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Abstract

The aim of the present work is to progress in the identification of the effects responsible for

the formation of jets in heterogeneous gas-particle cylindrical and spherical explosions. In this

direction three two-phase flow models are considered, namely Baer and Nunziato’s (BN) (1986)

model, Marble’s (1963) model and the dense-dilute model of Saurel et al. (2017). The first and

third ones involve both non-conservative terms and viscous drag effects while the second one

involves viscous drag only as interaction force. Computed results show that viscous drag alone

is unable to reproduce finger-like instabilities. The BN model and the dense-dilute one differ

significantly by their acoustic properties. It is shown that the only model able to reproduce

qualitatively finger-like jets is the dense-dilute model. Mesh dependence of the results is studied

as well as presence or absence of viscous drag. It appears that the non-conservative terms seem

responsible for jetting effects.
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1. Introduction

When a spherical or cylindrical explosive charge is surrounded by a liquid layer or a granular

particle bed, material dispersal occurs through particle jets having a well-defined size. On the

example shown in Fig. 1, a cylindrical explosive charge is initially surrounded by a liquid layer.

Figure 1: A cylindrical explosive charge is initially surrounded by a liquid layer. When the charge explodes the
liquid layer transforms to a cloud of droplets forming highly dynamical particle jets. Same jetting effects appear
when the liquid is replaced by a granular layer. These jets are present in cylindrical and spherical dispersal
explosions.

Gas expansion during explosion fragments the liquid layer to a cloud of droplets that form5

highly dynamical particle jets. The same observation is reported when a granular bed is used

instead of a liquid layer. Dispersion is consequently clearly multidimensional in the sense that

one-dimensional computations result in significant errors in predicting presence of materials.

Experimental and numerical studies of this phenomenon have been carried out by Zhang et

al. (2001) [1], Milne et al. (2010) [2], Frost (2010) [3], Parrish and Worland (2012) [4], Osnes10

et al. (2019) [5], Utkin (2019) [6] to cite a few. Simplified situations have been considered in

Rodriguez et al. (2013) [7] and Xue et al. (2018) [8]. The explosive is replaced by a shock tube

and the matter to disperse is placed between two plates, in a Hele-Shaw cell. Other simplified

situations have been considered for example in McGrath et al. (2018) [9], Osnes et al. (2018)

[10], Carmouze et al. (2018) [11] to study possible clustering effects due to aerodynamic forces.15

It seems that the formation of jets and the size selection mechanism are still unidentified.
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In the present paper, a configuration like the one considered in Rodriguez et al. (2013) [7]

with a Hele-Shaw cell and a particle ring is studied. Such Hele-Shaw cell configuration allows

to omit the 3D characteristic of the flow. The simulations of the present paper are indeed 2D

allowing for easier analyses.20

Typical results reported in Rodriguez’s thesis [12] are shown in Fig. 2 at times 5 ms, 8 ms

and 57 ms after rupture of the shock tube diaphragm, inducing shock wave and gas flow through

a ring of flour particles. This configuration has been studied in Carmouze et al. (2019) [13] as

well.
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Figure 2: Typical interfacial instabilities reported in Rodriguez’s thesis [12] and papers [7], as well as in Xue
et al. (2018) [8]. Impulsive motion of a particle ring by a gas flow induces well defined particle fingers flowing
to the center direction, oppositely to the gas flow. At later times, here at 8 ms, short wavelength instabilities
also appear at the external surface. As time evolves, external surface instabilities grow and become dominant,
as shown in the third picture at time 57 ms. Internal jets are thus observed at early times, followed by external
ones at late times.

As reported by Rodriguez et al. (2013) [7] and Xue et al. (2018) [8], instabilities appear first25

at the inner interface and second at the outer one. Shape of these fingers is singular, in the sense

that they do not qualitatively compare to Richtmyer-Meshkov instabilities or Rayleigh-Taylor

ones, nor any other known instability. Indeed, mushroom type shape is observed with these two
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instabilities, while fingers are observed in the present context.

In the present paper, the origin of such finger-like instabilities is investigated with the help30

of numerical experiments. To the authors’ knowledge, such instabilities have been successfully

computed for the first time in Carmouze et al. (2019) [13] with the help of the dense-dilute

model of Saurel et al. (2017) [14].

In the present contribution, deeper investigation of the instability formation mechanism is

achieved. Computed results are reported with the help of the three existing two-phase hyperbolic35

models. The first one is the non-equilibrium model of Saurel et al. (2003) [15], a variant of Baer

and Nunziato’s (BN) model (1986) [16]. The second one is the dilute model of Marble (1963)

[17]. The third one is the dense-dilute flow of Saurel et al. (2017) [14].

