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A salient feature of skeletal muscles is their ability to take up an applied slack in a microsecond
timescale. Behind this remarkably fast adaptation is a collective folding in a bundle of elastically
interacting bistable elements. Since this interaction has long-range character, the behavior of the
system in force and length controlled ensembles is different; in particular, it can have two distinct
order-disorder–type critical points. We show that the account of the disregistry between myosin
and actin filaments places the elementary force-producing units of skeletal muscles close to both
such critical points. The ensuing "double-criticality" contributes to the system’s ability to perform
robustly and suggests that the disregistry is functional.

If an isometrically activated muscle is suddenly short-
ened, the force first abruptly decreases but then partially
recovers over ∼ 1 ms timescale [1–3]. Behind this remark-
ably swift contraction is a cooperative conformational
change in an assembly of actin-bound myosin heads (cross
bridges). Given that this "power stroke" takes place
at a timescale that is much shorter than the timescale
of the adenosine triphosphate (ATP)-driven attachment-
detachment (∼ 100 ms) [4–6], such fast force recovery is
usually interpreted as a passive phenomenon [7, 8].

If it is an applied force, which is controlled, the mean-
field theory of fast force recovery, viewing filaments as
rigid and cross bridges as parallel [9], predicts metasta-
bility associated with a coherent response [10]. It also
predicts the existence of an order-disorder–type critical
point, and it was argued that this critical point plays an
essential role in the functioning of the muscle machinery
[11, 12]. This is consistent with the fact that critical sys-
tems are ubiquitous in biology because of their adaptive
advantages, in particular, their robustness in the face of
random perturbations [13–17]. Criticality is often linked
to marginal stability and, indeed, skeletal muscles are
known to exhibit near zero passive rigidity in physiolog-
ical (isometric contractions) conditions [2, 18–20].

The mechanical functioning of this force generated sys-
tem system is complicated by the fact that muscle archi-
tecture involves both parallel and series connections (see
Fig. 1). Parallel elements respond to a common displace-
ment (hard device, Helmholtz ensemble), while series
structures sense a common force (soft device, Gibbs en-
semble). To fold coherently, individual contractile units
should be able to coordinate in both types of loading
conditions; however, the dominance of long-range inter-
actions [21, 22] induces different collective behavior in
force and length controlled ensembles [10]. In particu-
lar, the critical points corresponding to length and force
clamp loading conditions are strictly distinct [12].

In realistic conditions, however, they turn out to be
close to each other and, to ensure the robustness of the
response under a broad range of mechanical stimuli (flex-
ibility) [23], the system can still be poised in the vicinity
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Figure 1. Schematic representation of a muscle myofibril, of
an elementary contractile unit (half-sarcomere) and of a par-
allel bundle of N cross bridges. In the model, the double-well
potentials are mimicked by spin variables.

of both critical points.
In this Letter, we argue that such "double criticality"

is actualized in the system of muscle cross bridges due
to quenched disorder. While skeletal muscles are often
compared to ideal crystals, the perfect ordering is com-
promised by the intrinsic disregistry between the period-
icities of myosin cross bridges and actin binding sites.
Binding of cross bridges is restricted to incompatibly
placed segments on actin filaments (target zones), and
experimental studies based on electron microscopy and
x-ray diffraction suggest that myosin heads are bound to
actin at seemingly random positions [24, 25]. To gain an
insight into the role of variable offsets, we assume that
the attachment sites are indeed chosen at random and
show that this gives us an analytically tractable model.

The idea that actomyosin disregistry brings the sys-
tem’s stiffness to zero was pioneered in [26]. More re-
cently the utility of quenched disorder for the active as-
pects of muscle mechanics has been advocated in [27].
The beneficial role of random inhomogeneity has been
established in many other fields of physics from high-
temperature superconductivity in electronic materials
[28] to Griffiths phases in brain networks [29].

To explore the reachability of the "double criticality"
condition in realistic conditions, we reduce the descrip-
tion of the system of interacting cross bridges to a ran-
dom field Ising model (RFIM) and compute the equilib-
rium free energy applying techniques from the theory of
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glassy systems [30]. We then use the available experi-
mental data on skeletal muscles to justify the claim that
quenched disorder is the main factor ensuring the tar-
geted mechanical response.

