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 model and the dense-dilute model of Saurel et al. (2017). The first and third ones involve both non-conservative terms and viscous drag effects while the second one involves viscous drag only as interaction force. Computed results show that viscous drag alone is unable to reproduce finger-like instabilities. The BN model and the dense-dilute one differ significantly by their acoustic properties. It is shown that the only model able to reproduce qualitatively finger-like jets is the dense-dilute model. Mesh dependence of the results is studied as well as presence or absence of viscous drag. It appears that the non-conservative terms seem responsible for jetting effects.

Introduction

When a spherical or cylindrical explosive charge is surrounded by a liquid layer or a granular particle bed, material dispersal occurs through particle jets having a well-defined size. On the example shown in Fig. 1, a cylindrical explosive charge is initially surrounded by a liquid layer.

Figure 1: A cylindrical explosive charge is initially surrounded by a liquid layer. When the charge explodes the liquid layer transforms to a cloud of droplets forming highly dynamical particle jets. Same jetting effects appear when the liquid is replaced by a granular layer. These jets are present in cylindrical and spherical dispersal explosions.

Gas expansion during explosion fragments the liquid layer to a cloud of droplets that form highly dynamical particle jets. The same observation is reported when a granular bed is used instead of a liquid layer. Dispersion is consequently clearly multidimensional in the sense that one-dimensional computations result in significant errors in predicting presence of materials.

Experimental and numerical studies of this phenomenon have been carried out by [START_REF] Zhang | Explosive dispersal of solid particles[END_REF] [START_REF] Zhang | Explosive dispersal of solid particles[END_REF], [START_REF] Milne | Dynamic fragmentation of blast mitigants[END_REF] [START_REF] Milne | Dynamic fragmentation of blast mitigants[END_REF], [START_REF] Frost | Jet formation during explosive particle dispersal, Proceedings of the 21st Military Aspects of Blast and Shock[END_REF] [START_REF] Frost | Jet formation during explosive particle dispersal, Proceedings of the 21st Military Aspects of Blast and Shock[END_REF], [START_REF] Parrish | Dynamic jet formation from mitigation materials[END_REF] [START_REF] Parrish | Dynamic jet formation from mitigation materials[END_REF], [START_REF] Osnes | Numerical investigation of shock wave particle cloud interaction in cylindrical geometries[END_REF] [START_REF] Osnes | Numerical investigation of shock wave particle cloud interaction in cylindrical geometries[END_REF], [START_REF] Utkin | Numerical simulation of shock wave-dense particles cloud interaction using Godunov solver for Baer-Nunziato equations[END_REF] [START_REF] Utkin | Numerical simulation of shock wave-dense particles cloud interaction using Godunov solver for Baer-Nunziato equations[END_REF] to cite a few. Simplified situations have been considered in [START_REF] Rodriguez | Solid-particle jet formation under shockwave acceleration[END_REF] [START_REF] Rodriguez | Solid-particle jet formation under shockwave acceleration[END_REF] and [START_REF] Xue | Dual hierarchical particle jetting of a particle ring undergoing radial explosion[END_REF] [START_REF] Xue | Dual hierarchical particle jetting of a particle ring undergoing radial explosion[END_REF]. The explosive is replaced by a shock tube and the matter to disperse is placed between two plates, in a Hele-Shaw cell. Other simplified situations have been considered for example in [START_REF] Mcgrath | Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes[END_REF] [START_REF] Mcgrath | Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes[END_REF], [START_REF] Osnes | Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell[END_REF] [10], [START_REF] Carmouze | Coupling rigid bodies motion with single phase and two-phase compressible flows and unstructured meshes[END_REF] [START_REF] Carmouze | Coupling rigid bodies motion with single phase and two-phase compressible flows and unstructured meshes[END_REF] to study possible clustering effects due to aerodynamic forces.

It seems that the formation of jets and the size selection mechanism are still unidentified.

In the present paper, a configuration like the one considered in [START_REF] Rodriguez | Solid-particle jet formation under shockwave acceleration[END_REF] [START_REF] Rodriguez | Solid-particle jet formation under shockwave acceleration[END_REF] with a Hele-Shaw cell and a particle ring is studied. Such Hele-Shaw cell configuration allows to omit the 3D characteristic of the flow. The simulations of the present paper are indeed 2D allowing for easier analyses. [START_REF] Zeldovich | Gravitational instability: An approximate theory for large density perturbations[END_REF] Typical results reported in Rodriguez's thesis [START_REF] Rodriguez | Etude de la formation de jets issus de la dispersion d'un anneau de particules solides par onde de choc[END_REF] are shown in Fig. 2 at times 5 ms, 8 ms and 57 ms after rupture of the shock tube diaphragm, inducing shock wave and gas flow through a ring of flour particles. This configuration has been studied in Carmouze et al. (2019) [START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] as well.