Comparing the computed results with these three different models is important to identify the

effect responsible for the appearance of these particle jets. Indeed, with Marble’s model (1963)40

[17] the only interaction effect is related to the viscous drag force. With the BN-type model

[15] and the dense-dilute model [14] two types of interactions are present. The conventional

(viscous) drag force, as in Marble’s model, and a “differential drag force” due to the presence of

non-conservative terms in the momentum and energy equations. As will be shown, differential

drag appears as leading effect in the selection process of theses jets. It is also shown that the45

BN-type model fails in the qualitative prediction of these particle jets, while the dense-dilute

one predicts both inner and outer jets visible in the experiments reported in Fig. 2.

This paper is organized as follows. In Section 2 the BN-type model [15] and its properties

are presented followed by Marble’s model [17] and the dense-dilute model [14] in Sections 3 and

4 respectively. Viscous drag interaction effects are introduced in Section 5 and computed results50

are provided in Section 6. Conclusions are given in Section 7.
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2. BN-type flow model

The total disequilibrium two-phase flow model was originally proposed by Baer and Nunziato

(1986) [16]. The balance equations for phases 1 and 2 are,



























































































∂α1

∂t
+ uI . grad (α1) = µ(p1 − p2),

∂ (α1ρ1)

∂t
+ div (α1ρ1u1) = 0,

∂ (α1ρ1u1)

∂t
+ div

(

α1

(

ρ1u1 ⊗ u1 + p1I
))

= pI . grad (α1) + λ (u2 − u1) ,

∂ (α1ρ1E1)

∂t
+ div (α1 (ρ1E1 + p1)u1) = pIuI . grad (α1)− µp′I(p1 − p2) + λu′

I . (u2 − u1) ,

∂ (α2ρ2)

∂t
+ div (α2ρ2u2) = 0,

∂ (α2ρ2u2)

∂t
+ div

(

α2

(

ρ2u2 ⊗ u2 + p2I
))

= pI . grad (α2)− λ (u2 − u1) ,

∂ (α2ρ2E2)

∂t
+ div (α2 (ρ2E2 + p2)u2) = pIuI . grad (α2) + µp′I(p1 − p2)− λu′

I . (u2 − u1) .

(2.1)

The notations are conventional in the two-phase flow literature. αk, ρk, pk, Ek = ek+
1

2
u2
k denote55

respectively the volume fraction, density, pressure and total energy of phase k. ek is the internal

energy and uk represents the center of mass velocity of phase k. The mixture internal energy

is defined as e =
∑2

k=1 Ykek where Yk = (αkρk)/ρ denotes the mass fraction of phase k. The

mixture density is defined as ρ =
∑2

k=1 αkρk.

System (2.1) is a two-phase model for mixture flows evolving in pressure, velocity and60

temperature disequilibria. The choice of interfacial average velocities uI and pressures pI

was originally expressed with the relations: uI = u2 and pI = p1, the symmetric choice:

uI = u1 and pI = p2, being possible as well.

More general and symmetric estimates have been proposed by Saurel et al. (2003) [15],















uI = u′
I + sgn (grad (α1))

p2 − p1
Z1 + Z2

, with u′
I =

Z1u1 + Z2u2

Z1 + Z2

,

pI = p′I + sgn (grad (α1)) .
(u2 − u1)Z1Z2

Z1 + Z2

with p′I =
Z1p2 + Z2p1
Z1 + Z2

,

(2.2)
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where Zk = ρkck is the acoustic impedance and ck is the speed of sound of fluid k. This latter65

is provided by a convex equation of state for each phase. The analysis which has led to these

estimates is based upon a homogenization method developed by Abgrall and Saurel (2003) [18].

Equations (2.2) are derived from the solution of a local Riemann problem that provides

appropriate estimates for local interfacial variables. However, these linearized solutions are to

be replaced by non-linear solutions when dealing with strong shocks.70

The first equation of System (2.1) is non-conservative and represents the transport of the

first volume fraction α1 at interfacial velocity uI . During the advection stage, volume variations

caused by pressure differences between the phases appear through the relaxation term µ(p1−p2),

with µ controlling the rate at which pressure equilibrium is reached. The above-mentioned

analysis provided this coefficient as well µ = AI

Z1+Z2
where AI represents the specific interfacial75

area of the mixture. For instance, when dealing with clouds of droplets of radius R1, the

interfacial area is AI =
3α1

R1

.

The volume variations of the phases are then directly proportional to the pressure difference

between the phases and the speed at which the equilibrium is reached is controlled by the µ

coefficient. This latter depends only upon the acoustic impedance of the phases and upon the80

interfacial area.