We associate with each cross bridge a spin variable
x taking the value 0 in the pre-power-stroke state (un-
folded conformation) and −1 in the post-power-stroke
state (folded conformation). Each spin element is then
placed in series with a linear elastic spring of stiffness κ0.
If we nondimensionalize lengths by the power-stroke size
a and energy by κ0a2, the dimensionless energy of a cross
bridge reads (1 + x)v + 1

2 (y − x)2, where y is the dimen-
sionless displacement of myosin relative to actin and v
is the dimensionless energetic bias, see Fig.1. To model
disregistry, we assume that the parameter v is different
for different cross bridges [31].

Consider now a parallel bundle of N cross bridges
shown schematically in Fig. 1. Individual cross bridges
are attached to a backbone composed of myosin tails.
The elasticity of the backbone can be accounted through
a lump spring of stiffness κf in series with the bundle
[32–34]. The system loaded in a hard device is then char-
acterized by the dimensionless energy

E =

N∑
i=1

[(1 + xi)vi +
1

2
(y − xi)2] +N

λf
2

(z − y)2, (1)

where z is the applied displacement and λf = κf/(Nκ0).
We assume that the parameters vi are independent iden-
tically distributed random variables with probability den-
sity p(v).

If we replace variables xi by si = 2xi + 1 = ±1 and
adiabatically eliminate y, assuming that ∂E/∂y = 0, the
energy (1) takes the form

E = −J/(2N)
∑
i,j

sisj −
∑
i

hisi + c,

where J = 1/4(1 + λf ), c is a z dependent constant,
and the coefficients hi are linear in vi (see Supplemental
Material [35]). We can then conclude that (1) is a version
of the mean-field RFIM, which is explicitly solvable [38,
39].

Using the self-averaging property of the free energy in
the thermodynamic limit, we write

F(β, z) = − lim
N→∞

(Nβ)−1〈logZ(β, z; {v})〉v,

where the averaging 〈·〉v is over the disorder, β =
κ0a

2/(kBT ), and

Z =

∫
dy

∑
x∈{0,−1}N

exp(−βE(x, y, z; {v}).

In the thermodynamic limit, we obtain [35]

F(β, z) =
λf
2

(z − y0)2 +
1

4
(y0 + 1)2 +

1

2
(
y20
2

+ v0)

− 1

β

∫
dv p(v) log

[
2 cosh[

β

4
(1 + 2y0 − 2v)]

]
,

(2)

where y0 must solve the self-consistency equation

y0 =
2λfz − 1

2(λf + 1)
+

∫
dv

p(v)

2(λf + 1)
tanh

[
β

4
(1− 2v + 2y0)

]
.

(3)
The multiplicity of solutions of Eq. (3) is a result of the
nonconvexity of the free energy with respect to y, which is
ultimately an effect of long-range interactions. The mul-
tiplicity leads to the possibility of discontinuous tension-
elongation curves t = ∂F/∂z = λf (z − y0).

If we assume that the disorder is Gaussian p(v) =

(2πσ2)−1/2 exp(− (v−v0)
2

2σ2 ), the behavior of the system
will be fully defined by the temperature 1/β, the variance
of disorder σ2, and the parameter λf , characterizing the
degree of elastic coupling. The resulting phase diagram
is shown in Fig. 2. The disorder-free section σ = 0 of this
diagram was previously studied in [12]. At σ > 0 the sys-
tem responds as if it was subjected to a higher effective
temperature [40, 41]. The Helmholtz free energy F(β, z)
and the tension-elongation relations t(β, z) in the three
phases I, II, and III are illustrated in Fig. 3.
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Figure 2. (a) Configuration of phases I, II, and III in the
parameter space (1/β, σ , λf ). (b) A section of this phase
diagram corresponding to λf = 0.54 ± 0.2; the shadowed re-
gion near the boundary of II and III reflects the uncertainty
in λf . The realistic dataset for skeletal muscles is presented
in (b) by a filled circle with the superimposed error bars indi-
cating uncertainty in temperature. Analytic approximations
in (b): dashed-dotted lines indicate low temperature; dashed
lines indicate low disorder.

In phase I, the cooperativity is absent and the cross
bridges fluctuate independently. In phase III, the cross
bridges can synchronously switch between two "pure
states". In the intermediate phase II, the tension-
elongation relation exhibits negative stiffness. The
boundary between phases II and III is defined by the
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Figure 3. (a) Representative Helmholtz free energies in each of
the phases I, II, III. (b) The corresponding tension-elongation
relations; z0 = (1 + λf )v0/λf − 1/2; t0 = v0.

condition that ∂2F̃(β, z, y)/∂y2 = 0, which is a condi-
tion that the three roots of (3) collapse into one.

