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Quasilinear Elliptic Problem in a Two-Component
Domain with L1 data

Rheadel G. Fulgencio∗ and Olivier Guibé†

Abstract

In the present paper we consider the following class of quasi-linear equa-
tions: 

−div(B(x, u1)∇u1) = f in Ω1,

−div(B(x, u2)∇u2) = f in Ω2

u1 = 0 on ∂Ω,

(B(x, u1)∇u1)ν1 = (B(x, u2)∇u2)ν1 on Γ,

(B(x, u1)∇u1)ν1 = −h(x)(u1 − u2) on Γ.

The domain Ω is composed of two components, Ω1 and Ω2, with Γ being
the interface between them. The given function f belongs to L1(Ω). We
will first give a definition of a renormalized solution for this class of equa-
tions. The main result of this paper is the existence of such a solution.

1 Introduction

In the present paper, we study the existence of a solution u := (u1, u2) of the
following class of quasi-linear equations:

− div(B(x, u1)∇u1) = f in Ω1,

− div(B(x, u2)∇u2) = f in Ω2

u1 = 0 on ∂Ω,

(B(x, u1)∇u1)ν1 = (B(x, u2)∇u2)ν1 on Γ,

(B(x, u1)∇u1)ν1 = −h(x)(u1 − u2) on Γ.

(P)

Here, Ω is our two-component domain with ∂Ω as its boundary. The open sets
Ω1 and Ω2 are the two disjoint components of Ω with Γ as the interface between
them (see Figure 1) and the vector νi is the unit outward normal to Ωi. The
matrix field B is coercive but does not satisfy any growth condition, and the
data f is an L1−function. On the boundary ∂Ω, we have a Dirichlet boundary
condition, while on the interface Γ, we have a continuous flux and the jump of
the solution is proportional to the flux.

The existence and uniqueness of solution of (P) when f ∈ L2(Ω) was studied
in [3, 10, 11]. In [10, 11] the equations are linear, that is, the matrix field B does
not depend on the solution u, while in [3], the equations are quasilinear, which
is also the case in this study. The above mentioned papers are all motivated by
homogenization, which is also our main goal (see [9]).

Since we consider in the present paper an L1−data, we need an appropriate
notion of solution. Indeed, for the elliptic equation

−div(A(x, u)∇u) = f
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with Dirichlet boundary condition if the matrix A is bounded, a solution in
the sense of distribution exists (see [5]) but it is not unique in general (see the
counterexamples in [19, 20]). If the matrix field is not bounded, then we cannot
expect to have a solution in the sense of distribution since there is no reason
to have A(x, u) ∈ L1

loc. In the present paper, we use the notion of renormal-
ized solution, which is first discussed in [8] by R.J. DiPerna and P.L. Lions for
first order equations. This notion was then further developed by F. Murat in
[17], by P.L. Lions and F. Murat in [15] for elliptic equations with Dirichlet
boundary conditions and L1 data, and by G. Dal Maso et al. in [6] for ellip-
tic equations with general measure data. There is a wide range of literature
for elliptic equations with Dirichlet boundary condition and L1 data, among
them are [4, 5, 6, 7, 15, 17]. Considering elliptic equations with Neumann or
Fourier boundary conditions and L1 data, which are connected to our prob-
lem, gives in general additional difficulties due the lack of Poincaré inequality
or the low regularity of the solution (definition of the trace for e.g.). In the
case of one-component domain (and L1 data), using the framework of entropy
solution existence results are given in [1, 2, 18], convection-diffusion equations
with mixed Neumann and Robin boundary conditions are studied in [12] by a
duality method, and in [14] the authors prove existence and uniqueness results
using the notion of renormalized solution for equations with Robin boundary
conditions.

The main originality of the present paper is the jump of the solution which
produces in the formulation a term in the interface Γ. Recalling that the regular-
ity of the renormalized solution is given through the truncate, the first difficulty
is to give a sense on the interface for functions (u1, u2) whose truncates belong
to H1. Following the ideas of [1, 14] (but in the case of one-component domain),
we define an appropriate notion of trace (see Proposition 2.2). The second dif-
ficulty is the regularity of γ1(u1) − γ2(u2) (where γ1 is the trace function for
H1(Ω1)−functions and γ2 is the trace function for H1(Ω2)−functions), since
we have to deal with terms on the boundary like (γ1(u1)− γ2(u2))χ{|γ1(u1)|<k}
(where χA is the characteristic function of any set A) in the renormalized for-
mulation. To have (γ1(u1) − γ2(u2))χ{|γ1(u1)|<k} belonging to L1(Γ) is then
equivalent to have γ2(u2)χ{|γ1(u1)|<k} ∈ L1(Γ), which is unusual and is in some
sense a coupled regularity on the boundary. It is worth noting that it is not a
direct consequence of Tk(u1) ∈ H1(Ω1) and Tk(u2) ∈ H1(Ω2). Using the struc-
ture of the equation, we give an extra regularity (see (2.11b) in Definition 2.4)
which allows one to complete our notion of renormalized solution for problem
(P). We are then able to give a definition of renormalized solution for problem
(P) for which we prove the existence (see Theorem 3.1).

This paper is organized as follows. The next section discusses the assump-
tions on our problem and some definitions including the definition of a renor-
malized solution of (P). Section 3 is devoted to the proof of the existence of a
renormalized solution for (P).

2 Assumptions and Definitions

In this section, we present the assumptions and definitions necessary for our
problem. We begin by introducing the two-component domain Ω. The domain
Ω is a connected bounded open set in RN with its boundary ∂Ω. We can write
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Ω as the disjoint union Ω = Ω1 ∪ Ω2 ∪ Γ, where Ω2 is an open set such that
Ω2 ⊂ Ω with a Lipschitz boundary Γ and Ω1 = Ω \ Ω2. We denote by νi the
unit outward normal to Ωi.