The second and fifth equations of System (2.1) express the conservation of mass of the

corresponding phase while the third and sixth equations are related to their momentum balance.

Those relations are non-conservative. The velocity relaxation terms on the right-hand side of

the momentum equations read ±λ (u2 − u1), where λ is the product of the specific interfacial85

area with the drag coefficient.

The non-conservative term pI . grad (αk) represents the pressure force acting at the parti-

cle cloud boundaries with pI denoting the interfacial pressure given by Eq. (2.2). This non-

conservative term represents a “differential frag force” as its amplitude is high in zones of high

volume gradients and vanish when the volume fraction is uniform. It will be shown that this90

term is of main importance in the jet formation process.

Finally, the fourth and seventh equations of System (2.1) express the energy balance of phase

k. Those latter ones are non-conservative as well due to the presence of the term pIuI . grad (αk)
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and the relaxation terms on the right-hand side.

System (2.1) is hyperbolic with wave speeds uI , uk and uk± ck. There is one additional wave95

in comparison with the original Baer and Nunziato’s model (1986) [16] because of the interfacial

velocity given by Eq. (2.2).

System (2.1) is closed by a convex equation of state (EOS) for each phase. Moreover, each

phase admits the following entropy equation,

∂ (αkρksk)

∂t
+ div (αkρkskuk) =

1

Tk(Zk + Zl)

×

[

Zk (Zk + Zl)
−1

[

(pl − pk) + sgn
[

grad (αk)
]

. (ul − uk)Zl

]2

|grad (αk) |

+ µZl (pl − pk)
2 + λZk (ul − uk) . (ul − uk)

]

,

(2.3)

where sk and Tk denote respectively the specific entropy and temperature of phase k. Index100

l denotes the conjugate phase to k, i.e. k = 1 implies l = 2 and vice versa. Analyzing the

right-hand side of Eq. (2.3), it appears the second law of thermodynamic is satisfied for all

phase k. Thereby, the mixture entropy defined as s =
∑2

k=1 (αkρksk) agrees with the second law

as well.

Consequently the model is strictly hyperbolic, thermodynamically consistent and symmetric.105

Its is able to deal with contact and permeable interfaces, Saurel et al. (2003, 2014) [15], [19].

Its extension to more than two phases is quite easy. However, the wave speeds are independent

of the volume fraction, meaning that in the dilute limit the sound speed in the condensed phase

is unchanged, this behavior being questionable as this phase is no longer continuous.

This remark is the main motivation of the dense-dilute model of Saurel et al. (2017) [14]110

where the condensed phase, when dispersed, does not propagate sound.

In this direction an alternative formulation of the volume fraction equation is derived in

the same reference, with the aim of improving the acoustic properties of Baer and Nunziato’s

model (1986) [16]. The model of Saurel et al. (2017) [14] is particularly attractive when one

of the phases is dispersed and unable to support sound propagation (i.e. in dispersed liquid115
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suspensions). Indeed, for liquid drops suspended in a gas or gas bubbles suspended in a liquid,

the volume fraction of the dispersed phase α1 in System (2.1) (first equation) is replaced by,

∂α1

∂t
+ div (α1u1) = µ(p1 − p2) with µ → +∞. (2.4)

The model of Saurel et al. (2017) [14] is presented in Section 4. First let us recall the model of

Marble (1963) [17].

3. Dilute flow model120

When the concentration of particles reaches the lower limit, the model of Marble (1963) [17]

is preferred over the BN model,
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∂ρ̄1
∂t

+ div (ρ̄1u1) = 0,

∂ (ρ̄1u1)

∂t
+ div (ρ̄1u1 ⊗ u1) = λ (u2 − u1) ,

∂ (ρ̄1E1)

∂t
+ div (ρ̄1E1u1) = λu′

I . (u2 − u1) ,

∂ρ2
∂t

+ div (ρ2u2) = 0,

∂ (ρ2u2)

∂t
+ div

(

ρ2u2 ⊗ u2 + p2I
)

= −λ (u2 − u1) ,

∂ (ρ2E2)

∂t
+ div ((ρ2E2 + p2)u2) = −λu′

I . (u2 − u1) .

(3.1)

System (3.1) corresponds to the Euler equations with source terms for the carrier phase (indexed

2) and pressureless gas dynamic equations for the dispersed phase (indexed 1), see also Zeldovich

(1970) [20]. The two phases are only linked through the λ (u2 − u1) term that represents viscous125

drag effects.

The notations remain the same as before. In addition, the apparent density of the dis-

persed phase is introduced as ρ̄1 = α1ρ1. ρ1 is the density of the particles that are considered

incompressible. ρ1 remains consequently constant in System (3.1).