In the limiting case σ → 0, the point p in Fig. 2(b) is
at β = 4(λf + 1). Around this point, the p − q curve is
described accurately by the low-disorder approximation
βe = 4(λf+1) where βe = (β−2+σ2/2)−1/2 is the inverse
effective temperature (see Supplemental Material [35]).
In another limiting case β →∞, the point q can be found
from the equation σ = 1/

√
2π(λf + 1) and around this

point the p − q curve is given by the small temperature
approximation σe = 1/

√
2π(λf + 1), where σ2

e = (σ2 +
2β−2) = 2β−2e is the variance of the effective disorder
[35].

The boundary between phases II and III marks a
second-order phase transition: the order parameter φ =
N−1

∑N
i=1 〈si〉β , where 〈·〉β is the thermal average, is

double valued in phase III and single valued in phase II.
To distinguish between different microscopic configura-
tions, we also compute the Edwards-Anderson (overlap)
parameter qEA = N−1

∑N
i=1〈〈si〉2β〉v [35]. If qEA 6= 0

while φ = 0, the pre- and post-power-stroke symmetry
is broken and cross bridges may be locally frozen in ei-
ther of the two states, even though such local ordering
in time does not imply any spatial order. Figure 4 shows
that qEA is indeed different from zero in the phase II close
to the p− q boundary, which indicates weakly glassy be-
havior [38, 39, 42]. This is a hint that, in a more realistic
model, where the finite backbone stiffness is taken into
account, a real "strain glass" phase [43, 44] is likely to
appear.

To find the boundary between phases I and II, we need
to solve the equation ∂2F/∂z2 = 0 or ∂y0/∂z = 1, where
y0 is a solution of (3). When σ = 0, we obtain β = 4,
which defines the location of point s in Fig. 2(b) (see also
[10, 33]). The low-disorder approximation gives βe = 4.
In another limiting case β →∞, the location of the point
r in Fig. 2(b) is given by σ = σe =

√
1/2π.

The boundary between the phases I and II can be also
interpreted as a line of second-order phase transitions,
but now in the soft device (force clamp) ensemble. In
this case, the presence of a series spring is irrelevant and
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σ = 0.1

σ = 0.35

Figure 4. The behavior of the parameter φ2 (solid lines) and
the Edwards-Anderson parameter qEA (dashed lines) near the
boundary between phases II and III at the realistic value of
disorder. (Inset) The case of weak disorder.
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Figure 5. (a) Representative Gibbs free energies in each of
the phases I and II. (b) The corresponding tension-elongation
curves; z0 = (1 + λf )v0/λf − 1/2; t0 = v0.

we can assume that λf → 0, z → ∞, but λfz → t,
where tension t is the new control parameter. Follow-
ing the approach used in the case of a hard device, we
similarly obtain the Gibbs free energy G(β, t) and com-
pute the tension-elongation relation y = −∂G/∂t, (see
Supplemental Material [35]).

In Fig. 5, we show that the soft device tension-
elongation relation in phase II is monotone but discon-
tinuous. On the boundary of I and II [see Fig. 2(b)], the
stiffness becomes zero in stall conditions, which means
that it is a set of critical points in the soft device ensem-
ble. This line, targeted numerically in [26], represents
regimes that can be expected to deliver the optimal trade-
off between robustness and flexibility in the soft device
[45, 46].

So far, we have operated under an implicit assump-
tion that in the thermodynamic limit κf → ∞, while
λf remains finite. This assumption is based on the pic-
ture of a myosin filament as a parallel arrangement of N
myosin tails, all contributing to the lump stiffness of the
backbone. An alternative assumption may be that the
effective stiffness of the backbone κf does not depend on
the number of attached cross bridges N and, in this case,
we have a different scaling λf ∼ N−1. Then Fig. 2(a),
illustrating the size effect, suggests that the quasicriti-
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cal behavior should be tightly linked to the particular
(optimal) number of cross bridges.

