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ABSTRACT

In different application fields, heterogeneous data sets are
structured into either matrices or higher-order tensors. In
some cases, these structures present the property of having
common underlying factors, which is used to improve the
efficiency of factor-matrices estimation in the process of the
so-called coupled matrix-tensor factorization (CMTF). Many
methods target the CMTF problem relying on alternating
algorithms or gradient approaches. However, computational
complexity remains a challenge when the data sets are tensors
of high-order, which is linked to the well-known “curse of
dimensionality”. In this paper, we present a methodologi-
cal approach, using the Joint dImensionality Reduction And
Factors rEtrieval (JIRAFE) algorithm for joint factorization
of high-order tensor and matrix. This approach reduces the
high-order CMTF problem into a set of 3-order CMTF and
canonical polyadic decomposition (CPD) problems. The pro-
posed algorithm is evaluated on simulation and compared
with a gradient-based method.

Index Terms— Coupled matrix tensor decomposition,
Tensor train, Heterogeneous data analysis, Joint estimation,
Fast algorithms.

1. INTRODUCTION

The last decade has witnessed a considerable evolution in
data processing and a major improvement in data analysis
techniques [1]. Moreover, the performance of analysis al-
gorithms is subject to great advancement, setting as objec-
tive to reduce the processing time. The different types of
data are exposed to noise that requires sophisticated robust
algorithms to have an acceptable level of performance. The
heterogeneous data sets are present, nowadays, in multiple
fields such as the bio-medical [2], or recommendation sys-
tems and social networks [3], to mention a few. These data
sets may be structured in matrices or tensors of low and high-
order. According to the structure of the data sets, specific
tools has to be used for a proper processing. Many of these
data structures present the property of sharing common under-
lying factors, which may be used to improve the factor estima-
tion. Therefore, joint analysis of coupled data set is promising

framework for common factor estimation. This joint analysis
has been applied in the context of clustering application [4],
where the coupled estimation of the common factor is more
efficient than its estimation using the tensor or the matrix
only, or when only the common factor is required, as in [5],
where the data sets are multiple images recording the same
object/phenomenon, under different lightening/angle condi-
tions. On the other hand, high-order tensors are widely used
in data modeling [6], where the goal is to extract the factor
matrices. However, high-order tensors factorization remains
a challenge as the number of elements and the computational
complexity increase exponentially with respect to the order,
which requires more memory and computational power [6].
Nevertheless, as the need of big data sets is emerging in more
and more fields, the development of new techniques for high-
order tensors factorization seems to be inevitable.

Various solutions have been proposed in literature to the
CMTF problem, such as the constrained alternating least
squares (ALS) algorithm presented in [7], treating the partic-
ular case of pattern and topic detection. In this framework,
the physical intrepretability required for factors is behind
the use of the constraints, which need to be suited for each
case with respect to the physical requirements. Furthermore,
an all-at-once optimization algorithm, based on gradient ap-
proach, was presented in [4], for different CMTF scenarios.
However, the well known all-at-once optimization methods’
performance is still a difficult issue, especially in high-order
tensors case.

To the best of our knowledge, the CMTF problem for the
case of high-order tensors has not been treated in literature.
However, in [8, 9], the “Joint dImensionality Reduction And
Factors rEtrieval” (JIRAFE) scheme, based on the tensor train
(TT) model [7], has been introduced for high-order canonical
polyadic decomposition (CPD) [10]. The latter work uses the
equivalence CPD-TT to break the curse of dimensionality for
high-order CPD tensors problem, i.e. reducing a high-order
CPD into 3-order CPDs. As a result, it yields to slower growth
of the computational complexity with respect to the order of
the tensor.

In this work, we propose a methodological approach to
solve a coupled matrix and high-order tensor factorization
problem. The goal of this approach is to reduce this prob-



lem into 3-order CMTF and a set of 3-order CPD problems.
For this, we propose a JIRAFE-based scheme, adapted to the
case of coupled matrix and high-order tensor factorization, to
obtain a semi-closed-form solution.