This flow model is valid only for dilute suspensions (α1 < 0.01) as volume fraction effects are130

omitted in the equations of the carrier phase and non-conservative terms are neglected.
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System (3.1) admits the following mixture entropy equation,

∂ρ̄1s1 + ρ2s2
∂t

+ div (ρ̄1s1u1 + ρ2s2u2) = λ
(u1 − u2)

2

T2

. (3.2)

This model is consequently thermodynamically consistent. Moreover, the associated wave speeds

are u1, u2, u2 − c2 and u2 + c2 where the eigenvalue u1 is fourfold. The equations of the dilute

phase are then hyperbolic linearly degenerate, while the ones of the carrier phase are strictly135

hyperbolic.

In this model, contrarily to the BN-type model (2.1), sound does not propagate in the particle

phase, this behavior being more physical in the lower dilute limit. However, Marble’s model (3.1)

has a limited range of validity as the volume of the dispersed phase is neglected, this assumption

having sense only for low volume fractions (less than 1%) of the condensed phase.140

4. Dense-dilute flow model

Recently, the gap between the BN-type (2.1) and Marble’s (3.1) models has been filled (Saurel

et al. (2017) [14]). Modifications of the volume fraction equation of Baer and Nunziato’s model

(1986) [16] in conjunction with stiff pressure relaxation resulted in a flow model where sound

propagates only in the carrier phase, this behavior being more physical in the dilute limit. The145

corresponding dense-dilute two-phase model reads,
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




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∂α1

∂t
+ div (α1u1) = µ(p1 − p2) with µ → +∞,

∂ (α1ρ1)

∂t
+ div (α1ρ1u1) = 0,

∂ (α1ρ1u1)

∂t
+ div

(

α1

(

ρ1u1 ⊗ u1 + p1I
))

= p1. grad (α1) + λ (u2 − u1) ,

∂ (α1ρ1E1)

∂t
+ div (α1 (ρ1E1 + p1)u1) = p1 div (α1u1)− µp1(p1 − p2) + λu′

I . (u2 − u1) ,

∂ (α2ρ2)

∂t
+ div (α2ρ2u2) = 0,

∂ (α2ρ2u2)

∂t
+ div

(

α2

(

ρ2u2 ⊗ u2 + p2I
))

= p1. grad (α2)− λ (u2 − u1) ,

∂ (α2ρ2E2)

∂t
+ div (α2 (ρ2E2 + p2)u2) = −p1 div (α1u1) + µp1(p1 − p2)− λu′

I . (u2 − u1) ,

(4.1)
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where u′
I = u1. This assumption in indeed admissible and yields thermodynamic consistency

(see Saurel et al. (2017) [14]).

The notations and mixture quantities are the same as before. Let us recall that phase 1

is considered as the dilute phase. System (4.1) evolves in pressure, velocity and temperature150

disequilibria. The asymptotic analysis provided in Saurel et al. (2017) [14] shows that System

(4.1) recovers the mechanical-equilibrium two-phase flow model of Kapila et al. (2001) [21] when

both stiff pressure and velocity relaxation processes are considered (µ, λ → +∞).

In the present context µ → +∞, meaning that instantaneous pressure relaxation is consid-

ered. Precise knowledge of µ is consequently of minor importance. As shown in Saurel et al.155

(2017) [14], this stiff pressure relaxation is necessary to ensure thermodynamic consistency of

the present model. However, velocity relaxation may be considered at finite or instantaneous

rates.

System (4.1) is hyperbolic with wave speeds u1, u2, u2−c2 and u2+c2 where the eigenvalue u1

is fourfold. Its is consequently a hyperbolic degenerate system and the wave speeds of Marble’s160

model (1963) [17] are recovered.

Compared to Marble’s model (3.1), the dense-dilute one has two fundamental differences.

The volume of the dispersed phase is considered and non-conservative terms are present in the

momentum and energy equations. These non-conservative terms are often called “nozzeling

terms” in reference to the Euler equations with variable cross section. We prefer however to165

interpret them as “differential drag force” as mentioned earlier.

The dense-dilute model of Saurel et al. (2017) [14] fills the gap between Marble’s and Baer

and Nunziato’s models. It is a weakly hyperbolic system where sound propagates only in the

carrier phase while being valid in the whole range of volume fraction. Is is also thermodynamic

consistent as the entropy production is non-negative in the same stiff pressure relaxation limit,170

∂ (α1ρ1s1 + α2ρ2s2)

∂t
+ div (α1ρ1s1u1 + α2ρ2s2u2) = λ

(u1 − u2)
2

T2

. (4.2)

Compared to the BN-type model, the present one has three major differences:

– As already mentioned, sound propagation in the dispersed phase is absent;
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– Density variations of the dispersed phase come from pressure relaxation only and not from

velocity divergence. In other words, when two particles move away or get closer, their

density remains constant along their trajectories, while it varies in the BN-type model.175

As the particles are dispersed, there is no reason for their density to vary. This is just a

consequence of the combination of the volume fraction and mass balance equations of the

dispersed phase (Saurel et al. (2017) [14]).