To apply our results to a realistic muscle system, we
use the data for Rana temporaria at T = 277.15 K [12].
From structural analysis, we obtain the value a ∼ 10 nm
[47–49]. Measurements of the fiber stiffness in rigor mor-
tis, where all the 294 cross bridges per half-sarcomere
were attached, produced the estimate κ0 = 2.7 ± 0.9
pN/nm [18, 19]. The number of attached cross bridges in
physiological conditions is N = 106± 11 and experimen-
tal measurements at different N converge on the value
κf = 154 ± 8 pN.nm−1 for the lump filaments stiffness
[5, 50, 51]. This gives λf = 0.54±0.2. Knowing κ0 and a
we can estimate the nondimensional inverse temperature
to be β = 71± 26.

Now, for y > y∗, where y∗ = v0−1/2, the ground state
of a single cross bridge is in the pre-power-stroke state,
while for y < y∗ it is in the post-power-stroke state, so y∗
represents the characteristic offset for an individual cross
bridge. Knowing that y∗ ∼ 4nm [2, 26], we conclude
that v0 ∼ 24.3pN /(κ0a). It was experimentally shown
in [25] that at least 60% of the cross bridges are axi-
ally displaced within half of the spacing between actin
monomers, which corresponds to ∼ 2.76 nm shift from
the nearest actin binding site (see also [26]). Given the
linear relation between v0 and y∗ with the proportion-
ality coefficient equal to one, the variances of these two
quantities are the same. If the axial offsets are Gaussian
random numbers, we can estimate the standard deviation
of the energetic bias σ ∼ 3.3nm/a (see Supplemental Ma-
terial [35]).
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Figure 6. The structure of the energy barriers in different
regimes for the case of the hard device. (a)–(c) z dependence
of the order parameter φ = N−1 ∑N

i=1〈si〉 in different regimes;
(d)–(f) matching free energies at fixed z = z0. λf = 0.35 and
v0 = 0.1

Based on these data we find that, rather remarkably,
the system appears to be operating in a narrow domain of

stability of phase II, close to both critical lines p− q and
r− s [see the point marked by a filled circle in Fig. 2(b)].
The gap between these boundaries corresponds to ∼ 1
nm difference in the cross bridge attachment positions,
which is rather small given that the size of a single actin
monomer is about 5.5 nm. The mechanical responses
in the adjacent critical regimes are structurally similar;
however, if in the hard device ensemble we can expect co-
herent fluctuations of stress (infinite rigidity), in the soft
device, criticality would manifest itself through system
size correlations of strain (zero rigidity).

The special nature of the critical regimes is illustrated
in Fig. 6 for the case of a hard device. In phase I,
the response is uncorrelated, and the collective power
stroke is impossible [Figs. 6(a) and 6(d)]. In phase III,
the response is synchronous but at the cost of crossing
an energetic barrier that diverges in the thermodynamic
limit (F is the free energy per cross bridge), which facili-
tates freezing in the pure states, [see Figs. 6(b) and 6(e)].
The advantage of the critical regime is that the system
can perform the collective stroke without crossing a pro-
hibitively high macroscopic barrier, [see Figs. 6(c) and
6(f)]. The analysis is similar for the case of a soft device.

Our study then suggests that evolution might have
used quenched disorder to tune the muscle machinery to
perform near the conditions where both the Helmholtz
and the Gibbs free energies are singular. Such design is
highly functional when elementary force-producing units
are loaded in a mixed, soft-hard device. We recall that
the muscle architecture is characterized by hierarchical
structures with coupled modular elements loaded both in
parallel and in series. In such systems, the proximity to
only one of the two critical points will not be sufficient
to ensure high performance in a broad range of condi-
tions [23, 52]. Moreover, as we show in the Supplemental
Material [35], the very idea of ensemble independent local
constitutive relations for such systems becomes question-
able.

In conclusion, we established new links between mus-
cle physiology and the theory of spin glasses and revealed
a tight relation between actomyosin disregistry and the
optimal mechanical performance of the force-generating
machinery. At a price of neglecting many important fea-
tures of actual muscles, we were able to focus attention
on the role of quenched disorder in the functioning of
this biological system. The observed glassiness in the
regime of isometric contractions allows the system to ac-
cess the whole spectrum of rigidities from zero (adapt-
ability, fluidity) to infinite (control, solidity) and may
serve as the factor ensuring the largest dynamic reper-
toire of the "muscle material". Similar disorder-mediated
tuning towards criticality can be expected in other biolog-
ical systems relying on bistability and long-range inter-
actions [9], including hair cells, which employ elastically
coupled gating springs [53] and focal adhesions with their
cell adhesion molecules bound to a common substrate
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Supplemental Material for the paper "Functionality
of Disorder in Muscle Mechanics"