Ω
Ω2

Γ

Ω2

Γ

Ω1

∂Ω

Figure 1: The two-component domain Ω

If we have a function u defined on Ω \ Γ, then we denote ui = u
∣∣
Ωi

the
restriction of u in Ωi. Furthermore, we have the following assumptions:

(A1) The data f belongs to L1(Ω).

(A2) The function h satisfies

h ∈ L∞(Γ) and 0 < h0 < h(y) a.e. on Γ, (2.1)

for some h0 ∈ R+.

(A3) The matrix field B is a Carathéodory function, that is,

(a) the map t 7→ B(x, t) is continuous for a.e. x ∈ Ω;

(b) the map x 7→ B(x, t) is measurable for a.e. t ∈ R,

and it has the following properties:

(A3.1) B(x, t)ξ · ξ ≥ α|ξ|2, for some α > 0, for a.e. x ∈ Ω, ∀t ∈ R, ∀ξ ∈ RN ;

(A3.2) for any k > 0, B(x, t) ∈ L∞(Ω× (−k, k))N×N .

The space for this class of equations is not a usual Lp−space or a Sobolev
space due to the jump on the interface. We need the normed space V defined
as follows. Let V1 be the space defined by

V1 = {v ∈ H1(Ω1) : v = 0 on ∂Ω} with ‖v‖V1
:= ‖∇v‖L2(Ω1).

Define V := {v ≡ (v1, v2) : v1 ∈ V1 and v2 ∈ H1(Ω2)}, equipped with the norm

‖v‖2V := ‖∇v1‖2L2(Ω1) + ‖∇v2‖2L2(Ω2) + ‖v1 − v2‖2L2(Γ). (2.2)

Identifying ∇v := ∇̃v1+∇̃v2 we have that ‖v‖2V = ‖∇v‖2L2(Ω\Γ)+‖v1−v2‖2L2(Γ).
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Proposition 2.1 ([16]). The norm given in (2.2) is equivalent to the norm of
V1 ×H1(Ω2), that is, there exist two positive constants c1, c2 such that

c1‖v‖V ≤ ‖v‖V1×H1(Ω2) ≤ c2‖v‖V , ∀v ∈ V.

We now define the function Tk, which is known as the truncation function
at height ±k.The function Tk : R −→ R is given by

Tk(t) =


−k, if t ≤ k,
t, if − k ≤ t ≤ k,
k, if t ≥ k.

(2.3)

This function will be crucial in the definition of a renormalized solution of (P).
In the case of L1−data, we cannot expect to have the solution u belonging to

V . In general, in the framework of renormalized solution, the regularity of the
solution is given through the regularity of the truncate. So it is necessary in our
case to define the gradient and the trace of the solution u. For the gradient, we
follow the definition given in [4]. For the trace, we have to precise the trace of
u1 on Γ and the one of u2 on Γ. With respect to [1, 14], we have the additional
difficulty for u2 since we do not have the Poincaré inequality.

Proposition 2.2. Let u = (u1, u2) : Ω \Γ −→ R be a measurable function such
that Tk(u) ∈ V for every k > 0. For i = 1, 2,

1. there exists a unique measurable function vi : Ωi −→ RN such that for all
k > 0,

∇Tk(ui) = viχ{|ui|<k} a.e. in Ωi, (2.4)

where χ{|ui|<k} denotes the characteristic function of {x ∈ Ωi : |ui(x)| <
k}. We define vi as the gradient of ui and write vi = ∇ui.

2. if

sup
k≥1

1

k
‖Tk(u)‖2V <∞, (2.5)

then there exists a unique measurable function wi : Γ −→ R, for i = 1, 2,
such that for all k > 0,

γi(Tk(ui)) = Tk(wi) a.e. in Γ, (2.6)

where γi : H1(Ωi) −→ L2(Γ) is the trace operator. We define the function
wi as the trace of ui on Γ and set

γi(ui) = wi, i = 1, 2.

Proof.

1. This is proved in [4] (see Lemma 2.1).
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2. The case i = 1, or more generally the truncates have a zero trace on a
part of the boundary (which allows one to use Poincaré-kind inequality)
is presented in [14]. We just have to prove the result for i = 2.

The uniqueness is in the almost everywhere sense. Note that if we find a
function that satisfies (2.6), then the uniqueness of w2 is assured by the
monotonicity of Tk and the fact that w2 is finite a.e. in Γ.

By Proposition 2.1, we know that

‖Tk(u2)‖H1(Ω2) ≤ c1‖Tk(u)‖V ,

for some positive constant c1, independent of k. It follows from (2.5) that

‖Tk(u2)‖2H1(Ω2) ≤Mk, (2.7)

with M ∈ R+ independent of k. Due to the regularity of Γ, γ2(Tn(u2)) is
well-defined and

k2measΓ{|γ2(Tk(u2))| ≥ k} =

∫
Γ∩{|Tk(u2)|≥k}

(γ2(Tk(u2)))2 dσ

≤ ‖γ2(Tk(u2))‖2L2(Γ).

Hence, by Trace Theorem and (2.7), we have

k2measΓ{|γ2(Tk(u2))| ≥ k} ≤ ‖γ2(Tk(u2))‖2L2(Γ)

≤ ‖Tk(u2)‖2L2(Ω2) + ‖∇Tk(u2)‖2L2(Ω2)

≤Mk.

As a result,

measΓ{|γ2(Tk(u2))| ≥ k} −→ 0 as k −→ 0. (2.8)

Define Γn = {x ∈ Γ : |γ2(Tn(u2))| < n} for n ∈ N. From (2.8), it follows
that

Γ =
⋃
n≥1

Γn ∪A, (2.9)

where A is a subset of Γ with zero measure.

Note that for k < n, we have Tk(Tn(u2)) = Tk(u2). Fix k > 0. Then for
every n ∈ N such that n > k, we have the following equality

Tk(γ2(Tn(u2))) = γ2(Tk(Tn(u2))) = γ2(Tk(u2)) a.e. on Γ,

and then
γ2(Tk(u2)) = γ2(Tn(u2)) a.e. on Γk. (2.10)

Since for every n1 ≤ n, we have Γn1
⊆ Γn, in view of (2.9) and (2.10), we

can define w2 in the following way:

w2 = γ2(Tn(u2)) on Γn

and noting that Γ =
⋃
n≥1

Γn (up to measure zero set), we have for any

k > 0
γ2(Tk(u2)) = Tk(w2) a.e. on Γ.