– At the end of the pressure relaxation process, mandatory with the present model, the

solution is projected onto a hyperbolic surface. With the BN-type model, it is projected180

onto a conditionally hyperbolic surface, as for all models based on conventional balance

equations and pressure equilibrium condition among the phases (see for example Ghidaglia

et al. (2001) [22]).

Recently the authors developed in Carmouze et al. (2019) [13] a simple and accurate Riemann

solver with internal reconstruction (RSIR) for this specific model. Thanks to the RSIR solver185

and as a consequence of better acoustic properties of the dilute phase, this model is able to

reproduce, at least qualitatively, finger-like instabilities reminiscent of particle jetting during

radial explosion.

We believe that the formation mechanism of this fingering instability is closely related to

the non-conservative terms of the present dense-dilute model (System (4.1)). They play the role190

of a “differential drag force”, acting intensively at cloud boundaries and vanishing in the wake,

when volume fraction gradients disappear.

Despite the contribution of viscous drag effects for flow involving clouds of drops, bubbles, or

granular beds, we believe that viscous drag effects are not at the origin of finger-like instabilities.

This observation is investigated deeper in the present paper. Comparisons of System (2.1)195

(variant of Baer and Nunziato’s (1986) [16] model), System (3.1) (Marble’s (1963) [17] model)

and System (4.1) (dense-dilute model of Saurel et al. (2017) [14]) are provided. Only the dense-

dilute model seems to be able to reproduce such finger-like instabilities with or without viscous

drag effects. Their modeling is addressed hereafter.
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5. Viscous drag effects200

The viscous drag parameter λ present in Systems (2.1), (3.1) and (4.1) controls the rate at

which velocity equilibrium is reached. The λ (u2 − u1) term represents the viscous drag force

and λu′
I . (u2 − u1) the power of this force (per unit volume).

Let us denote this force as np Fg→p where np represents the specific the number of particles.

For the sake of simplicity the particles are considered spherical in this work and viscous drag205

effects are treated via the following relation due to Stokes,

Fg→p = 6π µ2R1 (u2 − u1) , (5.1)

where R1 is the radius of the particles considered constant in this work and µ2 the kinematic

viscosity of the gas phase.

Let us now denote the particle Reynolds number as,

Rep =
2R1ρ2|u1 − u2|

µ2

. (5.2)

It is important to note that such viscous drag representation is only valid for low Reynolds210

numbers. In such conditions the viscous drag coefficient reads Cd =
24

Rep
.

With the help of the previous relations, the viscous drag force can be written concisely as,

Fg→p = CdR
2
1 π ρ2 (u2 − u1) . (5.3)

In order to extend the present viscous drag law to higher Reynolds numbers, the viscous drag

coefficient is reconsidered to account for turbulent effects following Naumann and Schiller (1935)

[23],215

Cd =











24

Rep

(

1 + 0.15Re0.687p

)

if Rep < 800,

0.438 otherwise.

(5.4)

As the particles are considered spherical with a constant radius R1, the number of particles reads
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np =
α1

4

3
π R3

1

, and the total viscous drag force in a control volume becomes,

npFg→p =
3

8R1

α1Cdρ2|u1 − u2| (u2 − u1) , (5.5)

that is to say,

np Fg→p = λ (u2 − u1) with λ =
3

8R1

α1Cdρ2|u1 − u2|. (5.6)

To express the power of the viscous drag force, expression of the interfacial velocity is required.

Following Saurel et al. (2003) [15] the interfacial velocity is determined as u′
I = Z1u1+Z2u2

Z1+Z2

for220

System (2.1) evolving in total disequilibrium. Systems (3.1) and (4.1), corresponding to Marble’s

and dense-dilute models, use directly u′
I = u1 as interfacial velocity. This assumption in indeed

admissible and yields thermodynamic consistency (see Saurel et al. (2017) [14]). In the present

context, as Z1 ≫ Z2, there is no significant difference between the two models for u′
I .

6. Particle jetting during radial explosion225

In the present paper, computations are based on the flow models (2.1), (3.1) and (4.1)

extended to 2D and resolved numerically in the DALPHADT c© code on unstructured triangular

cells. A Godunov-type method including non-conservative terms is used and extended to second

order with the MUSCL-type method presented in Chiapolino et al. (2017) [24].