Mapping to the Random-Field Ising Model

We start with the energy function (1) in the main text
and assume that the internal variable y is eliminated us-
ing the condition ∂E/∂y = 0. Then,

y =
λfz

1 + λf
+

1

N(1 + λf )

∑
i

xi.

and the relaxed energy reads

E(xi, z) = − 1

2N(1 + λf )

∑
i

xi

2

+
∑
i

(1 + xi)vi −
λfz

1 + λf

∑
i

xi +
∑
i

x2i
2

+
Nλfz

2

2(1 + λf )

Since xi is either 0 or -1, we may write
∑
i x

2
i = −∑i xi

and
(∑

i xi
)2

=
∑
i

∑
j xixj =

∑
i,j xixj . In terms of

spin variables, 2xi = si − 1, with si = ±1 the relaxed
energy can be written as,

E(si, z) = − 1

8N(1 + λf )

∑
i,j

sisj

−
∑
i

(
2λfz − 1

4(1 + λf )
+

1

4
− vi

2

)
si

+
∑
i

(
λfz(1 + z)

2(1 + λf )
+

1

4
+
vi
2
− 1

8(1 + λf )

)

= − J

2N

∑
i,j

sisj −
∑
i

hisi + f(z).

(4)

where J = 1
4(1+λf )

, hi =
2λfz−1
4(1+λf )

+ 1
4 − vi

2 and f(z) =∑
i
λfz(1+z)
2(1+λf )

+ 1
4 + vi

2 − 1
8(1+λf )

.

Computation of the free energy

Using the self-averaging property of the free energy in
the thermodynamic limit, we write

F(β, z) = − lim
N→∞

(Nβ)−1〈logZ(β, z; {v})〉v,

where the averaging 〈·〉v is over the disorder, β =
κ0a

2/(kBT ), and

Z =

∫
dy

∑
x∈{0,−1}N

exp(−βE(x, y, z; {v}).

The mean field nature of the model allows one to rewrite
this expression in the form

Z =

∫
dy exp(−βN [

λf
2

(z − y)2 − 1

βN

N∑
i=1

log Z̃]),

where Z̃ = e−
β
2 (y+1)2 + e−β(y

2/2+vi) is the partition
function of a single Huxley-Simmons element [1, 2]. In
the thermodynamic limit, we can use the saddle-point
approximation to obtain F(β, z) = F̃(y0, β, z), where
F̃(y, β, z) = β

λf
2 (z − y)2 − 〈log Z̃〉v and y0(β, z) is the

minimum of F̃ . More explicitly,

F(β, z) =
λf
2

(z − y0)2 +
1

4
(y0 + 1)2 +

1

2
(
y20
2

+ v0)

− 1

β

∫
dv p(v) log

[
2 cosh[

β

4
(1 + 2y0 − 2v)]

]
,

(5)

where y0 solves the self-consistency equation,

y0 =
2λfz − 1

2(λf + 1)
+

∫
dv

p(v)

2(λf + 1)
tanh

[
β

4
(1− 2v + 2y0)

]
.

Boundary between phases II and III

Using the expression for the partial free energy,

F̃(β, z, y) =
λf
2

(z − y)2 +
1

4
(y + 1)2 +

1

2
(y2/2 + v0)

− 1

β

∫
dv p(v) log

[
2 cosh[

β

4
(1 + 2y − 2v)]

]
we can write the condition ∂2F̃(β, z, y)/∂y2 = 0 in the
form

λf + 1− β

4

∫
dv p(v) sech2 β

4
(1− 2v + 2y0) = 0.

If we use the Gaussian distribution of disorder introduced
in the main text and use new variables η = β(1 + 2y0)/2
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and v̄ = βv we can rewrite this equation in the form

λf + 1− β

4

∫
dv̄
e
− (v̄−βv0)2

2σ2β2√
2πσ2β2

sech2 1

2
(η − v̄) = 0.

Note that the variance of disorder appears in this formula
only in the combination σ2β2. This means that, modulo
some obvious adjustments, the small disorder σ → 0 and
large temperature β → 0 limits are complimentary. The
same can be said about the small temperature β → ∞
and the large disorder σ →∞ limits.