Figure 2: Typical interfacial instabilities reported in Rodriguez's thesis [START_REF] Rodriguez | Etude de la formation de jets issus de la dispersion d'un anneau de particules solides par onde de choc[END_REF] and papers [START_REF] Rodriguez | Solid-particle jet formation under shockwave acceleration[END_REF], as well as in [START_REF] Xue | Dual hierarchical particle jetting of a particle ring undergoing radial explosion[END_REF] [START_REF] Xue | Dual hierarchical particle jetting of a particle ring undergoing radial explosion[END_REF]. Impulsive motion of a particle ring by a gas flow induces well defined particle fingers flowing to the center direction, oppositely to the gas flow. At later times, here at 8 ms, short wavelength instabilities also appear at the external surface. As time evolves, external surface instabilities grow and become dominant, as shown in the third picture at time 57 ms. Internal jets are thus observed at early times, followed by external ones at late times.

As reported by [START_REF] Rodriguez | Solid-particle jet formation under shockwave acceleration[END_REF] [START_REF] Rodriguez | Solid-particle jet formation under shockwave acceleration[END_REF] and [START_REF] Xue | Dual hierarchical particle jetting of a particle ring undergoing radial explosion[END_REF] [START_REF] Xue | Dual hierarchical particle jetting of a particle ring undergoing radial explosion[END_REF], instabilities appear first at the inner interface and second at the outer one. Shape of these fingers is singular, in the sense that they do not qualitatively compare to Richtmyer-Meshkov instabilities or Rayleigh-Taylor ones, nor any other known instability. Indeed, mushroom type shape is observed with these two instabilities, while fingers are observed in the present context.

In the present paper, the origin of such finger-like instabilities is investigated with the help of numerical experiments. To the authors' knowledge, such instabilities have been successfully computed for the first time in Carmouze et al. (2019) [START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] with the help of the dense-dilute model of [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF].

In the present contribution, deeper investigation of the instability formation mechanism is achieved. Computed results are reported with the help of the three existing two-phase hyperbolic models. The first one is the non-equilibrium model of [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF], a variant of Baer and Nunziato's (BN) model ( 1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF]. The second one is the dilute model of Marble (1963) [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF]. The third one is the dense-dilute flow of [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF].

Comparing the computed results with these three different models is important to identify the effect responsible for the appearance of these particle jets. Indeed, with Marble's model (1963) [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] the only interaction effect is related to the viscous drag force. With the BN-type model [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] and the dense-dilute model [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] two types of interactions are present. The conventional (viscous) drag force, as in Marble's model, and a "differential drag force" due to the presence of non-conservative terms in the momentum and energy equations. As will be shown, differential drag appears as leading effect in the selection process of theses jets. It is also shown that the BN-type model fails in the qualitative prediction of these particle jets, while the dense-dilute one predicts both inner and outer jets visible in the experiments reported in Fig. 2. This paper is organized as follows. In Section 2 the BN-type model [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] and its properties are presented followed by Marble's model [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] and the dense-dilute model [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] in Sections 3 and 4 respectively. Viscous drag interaction effects are introduced in Section 5 and computed results are provided in Section 6. Conclusions are given in Section 7.

BN-type flow model

The total disequilibrium two-phase flow model was originally proposed by [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF]. The balance equations for phases 1 and 2 are,

                                             ∂α 1 ∂t + u I . grad (α 1 ) = µ(p 1 -p 2 ), ∂ (α 1 ρ 1 ) ∂t + div (α 1 ρ 1 u 1 ) = 0, ∂ (α 1 ρ 1 u 1 ) ∂t + div α 1 ρ 1 u 1 ⊗ u 1 + p 1 I = p I . grad (α 1 ) + λ (u 2 -u 1 ) , ∂ (α 1 ρ 1 E 1 ) ∂t + div (α 1 (ρ 1 E 1 + p 1 ) u 1 ) = p I u I . grad (α 1 ) -µp ′ I (p 1 -p 2 ) + λu ′ I . (u 2 -u 1 ) , ∂ (α 2 ρ 2 ) ∂t + div (α 2 ρ 2 u 2 ) = 0, ∂ (α 2 ρ 2 u 2 ) ∂t + div α 2 ρ 2 u 2 ⊗ u 2 + p 2 I = p I . grad (α 2 ) -λ (u 2 -u 1 ) , ∂ (α 2 ρ 2 E 2 ) ∂t + div (α 2 (ρ 2 E 2 + p 2 ) u 2 ) = p I u I . grad (α 2 ) + µp ′ I (p 1 -p 2 ) -λu ′ I . (u 2 -u 1 ) . (2.1) 
The notations are conventional in the two-phase flow literature. More general and symmetric estimates have been proposed by [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF],

       u I = u ′ I + sgn (grad (α 1 )) p 2 -p 1 Z 1 + Z 2 , with u ′ I = Z 1 u 1 + Z 2 u 2 Z 1 + Z 2 , p I = p ′ I + sgn (grad (α 1 )) . (u 2 -u 1 ) Z 1 Z 2 Z 1 + Z 2 with p ′ I = Z 1 p 2 + Z 2 p 1 Z 1 + Z 2 , (2.2) 
where Z k = ρ k c k is the acoustic impedance and c k is the speed of sound of fluid k. This latter is provided by a convex equation of state for each phase. The analysis which has led to these estimates is based upon a homogenization method developed by [START_REF] Abgrall | Discrete equations for physical and numerical compressible multiphase mixtures[END_REF] [START_REF] Abgrall | Discrete equations for physical and numerical compressible multiphase mixtures[END_REF]. 