Notations: Vectors, matrices and tensors are represented
by x, X and X , respectively. The symbols (·)T and � de-
note, respectively, the transpose and Khatri-Rao product. The
Frobenius norm is defined by || · ||F . The matrix X(k) of size
Nk ×N1 · · ·Nk−1Nk+1 · · ·NQ refers to the k-mode unfold-
ing of X of size N1 × · · · × NQ. The n-mode product is
denoted by ×n and the tensor contraction by ×p

q [11].

2. COUPLED MATRIX-TENSOR MODELIZATION

2.1. Generalized Coupled Matrix and High-Order Tensor
Model

In this section, we will address the generalized CMTF prob-
lem of a Q-order tensor X ∈ RN1×N2×...×NQ coupled with
matrices Y k ∈ RNk×Nm on the k-th modes, i.e., each k-th
factor matrix is common in both the tensor X and the corre-
sponding matrix Y k. The tensor X is assumed to follow a CP
model, i.e., X = JP 1,P 2, . . . ,PQK where P q ∈ RNq×R is
the q-th mode factor matrix and R is the canonical rank of
the tensor, while the matrices Y k are subject to a rank fac-
torization, given by Y k = P kV

T
k where P k is the common

factor matrix and V k ∈ RNm×R. In order to jointly estimate
the factor matrices of the tensors and the matrix, the objective
function to be minimized is given by [4, eq. (3)] as:

f(P 1, . . . ,PQ,V 1, . . . ,V K) =||X − JP 1, . . . ,PQK||2F

+

K∑
k=1

||Y k − P kV
T
k ||2F

For the sake of simplicity, and without a loss of generality,
we solve the above problem with a single matrix coupled with
the tensor in eq. (1), i.e.,

f(P 1,P 2, . . . ,PQ,V k) =||X − JP 1,P 2, . . . ,PQK||2F
+ ||Y k − P kV

T
k ||2F .

(1)
The optimization problem (1) is depicted in Fig. 1 using

factor graphs, where the tensor X is represented by an iden-
tity tensor node surrounded by the factors represented by the
nodes P 1, . . . ,PQ, while the common factor P k with the
matrix V k constitute the matrix Y k. Note that the edges rep-
resent the matrices dimensions.

2.2. Tensor-Train representation of CMTF

Tensor X of rankR, under a CP model assumption and all the
factor matrices (P 1,P 2, . . . ,PQ) in Section 2 have a rank
equal to the tensor’s canonical rank, can be decomposed into
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Fig. 1. Factor graph modelization of CMTF
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Fig. 2. Factor graph modelization of 3-order CMTF

a train of 3-order tensors and two matrices, of rank R, us-
ing the tensor train singular value decomposition (TT-SVD)
algorithm [12]. we can write :

X = G1 ×1
2 G2 ×1

3 . . .×1
Q−1 GQ−1 ×1

Q GQ

where G1 = P 1M
−1
1 , GQ = MQ−1P

T
Q are the TT

matrices, subject to matrix rank factorization, and Gq =

JM q−1,P q,M
−T
q K, for q = {2, 3, ..., Q − 1}, are the core

tensors following a CP model, while M q of size R × R,
are the change-of-basis matrices for q = {1, 2, ..., Q − 1}
[8]. Note that the TT-core tensors and matrices are of a rank
equal to the canonical rank of X . However, the kth TT-core
tensor Gk shares the common mode P k with the matrix Y k

as represented in Fig. 2 using factor graphs.