This concludes the proof.
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Remark 2.3. In the following, we give an example of a measurable function u
where Tk(u) ∈ V but u2 is not defined on a part of the interface. We consider
Ω = (−1, 2) with Ω1 = (−1, 0) ∪ (1, 2) and Ω2 = (0, 1) (so Γ = {0, 1}), and
u = (u1, u2) is defined as

u(x) =

{
u1(x) = (x+ 1)(x− 2) if x ∈ Ω1

u2(x) = x−2 if x ∈ Ω2.

We have for some positive constants C1, C2,

‖∇Tk(u1)‖2L2(Ω1) =

∫
|u1|<k

(2x− 1)2 dx ≤
∫

Ω1

(2x− 1)2 dx ≤ C1,

and

‖∇Tk(u2)‖2L2(Ω2) =

∫ 1

k1/2
(−2x−3)2 dx = 4

[
−x

7

7

]1

x=k1/2
=

4

7
(k7/2 − 1).

Thus, we can see that

k7/2

C
≤ ‖Tk(u)‖2V ≤ Ck7/2,

for some C > 0 but clearly u2 does not have a trace on {0} ⊂ Γ.

We are now in a position to give the definition of renormalized solution.

Definition 2.4. Let u = (u1, u2) : Ω \Γ −→ R be a measurable function. Then
u is a renormalized solution of (P) if

Tk(u) ∈ V, ∀k > 0; (2.11a)

(u1 − u2)(Tk(u1)− Tk(u2)) ∈ L1(Γ), ∀k > 0; (2.11b)

lim
n→∞

1

n

∫
{|u|<n}

B(x, u)∇u · ∇u dx = 0; (2.12a)

lim
n→∞

1

n

∫
Γ

(u1 − u2)(Tn(u1)− Tn(u2)) dσ = 0; (2.12b)

and for any S ∈ C1(R) (or equivalently for any S ∈ W 1,∞(R)) with compact
support, u satisfies∫

Ω1

S(u1)B(x, u1)∇u1 · ∇v1 dx+

∫
Ω1

S′(u1)B(x, u1)∇u1 · ∇u1 v1 dx

+

∫
Ω2

S(u2)B(x, u2)∇u2 · ∇v2 dx+

∫
Ω2

S′(u2)B(x, u2)∇u2 · ∇u2 v2 dx

+

∫
Γ

h(x)(u1 − u2)(v1S(u1)− v2S(u2)) dσ =

∫
Ω

fvS(u) dx,

(2.13)

for all v ∈ V ∩ (L∞(Ω1)× L∞(Ω2)).
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Remark 2.5. Conditions (2.11a) (the regularity of the truncate) and (2.12a)
(the decay of the ”truncated energy”) are standard in the framework of renor-
malized solutions. As mentioned in Introduction, the main originality of the
present paper is the presence of the trace.

In view of Proposition 2.2, γ(u1) and γ(u2) are well-defined. Condition
(2.11b) is an extra regularity of (u1 − u2)(Tk(u1) − Tk(u2)). Indeed, (u1 −
u2)(Tk(u1)− Tk(u2)) cannot be written as

(u1 − u2)(Tk(u1)− Tk(u2))χ{|u1|<n}χ{|u2|<n},

for any n ∈ R+, so that having (u1 − u2)(Tk(u1) − Tk(u2)) belonging to L1(Γ)
is not a consequence of (2.11a).

Conditions (2.11a) and (2.11b) allow one to give a sense of all the terms in
(2.13). Let S ∈ C1(R) with compact support. Then for all v ∈ V ∩ (L∞(Ω1)×
L∞(Ω2)), i = 1, 2, we have if supp(h) ⊂ [−k, k]

S(ui)B(x, ui)∇ui · ∇vi = S(ui)B(x, Tk(ui))∇Tk(ui) · ∇vi ∈ L1(Ωi),

S′(ui)B(x, ui)∇ui · ∇ui vi = S′(ui)B(x, Tk(ui))∇Tk(ui) · ∇Tk(ui) vi ∈ L1(Ωi),

fvS(u) ∈ L1(Ω).

For the boundary term, let us define Sn : R −→ R by

Sn(s) =



0, if s ≤ −2n
s

n
+ 2, if − 2n ≤ s ≤ −n

1, if − n ≤ s ≤ n
− s
n

+ 2, if n ≤ s ≤ 2n

0, if s ≥ 2n,

(2.14)

then since S has a compact support, for some large enough n, we have

h(u1 − u2)v1S(u1) = hv1(u1 − u2)(S(u1)− S(u2))Sn(u1)

+ hv1(u1 − u2)S(u2)Sn(u1).

Since both S and Sn have compact support, we have that hv1(u1−u2)S(u2)Sn(u1)
is bounded and is therefore in L1(Γ). Moreover, since

S(u1)− S(u2) = S(T2n(u1))− S(T2n(u2))

and S is Lipschitz, we have

|hv1(u1 − u2)(S(u1)− S(u2))Sn(u1)| ≤‖hv1‖L∞(Γ)‖S′‖L∞(R)

× |u1 − u2||T2n(u1)− T2n(u2)|,

a.e. in Γ. Thus, in view of (2.11b), h(u1 − u2)v1S(u1) ∈ L1(Γ). Similarly,
h(u1 − u2)v2S(u2) ∈ L1(Γ).