Equations
A I = 3α 1 R 1 .
The volume variations of the phases are then directly proportional to the pressure difference between the phases and the speed at which the equilibrium is reached is controlled by the µ coefficient. This latter depends only upon the acoustic impedance of the phases and upon the interfacial area.

The second and fifth equations of System (2.1) express the conservation of mass of the corresponding phase while the third and sixth equations are related to their momentum balance.

Those relations are non-conservative. The velocity relaxation terms on the right-hand side of the momentum equations read ±λ (u 2u 1 ), where λ is the product of the specific interfacial area with the drag coefficient.

The non-conservative term p I . grad (α k ) represents the pressure force acting at the particle cloud boundaries with p I denoting the interfacial pressure given by Eq. (2.2). This nonconservative term represents a "differential frag force" as its amplitude is high in zones of high volume gradients and vanish when the volume fraction is uniform. It will be shown that this term is of main importance in the jet formation process.

Finally, the fourth and seventh equations of System (2.1) express the energy balance of phase k. Those latter ones are non-conservative as well due to the presence of the term p I u I . grad (α k ) and the relaxation terms on the right-hand side. System (2.1) is hyperbolic with wave speeds u I , u k and u k ± c k . There is one additional wave in comparison with the original Baer and Nunziato's model (1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] because of the interfacial velocity given by Eq. (2.2). System (2.1) is closed by a convex equation of state (EOS) for each phase. Moreover, each phase admits the following entropy equation,

∂ (α k ρ k s k ) ∂t + div (α k ρ k s k u k ) = 1 T k (Z k + Z l ) × Z k (Z k + Z l ) -1 (p l -p k ) + sgn grad (α k ) . (u l -u k ) Z l 2 |grad (α k ) | + µZ l (p l -p k ) 2 + λZ k (u l -u k ) . (u l -u k ) , (2.3) 
where s k and T k denote respectively the specific entropy and temperature of phase k. Index l denotes the conjugate phase to k, i.e. k = 1 implies l = 2 and vice versa. Analyzing the right-hand side of Eq. ( 2.3), it appears the second law of thermodynamic is satisfied for all phase k. Thereby, the mixture entropy defined as s = 2 k=1 (α k ρ k s k ) agrees with the second law as well.

Consequently the model is strictly hyperbolic, thermodynamically consistent and symmetric.

Its is able to deal with contact and permeable interfaces, [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF][START_REF] Saurel | Symmetric model of compressible granular mixtures with permeable interfaces[END_REF] [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF], [START_REF] Saurel | Symmetric model of compressible granular mixtures with permeable interfaces[END_REF].

Its extension to more than two phases is quite easy. However, the wave speeds are independent of the volume fraction, meaning that in the dilute limit the sound speed in the condensed phase is unchanged, this behavior being questionable as this phase is no longer continuous. This remark is the main motivation of the dense-dilute model of [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] where the condensed phase, when dispersed, does not propagate sound.

In this direction an alternative formulation of the volume fraction equation is derived in the same reference, with the aim of improving the acoustic properties of Baer and Nunziato's model (1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF]. The model of [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] is particularly attractive when one of the phases is dispersed and unable to support sound propagation (i.e. in dispersed liquid suspensions). Indeed, for liquid drops suspended in a gas or gas bubbles suspended in a liquid, the volume fraction of the dispersed phase α 1 in System (2.1) (first equation) is replaced by,

∂α 1 ∂t + div (α 1 u 1 ) = µ(p 1 -p 2 ) with µ → +∞. (2.4)
The model of Saurel et al. ( 2017) [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] is presented in Section 4. First let us recall the model of [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF].

Dilute flow model

When the concentration of particles reaches the lower limit, the model of [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] is preferred over the BN model,

                                     ∂ ρ1 ∂t + div (ρ 1 u 1 ) = 0, ∂ (ρ 1 u 1 ) ∂t + div (ρ 1 u 1 ⊗ u 1 ) = λ (u 2 -u 1 ) , ∂ (ρ 1 E 1 ) ∂t + div (ρ 1 E 1 u 1 ) = λu ′ I . (u 2 -u 1 ) , ∂ρ 2 ∂t + div (ρ 2 u 2 ) = 0, ∂ (ρ 2 u 2 ) ∂t + div ρ 2 u 2 ⊗ u 2 + p 2 I = -λ (u 2 -u 1 ) , ∂ (ρ 2 E 2 ) ∂t + div ((ρ 2 E 2 + p 2 ) u 2 ) = -λu ′ I . (u 2 -u 1 ) . (3.1) 
System (3.1) corresponds to the Euler equations with source terms for the carrier phase (indexed 2) and pressureless gas dynamic equations for the dispersed phase (indexed 1), see also [START_REF] Zeldovich | Gravitational instability: An approximate theory for large density perturbations[END_REF] [START_REF] Zeldovich | Gravitational instability: An approximate theory for large density perturbations[END_REF]. The two phases are only linked through the λ (u 2u 1 ) term that represents viscous drag effects.