The BN-type model (2.1) is solved with the help of the HLLC-type solver of Furfaro and230

Saurel (2015) [25]. Marble’s model (3.1) is solved with the Riemann solver of Saurel et al. (1994)

[26]. The dense-dilute model (4.1) is solved via the RSIR solver developed in Carmouze et al.

(2019) [13].

In the following a configuration like the one considered in Rodriguez et al. (2013) [7] with a

Hele-Shaw cell and a particle ring is studied. This configuration has been studied in Carmouze235

et al. (2019) [13] as well. The initial conditions are schematically depicted in Fig. 3. The initial

data are reported in Table 1. The Stiffened-Gas EOS, pk = (γk − 1) ρkek−γkp∞,k, is used for the

sake of simplicity [27], [28], [29]. Liquid water with EOS parameters γ1 = 4.4 and p∞,1 = 6.108

Pa is used as dilute phase and air is used as carrier phase with γ2 = 1.4.
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Figure 3: Schematic representation of the computational domain of the particle jetting test. The portion rep-
resents 1/16 of a complete disc with angle θ = π/8. The domain denoted A corresponds to the high-pressure
chamber, filled with gas. The domain denoted B represents the initial particle ring. It is located at x = 0.5 m
and is 4-cm wide. The domain C corresponds to the low-pressure chamber at atmospheric conditions. The use
of triangular cells enables clear definition of the particle ring. No mixed cell is present initially, meaning that no
initial wavelength or perturbation is introduced (see Carmouze et al. (2019) [13]). Initial data are reported in
Table 1.

Domain A B C

α1 0.0001 0.4 0.0001
ρ1 (kg.m−3) 1050 1050 1050
ρ2 (kg.m−3) 12 1.2 1.2

u1 = u2 (m.s−1) 0 0 0
p1 = p2 (Pa) 107 105 105

Table 1: Initial data of the particle jetting test schematically depicted in Fig. 3.

Stiff pressure relaxation is used (Lallemand and Saurel (2000) [30]) for System (2.1) and240

System (4.1). The diameter of the particles is constant and set to D1 = 1 mm. The gas viscosity

is µ2 = 18.10−6 Pa.s.

6.1. BN-type model with viscous drag effects

First, the BN-type (2.1) model is used. The corresponding results are shown at different

times in Fig. 4 as volume fraction contours.245
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Figure 4: Volume fraction contours of the dispersed phase for the particle jetting simulation with the BN-type
model (2.1). Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with
the HLLC solver of Furfaro and Saurel (2015) [25] embedded in the MUSCL-type scheme [24] with Sweby’s
limiter and Φ = 1.5 (Eq. 3.17 of [31]). Results are shown at times t = 1.5 ms, t = 3 ms, t = 3.75 ms and t = 4.1
ms. The mesh is made of 723, 152 triangular elements. The CFL number is 0.5.

Cellular structures appear in Fig. 4 but they do not correspond qualitatively to the experi-

mental observations reported in Fig. 2. In particular, inner and outer fingers seem absent.

6.2. Dilute model with viscous drag effects

Marble’s model (3.1) is now considered. Results with the same mesh and at the same times

as previously are provided in Fig. 5. The same viscous drag force with the same parameters is250

used in both computations. Note that the same initial conditions as before are used (Table 1).

As initially α1 = 0.4 within the particle ring, Marble’s model (3.1) is used outside its range of

validity (α1 < 0.01).

However α1 = 0.4 is in agreement with the experimental initial conditions of Rodriguez et

al. (2013) [7]. As only qualitative results are aimed in the present paper, this set of initial255

conditions is not problematic. The aim of the present computation is to show the effect of

viscous drag force only, compared to the previous computation (Fig. 4) where both viscous drag

and non-conservative terms are present.
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Figure 5: Volume fraction contours of the dispersed phase for the particle jetting simulation with Marble’s model
(3.1). Viscous drag effects are present. Results are obtained with the Riemann solver of Saurel et al. (1994)
[26] embedded in the MUSCL-type scheme [24] with Sweby’s limiter and Φ = 1.5 (Eq. 3.17 of [31]). Results are
shown at times t = 1.5 ms, t = 3 ms, t = 3.75 ms and t = 4.1 ms. The mesh is made of 723, 152 triangular
elements. The CFL number is 0.5.

Computed results of Fig. 5 show that inner and outer jet instabilities are absent in the

present computation. When the test is continued on larger scales in both time and space, no260

instability appear.