It is worth noting that condition (2.11b) is equivalent to have

u2χ{|u1|<k} ∈ L
1(Γ) and u1χ{|u2|<k} ∈ L

1(Γ), (2.15)

for any k > 0. Indeed,

u2χ{|u1|<k} = (u2 − u1)χ{|u1|<k}(Sn(u1)− Sn(u2)) + u2Sn(u2)χ{|u1|<k}

+ u1Sn(u1)χ{|u1|<k} − u1Sn(u2)χ{|u1|<k},
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and by condition (2.11b), the first term on the right-hand side belongs to L1(Γ)
while the next 3 terms are bounded and thus also belong to L1(Γ).

Finally, let us comment that conditions (2.12a) and (2.12b) which are cru-
cial to obtain uniqueness results (see other paper [13]) and also to recover that
formally, for any k > 0, Tk(u) is an admissible function in (P), that is,∫

Ω1

B(x, u1)∇u1∇Tk(u1) dx+

∫
Ω2

B(x, u2)∇u2∇Tk(u2) dx

+

∫
Γ

h(x)(u1 − u2)(Tk(u1)− Tk(u2)) dσ =

∫
Ω

fTk(u1) dx.

To prove this, fix k > 0. Using Sn(u)Tk(u) which is an admissible test function
for any n ∈ N, we have∫

Ω1

Sn(u1)B(x, u1)∇u1 · ∇Tk(u1) dx

+

∫
Ω1

S′n(u1)B(x, u1)∇u1 · ∇u1 Tk(u1) dx

+

∫
Ω2

Sn(u2)B(x, u2)∇u2 · ∇Tk(u2) dx

+

∫
Ω2

S′n(u2)B(x, u2)∇u2 · ∇u2 Tk(u2) dx

+

∫
Γ

h(x)(u1 − u2)(Sn(u1)Tk(u1)− Sn(u2)Tk(u2)) dσ

=

∫
Ω

fTk(u)Sn(u) dx.

(2.16)

Condition (2.12a) allows one to pass to the limit of the second and fourth integral
in (2.16) while condition (2.12b) is useful for passing to the limit of the integral
on the boundary in (2.16).

Remark 2.6. As observed in the previous remark, we have the condition (2.11b)
for the integral on the interface to make sense. We can avoid this problem by us-
ing the Boccardo-Gallouët estimates presented in [5]. However, these estimates
are heavily dependent on the Sobolev constants. With the final aim of doing the
homogenization process, we try as much as possible to refrain from using these
estimates (see Remark 3.2).

3 Existence Results

In this section, we present the proof for the existence of a renormalized solution
of (P).

Theorem 3.1. Suppose the assumptions (A1)-(A3) hold. Then there exists a
renormalized solution to (P) in the sense of Definition 2.4.

Proof. The proof is divided into 4 steps. In Step 1, we consider an approximate
problem (see (Pε)) in which B is approximated and fε is an L2−data. Using
Schauder’s fixed point theorem, the existence of at least a variational solution of
(Pε) can be shown. Step 2 is devoted to prove some a priori estimates and then

8



extracting a subsequence. In Step 3, we prove that conditions (2.11a), (2.11b),
(2.12a) and (2.12b) are satisfied. Finally, in Step 4, we pass to the limit and we
show that the constructed function is a renormalized solution.

From this point until the end of the proof, we let i ∈ {1, 2}.
Step 1: Introducing the approximate problem and showing the existence of
solution of the approximate problem
Let ε > 0. Suppose {fε} ⊂ L2(Ω) such that

fε −→ f strongly in L1(Ω)

as ε → 0. Define Bε(x, t) = B(x, T1/ε(t)). We now consider the following
approximate problem

−div(Bε(x, u
ε
1)∇uε1) = fε in Ω1,

−div(Bε(x, u
ε
2)∇uε2) = fε in Ω2,

uε1 = 0 on ∂Ω,

(Bε(x, u
ε
1)∇uε1)ν1 = (Bε(x, u

ε
2)∇uε2)ν1 on Γ,

(Bε(x, u
ε
1)∇uε1)ν1 = −h(x)(uε1 − uε2) on Γ,

(Pε)

The variational formulation of problem (Pε) is the following
Find uε ∈ V such that ∀ϕ ∈ V∫

Ω1

Bε(x, u
ε
1)∇uε1 · ∇ϕ1 dx+

∫
Ω2

Bε(x, u
ε
2)∇uε2 · ∇ϕ2 dx

+

∫
Γ

h(x)(uε1 − uε2)(ϕ1 − ϕ2) dσ =

∫
Ω

fεϕdx.

(3.1)

Using Proposition 2.1 and Schauder’s Fixed Point Theorem, the proof of the
existence of solution for (3.1) is quite standard (see e.g. [3]).
Step 2: Extracting subsequences and examining convergences

Let uε = (uε1, u
ε
2) be a solution to the approximate problem (Pε). By Stam-

pacchia’s theorem, for k > 0, Tk(uε) ∈ V since uε ∈ V . Using Tk(uε) as a test
function in the variational formulation (3.1), we have∫

Ω1

Bε(x, u
ε
1)∇uε1∇Tk(uε1) dx+

∫
Ω2

Bε(x, u
ε
2)∇uε2∇Tk(uε2) dx

+

∫
Γ

h(x)(uε1 − uε2)(Tk(uε1)− Tk(uε2)) dσ =

∫
Ω

fεTk(uε) dx. (3.2)

By the definition of Tk, the coercivity of B, and the assumption on h, we
have ∫

Ω1

Bε(x, u
ε
1)∇uε1∇Tk(uε1) dx+

∫
Ω2

Bε(x, u
ε
2)∇uε2∇Tk(uε2) dx

+

∫
Γ

h(x)(uε1 − uε2)(Tk(uε1)− Tk(uε2)) dσ

≥ α‖∇Tk(uε1)‖2L2(Ω1) + α‖∇Tk(uε2)‖2L2(Ω2) + h0‖Tk(uε1)− Tk(uε2)‖2L2(Γ)