The notations remain the same as before. In addition, the apparent density of the dispersed phase is introduced as ρ1 = α 1 ρ 1 . ρ 1 is the density of the particles that are considered incompressible. ρ 1 remains consequently constant in System (3.1).

This flow model is valid only for dilute suspensions (α 1 < 0.01) as volume fraction effects are omitted in the equations of the carrier phase and non-conservative terms are neglected.

System (3.1) admits the following mixture entropy equation,

∂ ρ1 s 1 + ρ 2 s 2 ∂t + div (ρ 1 s 1 u 1 + ρ 2 s 2 u 2 ) = λ (u 1 -u 2 ) 2 T 2 . (3.2)
This model is consequently thermodynamically consistent. Moreover, the associated wave speeds are u 1 , u 2 , u 2 -c 2 and u 2 + c 2 where the eigenvalue u 1 is fourfold. The equations of the dilute phase are then hyperbolic linearly degenerate, while the ones of the carrier phase are strictly hyperbolic.

In this model, contrarily to the BN-type model (2.1), sound does not propagate in the particle phase, this behavior being more physical in the lower dilute limit. However, Marble's model (3.1) has a limited range of validity as the volume of the dispersed phase is neglected, this assumption having sense only for low volume fractions (less than 1%) of the condensed phase.

Dense-dilute flow model

Recently, the gap between the BN-type (2.1) and Marble's (3.1) models has been filled (Saurel et al. ( 2017) [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF]). Modifications of the volume fraction equation of Baer and Nunziato's model (1986) [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] in conjunction with stiff pressure relaxation resulted in a flow model where sound propagates only in the carrier phase, this behavior being more physical in the dilute limit. The corresponding dense-dilute two-phase model reads,

                                             ∂α 1 ∂t + div (α 1 u 1 ) = µ(p 1 -p 2 ) with µ → +∞, ∂ (α 1 ρ 1 ) ∂t + div (α 1 ρ 1 u 1 ) = 0, ∂ (α 1 ρ 1 u 1 ) ∂t + div α 1 ρ 1 u 1 ⊗ u 1 + p 1 I = p 1 . grad (α 1 ) + λ (u 2 -u 1 ) , ∂ (α 1 ρ 1 E 1 ) ∂t + div (α 1 (ρ 1 E 1 + p 1 ) u 1 ) = p 1 div (α 1 u 1 ) -µp 1 (p 1 -p 2 ) + λu ′ I . (u 2 -u 1 ) , ∂ (α 2 ρ 2 ) ∂t + div (α 2 ρ 2 u 2 ) = 0, ∂ (α 2 ρ 2 u 2 ) ∂t + div α 2 ρ 2 u 2 ⊗ u 2 + p 2 I = p 1 . grad (α 2 ) -λ (u 2 -u 1 ) , ∂ (α 2 ρ 2 E 2 ) ∂t + div (α 2 (ρ 2 E 2 + p 2 ) u 2 ) = -p 1 div (α 1 u 1 ) + µp 1 (p 1 -p 2 ) -λu ′ I . (u 2 -u 1 ) , (4.1) 
where u ′ I = u 1 . This assumption in indeed admissible and yields thermodynamic consistency (see [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF]).

The notations and mixture quantities are the same as before. Let us recall that phase 1 is considered as the dilute phase. System (4.1) evolves in pressure, velocity and temperature disequilibria. The asymptotic analysis provided in [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] shows that System (4.1) recovers the mechanical-equilibrium two-phase flow model of [START_REF] Kapila | Two-phase modeling of deflagrationto-detonation transition in granular materials: Reduced equations[END_REF] [START_REF] Kapila | Two-phase modeling of deflagrationto-detonation transition in granular materials: Reduced equations[END_REF] when both stiff pressure and velocity relaxation processes are considered (µ, λ → +∞).

In the present context µ → +∞, meaning that instantaneous pressure relaxation is considered. Precise knowledge of µ is consequently of minor importance. As shown in Saurel et al.

(2017) [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF], this stiff pressure relaxation is necessary to ensure thermodynamic consistency of the present model. However, velocity relaxation may be considered at finite or instantaneous rates.

System (4.1) is hyperbolic with wave speeds u 1 , u 2 , u 2 -c 2 and u 2 +c 2 where the eigenvalue u 1 is fourfold. Its is consequently a hyperbolic degenerate system and the wave speeds of Marble's model (1963) [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] are recovered.

Compared to Marble's model (3.1), the dense-dilute one has two fundamental differences.