Zero disorder limit. In the limit σ → 0 we have p(v)→
δ(v − v0) and the boundary between phase II and III is
defined by the equation

λf + 1 =
β

4
sech2 β

4
(1− 2v0 + 2y0).

Since sech2 x ∈ [0, 1], this equation does not have solu-
tions y0 for β > 4(λf + 1) and therefore the point r is
defined by the condition β = 4(λf + 1).

To get the next term of the asymptotic expansion we
introduce the new variable ξ = (1− 2v + 2y0)/4 and as-
sume that the temperature is large β → 0. Then we
can expand log sech2 βξ ≈ −β2ξ2 + O(β4), which im-
plies that sech2 βξ ≈ e−β

2ξ2

. Using this approximation
we can compute the integral and represent the boundary
between phase II and III in the form

λf + 1 =
e

−(y0−v0+1/2)2

2(2T2+σ2)

2
√

2(2T 2 + σ2)
.

where T = 1/β. Since e−x
2 ∈ (0, 1] the criticality condi-

tion is

(λf + 1)2
√

2(2T 2 + σ2) = 1

The equivalent quenched disorder is then defined by the
condition σ2

eq = 2T 2 + σ2.
Zero temperature limit. In the zero temperature limit

β → ∞ we use the fact that limk→∞
k
2 sech2 kx → δ(x).

to rewrite the equation defining the boundary between
phase II and III in the form

(λf + 1)
√

2πσ2 = e−
(y0+1/2−v0)2

2σ2 .

Here the r.h.s is defined in the interval (0, 1] and therefore
there are no solutions y0 if (λf + 1)

√
2πσ2 > 1 where we

used the fact that σ, λf > 0. The point q is then defined
by the condition (λf + 1)

√
2πσ2 = 1.

To obtain the next term of the asymptotic expansion
we assume that disorder is large σ → ∞. In this case
we can still approximate the function sech2(x) by the
Gaussian distribution but now the approximation should
be good not at x = 0 but globally. To this end we need

to require that the two functions are equally normalized

1

4T

∫
dv sech2 1− 2v − y0

4T

=
1√

4πT 2

∫
dve−

(v−y0−1/2)2

4T2 = 1,

where again T = 1/β. With this normalization the inte-
gral can be again computed and we obtain the condition

(λf + 1)
√

2π =
e

−(y−v0+1/2)2

2(2T2+σ2)

√
2T 2 + σ2

.

The criticality criterion is then

(λf + 1)
√

2π(2T 2 + σ2) = 1,

which allows us to introduce the effective disorder by the
condition σ2

e = 2T 2 + σ2.

Gibbs free energy

In the case of soft device the relevant potential is,

G =

N∑
i=1

[
(1 + xi)vi +

1

2
(y − xi)2

]
− ty. (6)

Following the approach used in the case of hard device,
we obtain the expression for the Gibbs free energy

G(β, t) = −ty0 +
1

4
(y0 + 1)2 +

1

2
(
y20
2

+ v0)

− 1

β

∫
dv p(v) log

[
2 cosh[

β

4
(1 + 2y0 − 2v)]

] (7)

where now y0 solves the equation

t = y0 +
1

2
− 1

2

∫
dv p(v) tanh

[
β

4
(1− 2v + 2y0)

]
. (8)

The tension elongation relation is then a solution of y =
−∂G/∂t.

Edwards-Anderson order parameter

In the absence of disorder, a natural order parameter
is

φ =
1

N

N∑
i=1

〈si〉T ,

where si = 2xi+1. To find φ(z, β) we notice that since all
cross-bridges are the same we can write φ = 2 〈xi〉T + 1
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where

〈xi〉T = −Z(β, z)−1e−βE(xi=−1,y0,z)

with

Z(β, z) = e
−βN

[
λf
2 (z−y0)

2− 1
β log(e−

β
2

(y0+1)2+e−β(y2
0/2+v))

]
.

By combining these expressions we obtain

〈xi〉T = − 1

1 + eβ(y0−v+1/2)
.