These results show that:

– Marble’s model is inappropriate to address finger-type instabilities;

– Viscous drag force effects are not responsible for their appearance.

6.3. Dense-dilute model with viscous drag effects265

The dense-dilute model (4.1) is now considered. Results with the same mesh and at the same

times as previously are provided in Fig. 6.
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Figure 6: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-dilute
model (4.1). Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with
the RSIR solver of Carmouze et al. (2019) [13] embedded in the MUSCL-type scheme [24] with Sweby’s limiter
and Φ = 1.5 (Eq. 3.17 of [31]). Results are shown at times t = 1.5 ms, t = 3 ms, t = 3.75 ms and t = 4.1 ms.
The mesh is made of 723, 152 triangular elements. The CFL number is 0.5.

Clear finger-like instabilities are produced at the inner and outer cloud boundaries, at least

qualitatively. Let us now investigate the early stages of the instability formation. Related

computed results are shown in Fig 7.270
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Figure 7: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-dilute
model (4.1) focused on the particle cloud at early times: a) t = 0.6 ms, b) t = 0.84 ms, c) t = 1 ms and d)
t = 1.3 ms. In the present figure, the scale is adapted for each result for the sake of clarity. Viscous drag effects
are present. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et
al. (2019) [13] embedded in the MUSCL-type scheme [24] with Sweby’s limiter and Φ = 1.5 (Eq. 3.17 of [31]).
The mesh is made of 723, 152 triangular elements. The CFL number is 0.5. A compaction zone appears first in
the cloud in the darkest zone. Particle jets develop at the inner interface and direct to the domain center. Their
growth is visible by comparing their length in graphs (a) and (b). They qualitatively look like the instabilities
observed in Fig. 2 (a) and (b). Another front appears at the outer surface but appears more like a diffusion zone
rather than the short wavelength instabilities visible in Fig. 2 (b). Eventually the two fronts merge in graph (c)
and the resulting front at the outer boundary starts to destabilize in graph (d).

a) b)

c) d)

In Fig. 7 internal jets appear and develop to the center domain direction. A compaction zone

appears in the cloud and a detached front with low particle concentration also appears ahead

of the compaction front. Noticeably, the compaction front in the darkest zone catches up the

detached front and starts to destabilize. Evolution at intermediate times is reported in Fig. 8.
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Figure 8: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-dilute
model (4.1) focused on the particle cloud at intermediate times: t = 1.5 ms and t = 2.25 ms. In the present
figure, the scale is adapted for each result for the sake of clarity. Viscous drag effects are present. Stiff pressure
relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019) [13] embedded in
the MUSCL-type scheme [24] with Sweby’s limiter and Φ = 1.5 (Eq. 3.17 of [31]). The mesh is made of 723, 152
triangular elements. The CFL number is 0.5. The compaction front and the detached one are now merged and
destabilize. Particle concentration zones having cluster type shapes appear in the graph on the right (t = 2.25
ms). Inner jets are still present and keep on developing.

In Fig. 8 the external front destabilizes, and relatively dense particle clusters appear. The275

inner front jets flowing to the domain center continue their development. Evolution at later

times is reported in Fig. 9.
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Figure 9: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-dilute
model (4.1). Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with
the RSIR solver of Carmouze et al. (2019) [13] embedded in the MUSCL-type scheme [24] with Sweby’s limiter
and Φ = 1.5 (Eq. 3.17 of [31]). Results are shown at times t = 3.0 ms, t = 3.75 ms, t = 4.5 ms and t = 4.8
ms. The mesh is made of 723, 152 triangular elements. The CFL number is 0.5. External front instabilities are
now created and develop. Dilution of the internal jets happens while external jets develop as a consequence of
particle “dense” zones created at intermediate times. External jets’ amplitude grows as seen by comparing the
different results.

In Fig. 9 external front instabilities are created and develop while internal ones tend to

vanish. Although not precisely identified from the present numerical experiments, the formation

mechanism of this fingering instability appears closely related to the non-conservative terms.280

They play the role of a “differential drag force”, acting intensively at cloud boundaries and

vanishing in the wake, when volume fraction gradients disappear.

At the modeling level, non-conservative terms present similarities with capillary ones (Brack-

bill et al. (1992) [32], Perigaud and Saurel (2005) [33]) except that curvature effects are absent

in the present two-phase formulation. Another major difference is that cloud boundaries are285

obviously highly permeable in the present context, while interfaces are not permeable in conven-

tional hydrodynamic instabilities, except those considering flames and phase transition, where

low permeability is present compared to the present configuration.

In the following, we address spatial resolution effects. It appears that the number of created
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fingers is mesh independent. Indeed, as shown in Fig. 10, the same number of fingers is created290

with four different meshes.