The volume of the dispersed phase is considered and non-conservative terms are present in the momentum and energy equations. These non-conservative terms are often called "nozzeling terms" in reference to the Euler equations with variable cross section. We prefer however to interpret them as "differential drag force" as mentioned earlier.

The dense-dilute model of [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] fills the gap between Marble's and Baer and Nunziato's models. It is a weakly hyperbolic system where sound propagates only in the carrier phase while being valid in the whole range of volume fraction. Is is also thermodynamic consistent as the entropy production is non-negative in the same stiff pressure relaxation limit,

∂ (α 1 ρ 1 s 1 + α 2 ρ 2 s 2 ) ∂t + div (α 1 ρ 1 s 1 u 1 + α 2 ρ 2 s 2 u 2 ) = λ (u 1 -u 2 ) 2 T 2 . (4.2)
Compared to the BN-type model, the present one has three major differences:

-As already mentioned, sound propagation in the dispersed phase is absent;

-Density variations of the dispersed phase come from pressure relaxation only and not from velocity divergence. In other words, when two particles move away or get closer, their density remains constant along their trajectories, while it varies in the BN-type model.

As the particles are dispersed, there is no reason for their density to vary. This is just a consequence of the combination of the volume fraction and mass balance equations of the dispersed phase (Saurel et al. (2017) [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF]).

-At the end of the pressure relaxation process, mandatory with the present model, the solution is projected onto a hyperbolic surface. With the BN-type model, it is projected onto a conditionally hyperbolic surface, as for all models based on conventional balance equations and pressure equilibrium condition among the phases (see for example Ghidaglia et al. ( 2001) [START_REF] Ghidaglia | On the numerical solution to two fluid models via a cell centered finite volume method[END_REF]).

Recently the authors developed in Carmouze et al. (2019) [START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] a simple and accurate Riemann solver with internal reconstruction (RSIR) for this specific model. Thanks to the RSIR solver and as a consequence of better acoustic properties of the dilute phase, this model is able to reproduce, at least qualitatively, finger-like instabilities reminiscent of particle jetting during radial explosion.

We believe that the formation mechanism of this fingering instability is closely related to the non-conservative terms of the present dense-dilute model (System (4.1)). They play the role of a "differential drag force", acting intensively at cloud boundaries and vanishing in the wake, when volume fraction gradients disappear.

Despite the contribution of viscous drag effects for flow involving clouds of drops, bubbles, or granular beds, we believe that viscous drag effects are not at the origin of finger-like instabilities. [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF]) are provided. Only the densedilute model seems to be able to reproduce such finger-like instabilities with or without viscous drag effects. Their modeling is addressed hereafter.

Viscous drag effects

The viscous drag parameter λ present in Systems (2.1), (3.1) and (4.1) controls the rate at which velocity equilibrium is reached. The λ (u 2u 1 ) term represents the viscous drag force and λu ′ I . (u 2u 1 ) the power of this force (per unit volume). Let us denote this force as n p F g→p where n p represents the specific the number of particles.

For the sake of simplicity the particles are considered spherical in this work and viscous drag effects are treated via the following relation due to Stokes,

F g→p = 6π µ 2 R 1 (u 2 -u 1 ) , (5.1) 
where R 1 is the radius of the particles considered constant in this work and µ 2 the kinematic viscosity of the gas phase.

Let us now denote the particle Reynolds number as,

Re p = 2R 1 ρ 2 |u 1 -u 2 | µ 2 . (5.2) 
It is important to note that such viscous drag representation is only valid for low Reynolds numbers. In such conditions the viscous drag coefficient reads C d = 24 Rep . With the help of the previous relations, the viscous drag force can be written concisely as,

F g→p = C d R 2 1 π ρ 2 (u 2 -u 1 ) . (5.3) 
In order to extend the present viscous drag law to higher Reynolds numbers, the viscous drag coefficient is reconsidered to account for turbulent effects following Naumann and Schiller (1935) [START_REF] Naumann | A drag coefficient correlation[END_REF],

C d =      24 
Re p 1 + 0.15Re 0.687 p if Re p < 800, 0.438 otherwise.

(5.4)

As the particles are considered spherical with a constant radius R 1 , the number of particles reads

n p = α 1 4 3 π R 3 1
, and the total viscous drag force in a control volume becomes,

n p F g→p = 3 8R 1 α 1 C d ρ 2 |u 1 -u 2 | (u 2 -u 1 ) , (5.5) 
that is to say,

n p F g→p = λ (u 2 -u 1 ) with λ = 3 8R 1 α 1 C d ρ 2 |u 1 -u 2 |. (5.6)
To express the power of the viscous drag force, expression of the interfacial velocity is required.

Following Saurel et al. ( 2003) [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] the interfacial velocity is determined as

u ′ I = Z 1 u 1 +Z 2 u 2 Z 1 +Z 2
for System (2.1) evolving in total disequilibrium. Systems (3.1) and (4.1), corresponding to Marble's and dense-dilute models, use directly u ′ I = u 1 as interfacial velocity. This assumption in indeed admissible and yields thermodynamic consistency (see [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF] [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF]). In the present context, as Z 1 ≫ Z 2 , there is no significant difference between the two models for u ′ I .