≥ C1‖Tk(uε)‖2V ,
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for some positive constant C1. On the other hand, by Holdër inequality,∣∣∣∣∫
Ω

fεTk(uε) dx

∣∣∣∣ =

∣∣∣∣∫
Ω1

fεTk(uε1) dx+

∫
Ω2

fεTk(uε2) dx

∣∣∣∣
≤ ‖fε‖L1(Ω)k

≤Mk,

for some positive constant M , which is independent of ε.
Thus,

‖Tk(uε)‖2V ≤
Mk

C1
, (3.3)

that is, the sequence {Tk(uε)} is bounded in V for every k > 0.
By the Rellich theorem, the inclusions V ↪→ L2(Ω1)×L2(Ω2) and H1/2(Γ) ↪→

L2(Γ) are compact. Consequently, since {Tk(uε)} is bounded in V for every
k > 0 (countable), by the diagonal process, we can extract a subsequence of
{Tk(uε)} such that for any k > 0 (k being a rational number), there is a vk ∈ V
such that for

Tk(uε
′

i ) −→ vk,i strongly in L2(Ωi), a.e. in Ωi,

Tk(uε
′

i ) ⇀ vk,i weakly in V,

γi(Tk(uε
′

i )) −→ γi(vk,i) strongly in L2(Γ), a.e. on Γ.

(3.4)

Now, we show that {uε′i } and {γi(uε
′

i )} are Cauchy sequences in measure.

For uε
′

i , we follow the arguments developed in [4]. For γi(u
ε′

i ), we have additional
difficulties which are overcome by using Proposition 2.1. Note that we have

‖Tk(uε
′

i )‖2L2(Ωi)
=

∫
{|uε′

i |≥k}
|Tk(uε

′

i )|2 dx+

∫
{|uε′

i |<k}
|Tk(uε

′

i )|2 dx

=

∫
{|uε′

i |≥k}
k2 dx+

∫
{|uε′

i |<k}
|uε

′

i |2 dx.

It follows by Poincaré inequality, Proposition 2.1, and (3.3), we have

k2meas{|uε
′
| ≥ k} =

∫
{|uε′

1 |≥k}
k2 dx+

∫
{|uε′

2 |≥k}
k2 dx

≤ ‖Tk(uε
′

1 )‖2L2(Ω1) + ‖Tk(uε
′

2 )‖2L2(Ω2)

≤ C3‖∇Tk(uε
′

1 )‖2L2(Ω1) + ‖Tk(uε
′

2 )‖2H1(Ω2)

≤ C4‖Tk(uε
′
)‖2V

≤ C4Mk

C1
.

for some C3, C4 ∈ R+. Thus, we can find a positive constant C independent of
ε such that

meas{|uε
′

i | ≥ k} ≤
C

k
(3.5)
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For γ1(uε
′

1 ), observe that by Poincaré inequality and (3.3),

k2measΓ{|γ1(uε
′

1 )| ≥ k} =

∫
{|γ1(uε′

1 )|≥k}
k2 dσ

=

∫
{|γ1(uε′

1 )|≥k}
γ1(Tk(uε

′

1 ))2 dσ

≤ ‖γ1(Tk(uε
′

1 ))‖2L2(Γ)

≤ C5‖∇Tk(uε
′

1 )‖2L2(Ω2)

≤ C6k.

Consequently,

measΓ{|γ1(uε
′

1 )| ≥ k} ≤ C6

k
−→ 0 as k −→∞. (3.6)

For γ2(uε
′

2 ), by the Trace Theorem, Proposition 2.1, and (3.3), we have

k2measΓ{|γ2(uε
′

2 )| ≥ k} =

∫
{|γ2(uε′

2 )|≥k}
k2 dσ

=

∫
{|γ2(uε′

2 )|≥k}
γ2(Tk(uε

′

2 ))2 dσ

≤ ‖γ2(Tk(uε
′

2 ))‖2L2(Γ)

≤ C7‖Tk(uε
′

2 )‖2H1(Ω2)

≤ C8k.

It follows that

measΓ{|γ2(uε
′

2 )| ≥ k} ≤ C8

k
−→ 0 as k −→∞. (3.7)

By (3.6) and (3.7), for every η > 0, there exists k0 such that for every k ≥ k0,

measΓ{x ∈ Γ; |γi(uε
′

i )| ≥ k} < η. (3.8)

Let ω, η > 0. By (3.5) and (3.8), we can find k large enough such that

meas{|uε
′

i | ≥ k} ≤
η

3
(3.9)

measΓ{x ∈ Γ; |γi(uεi )| ≥ k} ≤
η

3
, (3.10)

for every ε′ > 0. Note that from (3.4), we can deduce that the sequences
{Tk(uεi )}, {γi(Tk(uεi ))} are Cauchy in measure. Hence, there exists ε0 > 0 such
that

meas{|Tk(uε
′

i )− Tk(uε
′′

i )| ≥ ω} < η

3
(3.11)

measΓ{|γi(Tk(uε
′

i ))− γi(Tk(uε
′′

i ))| ≥ ω} < η

3
, (3.12)

for every 0 < ε′, ε′′ < ε0.
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Observe that

{|uε
′

i − uε
′′

i | ≥ ω} ⊂ {|uε
′

i | ≥ k} ∪ {|uε
′′

i | ≥ k} ∪ {|Tk(uε
′

i )− Tk(uε
′′

i )| ≥ ω}

and thus,

meas{|uε
′

i − uε
′′

i | ≥ ω} ≤ meas{|uε
′

i | ≥ k}+ meas{|uε
′′

i | ≥ k}

+ meas{|Tk(uε
′

i )− Tk(uε
′′

i )| ≥ ω}.

It follows from (3.9) and (3.11) that

meas{|uε
′

i − uε
′′

i | ≥ ω} < η,

that is, {uε′i } is indeed Cauchy in measure. Using the inequalities (3.10) and

(3.12), and similar arguments, it can be shown that {γi(uε
′

i )} is Cauchy in
measure.

Consequently, there is a subsequence of {uε′i } that is convergent a.e. to some
measurable function ui : Ωi −→ R, that is

uε
′

i −→ ui a.e. in Ωi. (3.13)

It follows from (3.5) that ui is finite a.e. in Ωi. This u := (u1, u2) is our
candidate for a renormalized solution for problem (P).