3. PROPOSED SCHEME: C-JIRAFE

The structure of the core tensor Gk resulting from the TT de-
composition and sharing the common factor with the matrix
Y k = P kV

T
k is given by:

Gk = JMk−1,P k,M
−T
k K

The equivalence between the CMTF problem presented
in Section 2.1 and the tensor-train representation described in



Section 2.2 allow us to rewrite the objective function in eq.
(1) in two steps. The first step targets the estimation of the
core tensors Gq .

f1(G1,G2, . . . ,GQ−1,GQ)

= ||X −G1 ×1
2 G2 ×1

3 . . .×1
Q−1 GQ−1 ×1

Q GQ||2F
(2)

This step can be handled by estimating the core tensors Gq in
eq. (2) using the TT-SVD algorithm.

The second step is the estimation of the common factor
thanks to the prior estimation of the corresponsding TT-core
Gk sharing the common P k mode with the matrix Y k. The
estimation of the common factor boils down to minimize the
following objective function:

f2(Mk−1,P k,Mk,V k) =λ1||Gk − JMk−1,P k,MkK||2F
+ λ2||Y k − P kV

T
k ||2F

(3)
where λ1 and λ2 are introduced to balance the weight of the
two terms in eq. (3). In the literature, a usual choice is to
set λ1 = 1

R2Nk
and λ2 = 1

NkNm
, which are the inverse of

number of elements of the tensor and the matrix, respectively
[13].

The objective function in eq. (3) can be minimized us-
ing a joint order-three ALS, where the common factor ma-
trix is estimated jointly. For the joint estimation, we use the

ALS-based solution given in [4]. We define the matrix G̃
(2)

k

resulting from the second mode unfolding of tensor Gk con-
catenated with the matrix Y k:

G̃
(2)

k =

[
λ1G

(2)
k

λ2Y k

]
= P k

[
λ1Π

T

λ2V
T
k

]
where Π = M−T

k �Mk−1
As a consequence, we define the joint criterion as :

f̃ =

∥∥∥∥[λ1G(2)
k

λ2Y k

]
− P k

[
λ1Π

T

λ2V
T
k

]∥∥∥∥2
F

for which, the least-squares solution for the common fac-
tor matrix is given by:

P k =
[
λ1G

(2)
k λ2Y k

] [
λ1Π

T λ2V
T
k

]†
(4)

where the matrix V k is estimated as:

V k = (P T
k )
†Y k (5)

A closed-form expression is obtained for the common fac-
tor matrix. The estimation of the factors of the tensor is ob-
tained sequentillaly, using the JIRAFE algorithm [8]. The
coupled JIRAFE (C-JIRAFE) algorithm is fully detailed in
Algorithm 1.

Note that C-TriALS is a 3-order ALS where the estima-
tion of the common mode is done using eq. (4) and an extra

Algorithm 1 Coupled JIRAFE
Input: Tensor X , matrix Y k, order Q, rank R and com-
mon mode k
Output: Estimated factor matrices P 1,P 2, . . . ,PQ,V k

1: TT-cores estimation
[G1,G2, . . . ,GQ−1,GQ)] = TT-SVD(X , R)

2: Joint estimation of P k and V k:
[M̂k−1, P̂ k,M̂

−T
k , V̂ k] = C-TriALS(Gk,Y k, R)

3: Estimation of the rest of factor matrices
4: for q = k − 1 . . . 2

5: [M̂ q−1, P̂ q] = BiALS(Gq,M̂
−T
q , R)

6: end for
7: for q = k + 1 . . . Q− 1

8: [P̂ q,M̂
−T
q ] = BiALS(Gq,M̂ q−1, R)

9: end for
10: P̂ 1 = G1M̂1

11: P̂Q = GT
QM̂

−T
Q−1

step is added to estimate the factor matrix V k according to
eq. (5). Moreover, it is worth mentioning that BiALS is a
TriALS with a pre-estimated factor.

At last, steps 4-6 and 7-9 are independent and can be done
in parallel (see fig.3). Furthermore, in applications, such as
clustering, where only the common factor is needed [5], only
the steps 1 and 2 of algorithm 1 are to be executed since the es-
timation of the common factor is done independently, which
means that there is no need to estimate the rest of the factor
matrices.

