was already documented in previous studies based on 

mitochondrial data (Martin et al. 2003) and is supported herein by the 

admixed genetic profiles. Indeed, even if our methods have not accurately 

inferred these admixed genotypes to a predefined hybrid class, we suppose 

they likely represent hybrid individuals. Moreover, we have obtained similar 

results with hybrids generated in silico. This difficulty to infer admixed 

genotypes to a predefined hybrid class can originate from either a weak 

genetic resolution of our microsatellite marker panel or a low frequency of 

hybrids in populations. A low frequency may result from the combination of a 

low survival of partridges released on the field (< 30% a few months after 

release, Bro et al. 2016), a lower reproductive success of the released 

partridges (Buner et al. 2011)—that could be due to a less effective anti-

predator behaviour (see Mayot et al. 2012) as also observed in the quail 

(Capdevila et al. 2016)—or from the rapid disappearance of the hybrid genetic 

signature as first back-crosses occur. 

 

Conservation issues 

The genetic difference we found in the Pyrenees between wild and farmed 

partridges has important consequences with regard to conservation actions of 

the emblematic P. p. hispaniensis. Indeed, due to the genetic specificity of this 



  

subspecies and the detection of introgression in wild populations (Bech et al. 

2012), releases have been forbidden above 1000 m asl to avoid further 

hybridizations. Some conservation release programs use birds from 

conservative breeding centers (from Esterri d’Aneu). However, the genetic 

pattern of these birds is finally only slightly closer to the one of wild birds 

(mean Fst value = 0.096), compared to farmed birds found in commercial 

farms in the Pyrenees (mean Fst value = 0.108). So, it is better, but not the 

best yet. The great difficulty to breed wild-born partridges in captivity, even 

birds born in captivity from rescued clutches (Millot et al. 2012; Vannesson et 

al. 2017), may explain the low availability of partridges genetically suitable. 

The significant genetic differentiation across wild Pyrenean populations may 

also raise the question whether local strains should be considered or not. 

On the contrary, farmed partridges found in commercial farms* that are 

released in central northern France display a genetic pattern close to the one 

of wild birds (considered as such from a genetic point of view, knowing that 

quite a lot of partridges were released in the past, Bro et al. 2016). This result 

might be explained by local origins of founders used in commercial farms 

(Birkan 1979; Blanc et al. 1987) and/or regular backcrosses of captive strains 

with wild birds if any. In this context, the plus-value of conservative breeding 

centers seems quite less crucial, the genetic risk arisen by conservation or 

hunting releases** may be considered as weak. 

* we did not detected strains of partridges said from “eastern Europe” that 

display a distinct genetic signature (East vs. West clades, Liukkonen-Anttila et 

al. 2002). 

** hunting releases may however have adverse demographic effects on wild 

populations if harvest quotas are not strictly managed (Bro and Mayot 2006; 

Mauvy et al. 1992). 
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Table 1  List of the 36 groups of individuals (N = effective size) of grey 

partridges in the Pyrenees and Central northern France 

 Groups of individuals  N He Ar Fis 

Pyrenees Wild (n = 604) 

P. p. hispaniensis 

1 

Canigo

u 2 

Puigma

l 

21 

51 

0.64

4 

0.64

1 

3.34

0 

3.32

1 

0.01

9 

0.05

8 

  3 Carlit 203 0.67

9 

3.55

6 

0.05

2 

  4 Cerdagne 46 0.68

3 

3.60

1 

0.11

0 

  5 Andorre 22 0.68

2 

3.54

0 

0.06

0 

  6 Madres 16 0.61

8 

3.15

5 

0.01

6 

  7 Donezan 12 0.63

8 

3.31

2 

0.05

2 

  8 Mont Tabe 30 0.67

5 

3.47

5 

− 

0.014 

  9 Aston 32 0.66

5 

3.39

9 

0.09

3 

  10 3 

Seigneurs 

11 0.67

0 

3.47

0 

0.02

1 

  11 Ustou 24 0.62

0 

3.32

3 

0.09

6 

  12 

MellesLuchon 

41 0.64

9 

3.48

4 

0.07

0 

  13 Vallée du 

Gave 

36 0.64

2 

3.33

7 

0.11

3 

  14 Aubisque 19 0.66

9 

3.61

6 

0.10

6 

  15 Lescun 7 0.60

4 

3.10

2 

− 

0.084 

  16 Pallars 

Sobirà 

25 0.64

6 

3.43

1 

0.02

9 

 
 

17 

AltaRibagorça 

8 0.60

1 

3.14

0 

0.11

6 

 Conservative breeding 

program 

Pallars Sobirà 57 0.67

2 

3.52

9 

− 

0.007 



  

 Farmed individuals (n = 

41) 

Andorre 14 0.63

4 

3.31

1 

− 

0.032 

  Aubisque 11 0.58

3 

2959 − 

0.099 

  Cerdagne 16 0.62

0 

3.17

8 

0.05

2 

Central 

norther

n France 

Wild (n = 

149) P. p. 

armorican

a 

BP1-sau 

BP2-sau 

BP3-sau 

39 

52 

18 

0.66

5 

0.67

1 

0.71

1 

3.45

2 

3.49

4 

3.81

0 

0.07

6 

0.02

7 

0.04

6 

  BP4-sau 8 0.62

1 

3.33

9 

0.11

4 

  BP5-sau 32 0.66

9 

3.44

4 

− 

0.021 

 Conservative breeding 

program 

BP-cons 11 0.66

9 

3.51

4 

0.13

6 

 Farmed individuals (n = 

189) 

BP-El1 20 0.65

7 

3.42

6 

0.08

1 

  BP-El3 24 0.69

0 

3.74

5 

0.08

0 

  BP-El4 11 0.63

0 

3.24

0 

− 

0.106 

  BP-El6 30 0.67

7 

3.55

1 

0.01

5 

  BP-El7 29 0.65

6 

3.39

7 

0.01

9 

  BP-El8 27 0.68

3 

3.60

7 

0.03

7 

 

 

BP-El9 26 0.66

1 

3.44

0 

− 

0.056 

  BP-El11 10 0.66

3 

3.56

9 

− 

0.031 

  BP-El13 12 0.67

3 

3.50

9 

0.04

0 

  Total 105

1 

   

Genetic indices for sampling localities: the allelic richness (AR), the expected 

heterozygosity (He) and Fis values. In italic: the Fis values significantly different 

from 0 (p‐value threshold after Chandler correction p = 0.0002) 



  

 
 

 



  

 
 

Figure 1   

Maps of the studied zones (i.e. central northern France and Pyrenees) 

 

  



  

 
 

Figure 2   

Results from Structure software: proportions of ancestry of each individual to 

the two inferred genetic clusters. Each individual is represented by a vertical 

bar, each color represents a genetic cluster and black lines separate the 

individuals from different groups 

 

  



  

 
 

Figure 3   

Results of Factorial Correspondence Analysis (FCA) based on individuals’ 

genotypes. This FCA was conducted on all individuals from both central 

northern France as well as Pyrenees and using Genetix software v.4.05.2. 

While individuals were characterised by light grey circles, we represented here 

groups’ centroids in order to facilitate interpretations 

 