We now prove that u satisfies the conditions (2.11). Indeed, by the continuity
of Tk, we have

Tk(uε
′
) −→ Tk(u) = vk ∈ V a.e. in Ω \ Γ. (3.14)

Moreover, we can deduce that {γi(uε
′

i )} is convergent a.e. on Γ up to a subse-
quence. Hence there exists ωi : Γ −→ R such that

γi(u
ε′

i ) −→ ωi a.e. on Γ, (3.15)

with ωi finite a.e. on Γ by (3.8). We now identify wi and γi(ui). Using (3.3)
and (3.4), we obtain

1

k
‖Tk(u)‖2V ≤

M

C1
,

for any k > 0.
By Proposition 2.2, γi(ui) (the trace in the truncate sense) is well defined.

From (3.4), (3.14) and (3.15), we obtain that for any k > 0,

Tk(ωi) = γi(vk,i) = γi(Tk(ui)) = Tk(γi(ui)) a.e. on Γ.

Then we have ωi = γi(ui) a.e. on Γ. By Fatou’s Lemma, Tk being non-
decreasing, we have for all k > 0,∫

Γ

(u1−u2)(Tk(u1)−Tk(u2)) dσ ≤ lim inf
ε′→0

∫
Γ

(uε
′

1 −uε
′

2 )(Tk(uε
′

1 )−Tk(uε
′

2 )) dσ ≤ kM,

which is (2.11b).
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From this point, we just denote our sequence by ε. Rewriting all the results
we got in terms of ε, we have the following: for all k > 0,

uεi −→ ui a.e. in Ω

Tk(uεi ) −→ Tk(ui) strongly in L2(Ωi), a.e. in Ωi,

γi(u
ε
i ) −→ γi(ui) a.e. on Γ,

γi(Tk(uεi )) −→ γi(Tk(ui)) strongly in L2(Γ), a.e. in Γ.

(3.16)

In addition, we have

∇Tk(uεi ) ⇀ ∇Tk(ui) weakly in (L2(Ωi))
N . (3.17)

Step 3: Showing conditions (2.12) of Definition 2.4.
From the continuity of B and (3.16), we have that for any fixed n > 0,

B(x, Tn(uε)) −→ B(x, Tn(u)) a.e. in Ω and in L∞(Ω \ Γ) weak- ∗ . (3.18)

Due to (A3.1) and the lower semi-continuity of the weak convergence,

1

n

∫
{|u|<n}

B(x, u)∇u · ∇u dx =
1

n

∫
Ω\Γ

B(x, Tn(u))∇Tn(u) · ∇Tn(u) dx

≤ lim inf
ε→0

1

n

∫
Ω\Γ

B(x, Tn(uε))∇Tn(uε)∇Tn(uε) dx,

and by Fatou’s Lemma,

1

n

∫
Γ

(u1 − u2)(Tn(u1)− Tn(u)) dσ ≤ lim inf
ε→0

1

n

∫
Γ

(uε1 − uε2)(Tn(uε1)− Tn(uε2)) dσ.

Since∫
Ω\Γ

B(x, Tn(uε))∇Tn(uε)∇Tn(uε) dx and

∫
Γ

(uε1 − uε2)(Tn(uε1)− Tn(uε2)) dσ

are nonnegative, it is sufficient to show that

lim
n→∞

lim sup
ε→0

1

n

(∫
Ω\Γ

B(x, Tn(uε))∇Tn(uε)∇Tn(uε) dx

+

∫
Γ

(uε1 − uε2)(Tn(uε1)− Tn(uε2)) dσ

)
= 0.

(3.19)

We use
1

n
Tn(uε) as a test function in (3.1) to arrive at

1

n

∫
Ω1

Bε(x, u
ε
1)∇uε1∇Tn(uε1) dx+

1

n

∫
Ω2

Bε(x, u
ε
2)∇uε2∇Tn(uε2) dx

+
1

n

∫
Γ

h(x)(uε1 − uε2)(Tn(uε1)− Tn(uε2)) dσ =
1

n

∫
Ω

fεTn(uε) dx.

Consequently, for ε small enough, we have

1

n

∫
Ω1

B(x,Tn(uε1))∇uε1∇Tn(uε1) dx+
1

n

∫
Ω2

B(x, Tn(uε2))∇uε2∇Tn(uε2) dx

+
1

n

∫
Γ

(uε1 − uε2)(Tn(uε1)− Tn(uε2)) dσ =
1

n

∫
Ω

fεTn(uε) dx.
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Furthermore, since Tn(uε) converges to Tn(u) in L∞ weak-∗ and fε converges
to f in L1(Ω), we have

1

n

∫
Ω

fεTn(uε) dx −→ 1

n

∫
Ω

fTn(u) dx as ε −→ 0.

It follows that

lim sup
ε→0

1

n

(∫
Ω\Γ

B(x,Tn(uε))∇Tn(uε)∇Tn(uε) dx

+

∫
Γ

(uε1 − uε2)(Tn(uε1)− Tn(uε2)) dσ

)
=

1

n

∫
Ω

fTn(u) dx.

Observe that since u is finite a.e.,

1

n
Tn(u) −→ 0 a.e. in Ω \ Γ.

In addition, for any n > 0, |Tn(u)| ≤ n a.e. and thus,∣∣∣∣ 1nfTn(u)

∣∣∣∣ ≤ |f | ∈ L1(Ω).

By the Lebesgue Dominated Convergence Theorem, we obtain

lim
n→∞

1

n

∫
Ω

fTn(u) dx = 0,

which gives (3.19).
Step 4. Show that u satisfies (2.13) of Definition 2.4.