Particle jetting during radial explosion

In (2019) [START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF].

In the following a configuration like the one considered in Rodriguez et al. (2013) [START_REF] Rodriguez | Solid-particle jet formation under shockwave acceleration[END_REF] with a Hele-Shaw cell and a particle ring is studied. This configuration has been studied in Carmouze et al. (2019) [START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] as well. The initial conditions are schematically depicted in Fig. 3. The initial data are reported in Table 1. The Stiffened-Gas EOS,

p k = (γ k -1) ρ k e k -γ k p ∞,k
, is used for the sake of simplicity [START_REF] Métayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models; élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques[END_REF], [START_REF] Métayer | The Noble-Abel Stiffened-Gas equation of state[END_REF], [START_REF] Chiapolino | Extended Noble-Abel Stiffened-Gas Equation of State for Suband-Supercritical Liquid-Gas Systems Far from the Critical point[END_REF]. Liquid water with EOS parameters γ 1 = 4.4 and p ∞,1 = 6.10 8

Pa is used as dilute phase and air is used as carrier phase with γ 2 = 1.4. 2019) [START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF]). Initial data are reported in Table 1.

Domain A B C α 1 0.0001 0.4 0.0001 ρ 1 (kg.m -3 ) 1050 1050 1050 ρ 2 (kg.m -3 ) 12 1.2 1.2 u 1 = u 2 (m.s -1 ) 0 0 0 p 1 = p 2 (Pa) 10 7 10 5 10 5
Table 1: Initial data of the particle jetting test schematically depicted in Fig. 3.

Stiff pressure relaxation is used [START_REF] Lallemand | Pressure relaxation procedures for multiphase compressible flows[END_REF] [START_REF] Lallemand | Pressure relaxation procedures for multiphase compressible flows[END_REF]) for System (2.1) and 240 System (4.1). The diameter of the particles is constant and set to D 1 = 1 mm. The gas viscosity is µ 2 = 18.10 -6 Pa.s.

BN-type model with viscous drag effects

First, the BN-type (2.1) model is used. The corresponding results are shown at different times in Fig. 4 as volume fraction contours. Cellular structures appear in Fig. 4 but they do not correspond qualitatively to the experimental observations reported in Fig. 2. In particular, inner and outer fingers seem absent.

Dilute model with viscous drag effects

Marble's model (3.1) is now considered. Results with the same mesh and at the same times as previously are provided in Fig. 5. The same viscous drag force with the same parameters is used in both computations. Note that the same initial conditions as before are used (Table 1).

As initially α 1 = 0.4 within the particle ring, Marble's model (3.1) is used outside its range of validity (α 1 < 0.01).

However α 1 = 0.4 is in agreement with the experimental initial conditions of Rodriguez et al. (2013) [START_REF] Rodriguez | Solid-particle jet formation under shockwave acceleration[END_REF]. As only qualitative results are aimed in the present paper, this set of initial 255 conditions is not problematic. The aim of the present computation is to show the effect of viscous drag force only, compared to the previous computation (Fig. 4) where both viscous drag and non-conservative terms are present. Computed results of Fig. 5 show that inner and outer jet instabilities are absent in the present computation. When the test is continued on larger scales in both time and space, no 260 instability appear.

These results show that:

-Marble's model is inappropriate to address finger-type instabilities;

-Viscous drag force effects are not responsible for their appearance.

Dense-dilute model with viscous drag effects 265

The dense-dilute model (4.1) is now considered. Results with the same mesh and at the same times as previously are provided in Fig. 6. [START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme [START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]).

The mesh is made of 723, 152 triangular elements. The CFL number is 0. In Fig. 7 internal jets appear and develop to the center domain direction. A compaction zone appears in the cloud and a detached front with low particle concentration also appears ahead of the compaction front. Noticeably, the compaction front in the darkest zone catches up the detached front and starts to destabilize. Evolution at intermediate times is reported in Fig. 8. 2019) [START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme [START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). The mesh is made of 723, 152 triangular elements. The CFL number is 0.5. The compaction front and the detached one are now merged and destabilize. Particle concentration zones having cluster type shapes appear in the graph on the right (t = 2.25 ms). Inner jets are still present and keep on developing.

In Fig. 8 the external front destabilizes, and relatively dense particle clusters appear. The In Fig. 9 external front instabilities are created and develop while internal ones tend to vanish. Although not precisely identified from the present numerical experiments, the formation mechanism of this fingering instability appears closely related to the non-conservative terms.

They play the role of a "differential drag force", acting intensively at cloud boundaries and vanishing in the wake, when volume fraction gradients disappear.

At the modeling level, non-conservative terms present similarities with capillary ones (Brackbill et al. (1992) [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF], Perigaud and Saurel (2005) [START_REF] Perigaud | A compressible flow model with capillary effects[END_REF]) except that curvature effects are absent in the present two-phase formulation. Another major difference is that cloud boundaries are obviously highly permeable in the present context, while interfaces are not permeable in conventional hydrodynamic instabilities, except those considering flames and phase transition, where low permeability is present compared to the present configuration.