Figure 10: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-
dilute model (4.1). Study of mesh resolution effects. Viscous drag effects are present. Stiff pressure relaxation is
considered. Results are obtained with the RSIR solver of Carmouze et al. (2019) [13] embedded in the MUSCL-
type scheme [24] with Sweby’s limiter and Φ = 1.5 (Eq. 3.17 of [31]). Results are shown at t = 4.8 ms with four
different meshes, 240, 672 cells, 361, 222 cells, 539, 354 cells and 723, 152 cells. The CFL number is 0.5.

Obviously, mesh resolution influences jets’ shape and length, as numerical diffusion is present.

However, it does not change the number of jets and their qualitative shape, meaning that this

instability is “robust” and that the flow model and present numerical method seem appropriate

for their study.295

6.4. Dense-dilute model without viscous drag effects

In order to isolate the contribution of the non-conservative terms, the previous test is rerun

with the dense-dilute model (4.1) and in the absence of viscous drag effects (λ = 0). Stiff pressure

relaxation remains active nonetheless.

Computed results are shown at various times in Fig. 11. Those show that finger-like insta-300

bilities are produced without considering viscous drag effects.
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Figure 11: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-
dilute model (4.1). Viscous drag effects are absent. Stiff pressure relaxation is considered. Results are obtained
with the RSIR solver of Carmouze et al. (2019) [13] embedded in the MUSCL-type scheme [24] with Sweby’s
limiter and Φ = 1.5 (Eq. 3.17 of [31]). Results are shown at times t = 1.5 ms, t = 3 ms, t = 3.75 ms and t = 4.1
ms. The mesh is made of 723, 152 triangular elements. The CFL number is 0.5.

Finger-like instabilities appear despite the absence of viscous drag effects. Viscous drag

effects have contribution nonetheless as seen by comparing Fig. 6 (with viscous drag effects)

and Fig. 11 (without viscous drag effects). However, according to the present results, the origin

of finger-like instabilities does not depend upon viscous drag effects.305

This observation is mesh independent as shown in Fig. 12 where four different meshes are

used, always yielding the same conclusion.
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Figure 12: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-
dilute model (4.1). Study of mesh resolution effects. Viscous drag effects are absent. Stiff pressure relaxation is
considered. Results are obtained with the RSIR solver of Carmouze et al. (2019) [13] embedded in the MUSCL-
type scheme [24] with Sweby’s limiter and Φ = 1.5 (Eq. 3.17 of [31]). Results are shown at t = 4.1 ms with four
different meshes, 240, 672 cells, 361, 222 cells, 539, 354 cells and 723, 152 cells. The CFL number is 0.5.

Same type of computations is now addressed in plane geometry, to remove radial flow diver-

gence effects.

6.5. Dense-dilute model with viscous drag effects on a plane geometry310

The same particle cloud as before is considered in a plane configuration. The dimensions

are similar to the ones of the previous test. The domain is 2.5-m long and 0.478-m wide. The

particle bed is located at x = 0.5 m and is 4-cm wide.

Instabilities appear at the inner and outer boundaries but their qualitative shape is signifi-

cantly different. Finger-like jets are absent and are more replaced by mixing zones. Computed315

results are shown in Fig. 13.
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Figure 13: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-
dilute model (4.1) on a plane geometry. Viscous drag effects are present. Stiff pressure relaxation is considered.
Results are obtained with the RSIR solver of Carmouze et al. (2019) [13] embedded in the MUSCL-type scheme
[24] with Sweby’s limiter and Φ = 1.5 (Eq. 3.17 of [31]). Results are shown at times t = 0.75 ms, t = 1.5 ms,
t = 2.25 ms and t = 3 ms. The mesh is made of 352.262 triangular elements. The CFL number is 0.5. The
domain is 2.5-m long and 0.478-m wide. The particle bed is located at x = 0.5 m and is 4-cm wide.

It therefore appears that radial divergence effects are important in the appearance of this

instability.

7. Conclusion

Various hyperbolic two-phase flow models have been tested for the computation of particle320

finger-like instabilities. Three main conclusions emerge from the present analysis:

– The only flow model able to predict qualitatively these instabilities is the dense-dilute

two-phase model of Saurel et al. (2017) [14];

– Formation of this instability is not related to viscous drag effects but more to “differential

drag” modeled through non-conservative terms in the momentum and energy equations;325

– The instability requires radial flow divergence, present in cylindrical and spherical explo-

sions, but absent in plane configurations.
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The instability formation mechanism is still unidentified, but the flow model as well as precise

effects (differential drag) are now identified for deeper investigations.
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