Let S ∈ C1(R) with compact support and let k > 0 such that

supp S ⊂ [−k, k]. (3.20)

We need to show that for any v ∈ V ∩ (L∞(Ω1)× L∞(Ω2)), u satisfies (2.13).
We use the function Sn defined in (2.14). Note that

Sn(uεi ) = Sn(T2n(uεi )) ∈ H1(Ωi) ∩ L∞(Ωi)

and thus, for any v ∈ V ∩ (L∞(Ω1)× L∞(Ω2)),

ψ = vS(u)Sn(uε) ∈ V ∩ (L∞(Ω1)× L∞(Ω2)).

Using ψ as a test function in (3.1), we have

I11 + I12 + I21 + I22 + I31 + I32 + I4 = I5, (3.21)

where

I1i =

∫
Ωi

Bε(x, u
ε
i )∇uεi · ∇viS(ui)Sn(uεi ) dx

I2i =

∫
Ωi

Bε(x, u
ε
i )∇uεi · ∇uiS′(ui)Sn(uεi ) dx

I3i =

∫
Ωi

Bε(x, u
ε
i )∇uεi · ∇uεiS(ui)S

′
n(uεi ) dx

I4 =

∫
Γ

h(x)(uε1 − uε2)(v1S(u1)Sn(uε1)− v2S(u2)Sn(uε2)) dσ

I5 =

∫
Ω

fvS(u)Sn(uε) dx.
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We look at the behavior of each integral. In particular, we will pass to the limit
as ε −→ 0 and then as n −→∞.

Note that for n ≥ k, we have

Sn(s)S(s) = S(s) and Sn(s)S′(s) = S′(s), for a.e. s ∈ R. (3.22)

We first look at I1i. Observe that if ε is small enough, we have

Bε(x, u
ε
i )∇uεi∇viS(ui)Sn(uεi ) = B(x, T1/ε(u

ε
i ))∇T2n(uεi )S(ui)Sn(uεi ).

Choosing ε small enough, we have

B(x, T1/ε(u
ε
i ))Sn(uεi ) = B(x, T2n(uεi ))Sn(uεi ) −→ Sn(ui)B(x, Tn(ui)),

a.e. in Ωi. Moreover, by the assumptions on B, we have

|B(x, T1/ε(u
ε
i ))Sn(uεi )| ≤ sup

Ωi×[−2n,2n]

|B(x, t)|.

It follows from the Lebesgue Dominated Convergence Theorem that

B(x, T1/ε(u
ε
i ))Sn(uεi ) = B(x, T2n(uεi ))Sn(uεi ) −→ Sn(ui)B(x, T2n(ui)).

a.e. in Ωi and in L∞(Ωi) weak-∗. This and (3.17) imply as ε −→ 0,

I1i −→
∫

Ωi

B(x, T2n(ui))∇T2n(ui)∇viS(ui)Sn(ui) dx

=

∫
Ωi

B(x, ui)∇ui∇viS(ui)Sn(ui) dx.

By (3.22) we have,

lim
n→∞

lim
ε→0

I1i =

∫
Ωi

B(x, ui)∇ui∇viS(ui) dx. (3.23)

We now observe the behavior of I2i. For small enough ε, we have

Bε(x, u
ε
i )∇uεi∇ui viS′(ui)Sn(uεi ) = B(x, T2n(uεi ))∇T2n(uεi )∇ui viS′(ui)Sn(uεi ),

a.e. in Ωi. Since ∇ui viS′(ui) = ∇T2n(ui)vS
′(ui) ∈ (L2(Ωi))

N and by (3.17),
we obtain as ε −→ 0,

I2i −→
∫

Ω\Γ
B(x, T2n(u))∇T2n(u)∇u vS′(u)Sn(u) dx

=

∫
Ω\Γ

B(x, u)∇u∇u vS′(u)Sn(u) dx.

By (3.22),

lim
n→∞

lim
ε→0

I2i =

∫
Ω\Γ

B(x, u)∇u · ∇u vS′(u) dx. (3.24)

For the behavior of I3i, we observe that

|S′n(s)| ≤ 1

n
, for |s| ≤ 2n.
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Consequently,

|I3i| ≤
‖vi‖L∞(Ωi)‖S‖L∞(R)

n

∫
{|uε

i |<2n}
B(x, uεi )∇T2n(uεi )∇T2n(uεi ) dx.

By (3.19), we have
lim
n→∞

lim sup
ε→0

I3i = 0. (3.25)

For I4, we note that

h(x)(uε1 − uε2)viS(ui)Sn(uεi ) = h(x)(uε1 − uε2)viS(ui)Sn(uεi )S2n(uεi ).

Then we can write I4 as

I4 = I41 + I42 + I43 − I44,

where

I41 =

∫
Γ

h(x)(uε1 − uε2)v1S(u1)S2n(uε1)(Sn(uε1)− Sn(uε2)) dσ

I42 =

∫
Γ

h(x)(uε1 − uε2)v1S(u1)Sn(uε2)S2n(uε1) dσ

I43 =

∫
Γ

h(x)(uε1 − uε2)v2S(u2)S2n(uε2)(Sn(uε1)− Sn(uε2)) dσ

I44 =

∫
Γ

h(x)(uε1 − uε2)v2S(u2)Sn(uε1)S2n(uε2) dσ.

Observe that Sn is Lipschitz and Sn(uεi ) = Sn(T2n(uεi )). This gives

|Sn(uε1)− Sn(uε2)| = |Sn(T2n(uε1))− Sn(T2n(uε
2))|

=
1

n
|T2n(uε1)− T2n(uε2)|.

Consequently,

|I41| ≤
‖h‖L∞(Γ)‖v1‖L∞(Γ)‖S‖L∞(Γ)‖Sn‖L∞(Γ)

n

∫
Γ

|uε1−uε2||T2n(uε1)−T2n(uε2)| dσ,

and then by (3.19) we get

lim
n→∞

lim sup
ε→0

I41 = 0. (3.26)

By similar arguments, it can be shown that

lim
n→∞

lim sup
ε→0

I43 = 0. (3.27)

For I42, we observe that

|h(uε1 − uε2)v1S(u1)S2n(u1)Sn(uε2)| ≤M,

where the constant M depends only on the L∞−norms of h, S, Sn and S2n, and
n. Also,

h(x)(uε1 − uε2)v1S(u1)S2n(uε1)Sn(uε2) −→ h(x)(u1 − u2)v1S(u1)S2n(u1)Sn(u2),
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a.e. on Γ as ε −→ 0. By Lebesgue Dominated Convergence Theorem, as ε −→ 0,

I42 −→
∫

Γ

h(x)(u1 − u2)v1S(u1)S2n(u1)Sn(u2) dσ

and similarly,

I44 −→
∫

Γ

h(x)(u1 − u2)v2S(u2)S2n(u2)Sn(u1) dσ.