In the following, we address spatial resolution effects. It appears that the number of created fingers is mesh independent. Indeed, as shown in Fig. 10, the same number of fingers is created with four different meshes. Obviously, mesh resolution influences jets' shape and length, as numerical diffusion is present.

However, it does not change the number of jets and their qualitative shape, meaning that this instability is "robust" and that the flow model and present numerical method seem appropriate for their study.

Dense-dilute model without viscous drag effects

In order to isolate the contribution of the non-conservative terms, the previous test is rerun with the dense-dilute model (4.1) and in the absence of viscous drag effects (λ = 0). Stiff pressure relaxation remains active nonetheless.

Computed results are shown at various times in Fig. 11. Those show that finger-like instabilities are produced without considering viscous drag effects. Same type of computations is now addressed in plane geometry, to remove radial flow divergence effects.

6.5. Dense-dilute model with viscous drag effects on a plane geometry 310

The same particle cloud as before is considered in a plane configuration. The dimensions are similar to the ones of the previous test. The domain is 2.5-m long and 0.478-m wide. The particle bed is located at x = 0.5 m and is 4-cm wide.

Instabilities appear at the inner and outer boundaries but their qualitative shape is significantly different. Finger-like jets are absent and are more replaced by mixing zones. Computed results are shown in Fig. 13. It therefore appears that radial divergence effects are important in the appearance of this instability.

Conclusion

Various hyperbolic two-phase flow models have been tested for the computation of particle 320 finger-like instabilities. Three main conclusions emerge from the present analysis:

-The only flow model able to predict qualitatively these instabilities is the dense-dilute two-phase model of Saurel et al. (2017) [START_REF] Saurel | Modelling compressible dense and dilute two-phase flows[END_REF];

-Formation of this instability is not related to viscous drag effects but more to "differential drag" modeled through non-conservative terms in the momentum and energy equations;

The instability formation mechanism is still unidentified, but the flow model as well as precise effects (differential drag) are now identified for deeper investigations.

  α k , ρ k , p k , E k = e k + 1 2 u 2 k denote 55 respectively the volume fraction, density, pressure and total energy of phase k. e k is the internal energy and u k represents the center of mass velocity of phase k. The mixture internal energy is defined as e = 2 k=1 Y k e k where Y k = (α k ρ k )/ρ denotes the mass fraction of phase k. The mixture density is defined as ρ = 2 k=1 α k ρ k . System (2.1) is a two-phase model for mixture flows evolving in pressure, velocity and 60 temperature disequilibria. The choice of interfacial average velocities u I and pressures p I was originally expressed with the relations: u I = u 2 and p I = p 1 , the symmetric choice: u I = u 1 and p I = p 2 , being possible as well.

  the present paper, computations are based on the flow models (2.1), (3.1) and (4.1) extended to 2D and resolved numerically in the DALPHADT c code on unstructured triangular cells. A Godunov-type method including non-conservative terms is used and extended to second order with the MUSCL-type method presented in Chiapolino et al. (2017) [24]. The BN-type model (2.1) is solved with the help of the HLLC-type solver of Furfaro and Saurel (2015) [25]. Marble's model (3.1) is solved with the Riemann solver of Saurel et al. (1994) [26]. The dense-dilute model (4.1) is solved via the RSIR solver developed in Carmouze et al.

Figure 3 :

 3 Figure3: Schematic representation of the computational domain of the particle jetting test. The portion represents 1/16 of a complete disc with angle θ = π/8. The domain denoted A corresponds to the high-pressure chamber, filled with gas. The domain denoted B represents the initial particle ring. It is located at x = 0.5 m and is 4-cm wide. The domain C corresponds to the low-pressure chamber at atmospheric conditions. The use of triangular cells enables clear definition of the particle ring. No mixed cell is present initially, meaning that no initial wavelength or perturbation is introduced (see Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF]). Initial data are reported in Table1.

Figure 4 :

 4 Figure 4: Volume fraction contours of the dispersed phase for the particle jetting simulation with the BN-type model (2.1). Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with the HLLC solver of Furfaro and Saurel (2015)[START_REF] Furfaro | A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). Results are shown at times t = 1.5 ms, t = 3 ms, t = 3.75 ms and t = 4.1 ms. The mesh is made of 723, 152 triangular elements. The CFL number is 0.5.

Figure 5 :

 5 Figure 5: Volume fraction contours of the dispersed phase for the particle jetting simulation with Marble's model (3.1). Viscous drag effects are present. Results are obtained with the Riemann solver of Saurel et al. (1994)[START_REF] Saurel | Two-phase flows -Second-order schemes and boundary conditions[END_REF] embedded in the MUSCL-type scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). Results are shown at times t = 1.5 ms, t = 3 ms, t = 3.75 ms and t = 4.1 ms. The mesh is made of 723, 152 triangular elements. The CFL number is 0.5.