4. SIMULATION RESULTS

In this section we present the numerical simulations of our ap-
proach, that we compare with the gradient based all-at-once
optimization presented in [4]. In order to calculate the gradi-
ent, we use the derivatives given in [4], and add α1 and α2 to
the expression for equal contribution between the tensor and
the matrix [13]. The resulting objective function becomes:

f̃(P 1,P 2, . . . ,PQ,V k) =α1||X − JP 1,P 2, . . . ,PQK||2F
+ α2||Y k − P kV

T
k ||2F

(6)
where α1 = 1

N1N2...NQ
and α2 = 1

NkNm
.

The initial factor matrices are generated randomly fol-
lowing the standard normal distribution. A random noise is
then added to the tensor and the matrix with the same noise-
variance (same signal to noise ratio). Furthermore, we al-
low the same maximum number of iterations for both Algo-
rithm 1 and the gradient based approach. While the number
of iterations for Algorithm 1 is equal to the number of iter-
ations within the ALS steps (105 iteration per ALS), we al-
low a number of evaluation functions equal to the iteration
number in the gradient based approach. Both algorithms are
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Fig. 3. Coupled JIRAFE

Fig. 4. NMSE (log-scale) in function of signal to noise ratio
(dB) for a 4-order tensor coupled with a matrix (Q = 4, R =
2, N = 10)

Tensor order C-JIRAFE CMTF-OPT Gain
4 0.0201 (s) 0.1124 (s) 5.5920
5 0.0310 (s) 1.3369 (s) 43.1258
6 0.1057 (s) 20.5572 (s) 194.4863

Table 1. Execution time in function of the order for SNR =
10dB

stopped if ||fold−fnew||
fold

≤ 10−8, or when f ≤ 10−8, where

f is given by eq. (3) for the C-TriALS, ||Ĝq − Gq|| for the
BiALS and given by eq. (6) for CMTF-OPT. For the evalua-
tion, we calculate the reconstruction normalized mean square
error (NMSE) given by ||X̂−X ||

2

||X ||2 . We evaluate the estimation
performance by calculating the calculation time for both algo-
rithms. In Fig. 4, C-JIRAFE stands for sequential approach
that we present in this paper, while CMTF-OPT (CMTF Op-
timization) is the gradient-based approach presented in [4].
The NMSE of both algorithm presents no significant differ-

ence. For a fixed signal to noise ratio, and for the same NMSE
value, we notice in Table 1 an important difference in execu-
tion time, in the favor of the sequential approach (C-JIRAFE).
It is also clear that the gain in terms of execution time in-
creases with respect to the order of the tensor, due to the slow
increase of computational complexity in C-JIRAFE case, ver-
sus the exponential increase for CMTF-OPT.

We mention that, in our simulations, C-JIRAFE is run on
a monocore architecture, and a more interesting gain in excu-
tion time on multicore architecture is expected.

5. CONCLUSION

The coupled factorization takes advantages of the particular
structures present in heterogeneous data sets in order to im-
prove the factors estimation. Yet, the high-order tensors fac-
torization remains a challenge due to the exponential increase
of the number of elements, and so the algorithmic complexity
with respect to the order. In this paper, we presented a cou-
pled matrix tensor factorization approach named C-JIRAFE.
This method targets the joint factorization of high-order ten-
sors with matrices, taking advantage of the dimensionality re-
duction provided by the tensor train model. Moreover, we
have shown that, for equivalent error level, the execution time
for C-JIRAFE was significantly lower than the state of art
method based on the gradient approach. Also, as we increased
the tensor order, the gap of execution time between our ap-
proach and the reference kept increasing, thanks to the slower
increase of complexity provided by the tensor train model.
Finaly, this approach allows us to extract the common factor
independently, which means that, for applications where only
the common factor is targeted, our approach helps estimating
this factor without the obligation to estimate all the factors.
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