For large enough n, for j = 1, 2, i 6= j, we have S(ui)S2n(ui)Sn(uj) = S(ui).
In view of (2.15) in Remark 2.5, (u1 − u2)S(u1) ∈ L1(Γ) so that by Lebesgue
Dominated Convergence Theorem,

lim
n→∞

lim
ε→0

I42 =

∫
Γ

h(u1 − u2)v1S(u1) dσ (3.28)

lim
n→∞

lim
ε→0

I44 =

∫
Γ

h(u1 − u2)v2S(u2) dσ. (3.29)

Combining (3.26), (3.28), (3.27) and (3.29), we conclude that

lim
n→∞

lim
ε→0

I4 =

∫
Γ

h(u1 − u2)(v1S(u1)− v2S(u2)) dσ. (3.30)

Finally for I5, observing that Sn(uε) weakly converges to Sn(u) in L∞(Ω \ Γ)
weak-∗ and a.e. in Ω \ Γ, fε converges strongly to f in L1(Ω \ Γ), we have

I5 =

∫
Ω\Γ

fεvS(u)Sn(uε) dx −→
∫

Ω\Γ
fvS(u)Sn(u) dx =

∫
Ω

fvS(u)Sn(u) dx.

From (3.22), we have

lim
n→∞

lim
ε→0

I5 =

∫
Ω

fvS(u) dx. (3.31)

Passing through the limit of (3.21) and using (3.23), (3.24), (3.25), (3.30),
and (3.31), we have the desired conclusion.

This concludes the proof for the existence of a renormalized solution.

Remark 3.2. As explained in Introduction, it is possible to use the Boccardo-
Gallouët estimates, that is, to show that uε = (uε1, u

ε
2) is bounded in W 1,q(Ω1)×

W 1,q(Ω2), and that leads to u = (u1, u2) ∈ W 1,q(Ω1) ×W 1,q(Ω2), for all q <
N

N − 1
. Such a result may simplify the proof since it implies that γ1(uε1), γ2(uε2) ∈

W 1− 1
q ,q(Γ) and in particular, γ1(uε1), γ2(uε2) are bounded in L1+η(Γ), for some

small enough η. It follows that we can give another definition of renormalized

solution including u1 − u2 ∈ W 1− 1
q ,q(Γ) instead of (2.11b) and then (2.12b)

is not necessary since it is a direct consequence of the regularity u1 − u2 ∈
W 1− 1

q ,q(Γ).
However, dealing with homogenization does not allow to use the Boccardo-

Gallouët estimates since they are strongly related to the Sobolev constant which
may blow up in a varying domain. Moreover, our techniques allow to con-
sider more general equations (with a nonlinear boundary terms) for which the
Boccardo-Gallouët estimates are not useful.
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Remark 3.3 (Stability). By adapting the proof of Theorem 3.1, it is possible
to derive a stability result. More precisely, let us consider uε, a renormalized
solution of 

−div(Bε(x, u
ε
1)∇uε1) = fε in Ω1,

−div(Bε(x, u
ε
2)∇uε2) = fε in Ω2,

uε1 = 0 on ∂Ω,

(Bε(x, u
ε
1)∇uε1)ν1 = (Bε(x, u

ε
2)∇uε2)ν1 on Γ,

(Bε(x, u
ε
1)∇uε1)ν1 = −hε(x)(uε1 − uε2) on Γ,

(3.32)

where

1. fε ∈ L1(Ω);

2. Bε(x, t) is a Carathéodory matrix verifying

(a) B(x, t)ξ · ξ ≥ α|ξ|2, a.e. x ∈ Ω, for all t ∈ R, for any ξ ∈ RN , and

(b) for any k > 0, B(x, t) ∈ L∞(Ω× (−k, k))N×N ;

3. hε ∈ L∞(Γ) with 0 < h0 < hε(y) a.e. on Γ and hε(y) < M (uniform), for
some M > 0.

If f ∈ L1(Ω), B : Ω × R −→ RN×N is a Carathéodory function, and h :
Γ −→ R with h ≥ 0 are such that

fε −→ f strongly in L1(Ω);
Bε(x, rε) −→ B(x, r)

for every sequence rε ∈ R such that

rε −→ r a.e. on R;

hε −→ h a.e. in Γ,

then uε converges to u a.e. where u is a renormalized solution of

−div(B(x, u1)∇u1) = f in Ω1,

−div(B(x, u2)∇u2) = f in Ω2

u1 = 0 on ∂Ω,

(B(x, u1)∇u1)ν1 = (B(x, u2)∇u2)ν1 on Γ,

(B(x, u1)∇u1)ν1 = −h(x)(u1 − u2) on Γ.

The main point is to obtain the a priori estimates of Step 2. In view of (2.16)
in Remark 2.5, Tk(uε) is an ”admissible” test function, so that∫

Ω1

Bε(x, u
ε
1)∇uε1 · ∇Tk(uε1) dx+

∫
Ω2

Bε(x, u
ε
2)∇uε2 · ∇Tk(uε2) dx

+

∫
Γ

h(x)(uε1 − uε2)(Tk(uε1)− Tk(uε2)) dσ =

∫
Ω

fεTk(uε) dx,

which gives all the necessary estimates. Then we can extract subsequences so
that (3.16) hold true. In view of conditions on fε, Bε, and hε, we can perform
Step 3 of the proof of Theorem 3.1.
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