Figure 6 :

 6 Figure 6: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-dilute model (4.1). Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). Results are shown at times t = 1.5 ms, t = 3 ms, t = 3.75 ms and t = 4.1 ms. The mesh is made of 723, 152 triangular elements. The CFL number is 0.5.

Figure 7 :

 7 Figure 7: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-dilute model (4.1) focused on the particle cloud at early times: a) t = 0.6 ms, b) t = 0.84 ms, c) t = 1 ms and d) t = 1.3 ms. In the present figure, the scale is adapted for each result for the sake of clarity. Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). The mesh is made of 723, 152 triangular elements. The CFL number is 0.5. A compaction zone appears first in the cloud in the darkest zone. Particle jets develop at the inner interface and direct to the domain center. Their growth is visible by comparing their length in graphs (a) and (b). They qualitatively look like the instabilities observed in Fig.2(a) and (b). Another front appears at the outer surface but appears more like a diffusion zone rather than the short wavelength instabilities visible in Fig.2 (b). Eventually the two fronts merge in graph (c) and the resulting front at the outer boundary starts to destabilize in graph (d).

  Figure 7: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-dilute model (4.1) focused on the particle cloud at early times: a) t = 0.6 ms, b) t = 0.84 ms, c) t = 1 ms and d) t = 1.3 ms. In the present figure, the scale is adapted for each result for the sake of clarity. Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). The mesh is made of 723, 152 triangular elements. The CFL number is 0.5. A compaction zone appears first in the cloud in the darkest zone. Particle jets develop at the inner interface and direct to the domain center. Their growth is visible by comparing their length in graphs (a) and (b). They qualitatively look like the instabilities observed in Fig.2(a) and (b). Another front appears at the outer surface but appears more like a diffusion zone rather than the short wavelength instabilities visible in Fig.2 (b). Eventually the two fronts merge in graph (c) and the resulting front at the outer boundary starts to destabilize in graph (d).
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 8 Figure 8: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-dilute model (4.1) focused on the particle cloud at intermediate times: t = 1.5 ms and t = 2.25 ms. In the present figure, the scale is adapted for each result for the sake of clarity. Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). The mesh is made of 723, 152 triangular elements. The CFL number is 0.5. The compaction front and the detached one are now merged and destabilize. Particle concentration zones having cluster type shapes appear in the graph on the right (t = 2.25 ms). Inner jets are still present and keep on developing.
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  inner front jets flowing to the domain center continue their development. Evolution at later times is reported in Fig.9.

Figure 9 :

 9 Figure 9: Volume fraction contours of the dispersed phase for the particle jetting simulation with the dense-dilute model (4.1). Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). Results are shown at times t = 3.0 ms, t = 3.75 ms, t = 4.5 ms and t = 4.8 ms. The mesh is made of 723, 152 triangular elements. The CFL number is 0.5. External front instabilities are now created and develop. Dilution of the internal jets happens while external jets develop as a consequence of particle "dense" zones created at intermediate times. External jets' amplitude grows as seen by comparing the different results.

Figure 10 :

 10 Figure 10: Volume fraction contours of the dispersed phase for the particle jetting simulation with the densedilute model (4.1). Study of mesh resolution effects. Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCLtype scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). Results are shown at t = 4.8 ms with four different meshes, 240, 672 cells, 361, 222 cells, 539, 354 cells and 723, 152 cells. The CFL number is 0.5.

Figure 11 :

 11 Figure 11: Volume fraction contours of the dispersed phase for the particle jetting simulation with the densedilute model (4.1). Viscous drag effects are absent. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). Results are shown at times t = 1.5 ms, t = 3 ms, t = 3.75 ms and t = 4.1 ms. The mesh is made of 723, 152 triangular elements. The CFL number is 0.5.
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 12 Figure 12: Volume fraction contours of the dispersed phase for the particle jetting simulation with the densedilute model (4.1). Study of mesh resolution effects. Viscous drag effects are absent. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCLtype scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). Results are shown at t = 4.1 ms with four different meshes, 240, 672 cells, 361, 222 cells, 539, 354 cells and 723, 152 cells. The CFL number is 0.5.

Figure 13 :

 13 Figure 13: Volume fraction contours of the dispersed phase for the particle jetting simulation with the densedilute model (4.1) on a plane geometry. Viscous drag effects are present. Stiff pressure relaxation is considered. Results are obtained with the RSIR solver of Carmouze et al. (2019)[START_REF] Carmouze | Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows[END_REF] embedded in the MUSCL-type scheme[START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF] with Sweby's limiter and Φ = 1.5 (Eq. 3.17 of[START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF]). Results are shown at times t = 0.75 ms, t = 1.5 ms, t = 2.25 ms and t = 3 ms. The mesh is made of 352.262 triangular elements. The CFL number is 0.5. The domain is 2.5-m long and 0.478-m wide. The particle bed is located at x = 0.5 m and is 4-cm wide.

  

This observation is mesh independent as shown in Fig.12where four different meshes are used, always yielding the same conclusion.