In the presence of disorder, the average values 〈xi〉T are
different for different cross-bridges and the macroscopic
parameter φ(z, β) is no longer sufficient to differentiate
between microscopic configurations. To this end we can
introduce an analogue of the Edwards-Anderson param-
eter from the theory of spin glasses

qEA =
1

N

N∑
i=1

〈
〈si〉2T

〉
v
.

where we distinguish between the thermal average 〈·〉T
and the ensemble average 〈A〉v =

∫
dvp(v)A(v). If the

parameter φ characterizes the average occupancy of the
pre-power stroke state, the nonzero value of qEA means
that individual cross bridges are ’frozen’ either in pre- or
post-power-stroke states even if in average, both states
appear to be equally occupied. The knowledge of this
parameter is needed, for instance, if one is interested in
computing the effect of the random field on mechanical
susceptibility (stiffness) [3]

In terms of the variables xi the definition of qEA reads

qEA =
1

N

N∑
i=1

[
4
〈
〈xi〉2T

〉
v

+ 4
〈
〈xi〉T

〉
v

+ 1

]
,

where 〈
〈xi〉2T

〉
v

=

∫
dv

p(v)

(1 + eβ(y0−v+1/2))2
,

and 〈
〈xi〉T

〉
v

= −
∫
dv

p(v)

1 + eβ(y0−v+1/2)
.

Boundary between phases I and II

Note first that ∂t
∂z = λf (1− ∂y0

∂z ), and therefore to get
zero stiffness we must have ∂y0/∂z = 1, Here y0 is found
from the self-consistency condition given by Eq. 5 in the

main text and therefore

∂y0
∂z

=
λf

λf + 1

+
β

4(1 + λf )

∫
dv p(v) sech2

[
β

4
(1− 2v + 2y0)

]
∂y0
∂z

,

(9)

which is equivalent to

1 =
β

4

∫
dv p(v) sech2

[
β

4
(1− 2v + 2y0)

]
.

The condition that this equation has a root y0 does not
contain λf and therefore the boundary between phases I
and II is λf independent.
Zero disorder limit. In the limit σ → 0 we can again

assume that the probability density p(v) is infinitely lo-
calized and compute the integral explicitly. We obtain

4

β
= sech2 β

4
(1− 2v + 2y0).

Since sech2 x ∈ [0, 1], this equation does not have solu-
tions y0 if β < 4, hence βc = 4, which is the coordinate
of our point s. The higher order asymptotic expansion
can be obtained following the same procedure as in the
case of the boundary between phases II and III.
Zero temperature limit. In the limit β → ∞, we can

again use the fact that the function k
2 sech2 kx converges

to the delta function as k → ∞. Therefore, assuming
that the probability distribution p(v) is Gaussian we ob-
tain,

1 =
1√

2πσ2
e−

(y0+1/2−v0)2

2σ2 .

Using the same arguments as in the zero disorder limit
and noticing that e−x

2 ∈ (0, 1], we conclude that this
equation has solution only if σ ≥ 1/

√
2π. Therefore, the

critical value of the disorder in this limit is σc = 1/
√

2π,
which corresponds to our point r. The expansion around
this point can be obtained as in the case of the boundary
between phases II and III considered above.

Axial offset

Experimental studies using electron microscopy (EM)
and x-ray diffraction have shown that the biding of cross-
bridges is restricted to limited segments of the actin fil-
ament known as target zones [4, 5]. These zones are
represented by two to three actin monomers, see Fig. 7.
Moreover, it was found [6] that the probability distribu-
tion of axial offsets from the target zone center is approx-
imately Gaussian and that at least 60% of the attached
cross-bridges are displaced within half of the spacing be-
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tween actin monomers which corresponds to the offset of
2.76nm.

The offset can be represented by the reference elonga-
tion y0 = v0 − 1/2 which marks the boundary between
pre and post-power stroke states. Because the parame-
ters v0 and y0 differ by a constant, the variance of δv0
is equal to the variance δy0. Hence, placing disorder in
the energetic bias v0 is equivalent to introducing variable
axial offset.

κ κ κ κ κ

M line 14,5nm

5,5nm

Figure 7. Schematic representation of the attachment sites.
Each sphere represents an actin monomer; blue color delineate
target zones.

Gaussian distribution of offsets. If we suppose that
the distribution of axial offsets between the myosin head
and the actin biding site is Gaussian we can estimate its
standard deviation by noting that the probability that
the variable deviation lies in the range ±kσ is given by,

Pr(µ− kσ ≤ X ≤ µ+ kσ) = erf(
k√
2

), (10)

we then use the fact that 60% is in the range ±2.76nm
to find k = 0.842 and σ = 3.3nm.

Critical response in soft and hard ensembles

In Fig. 8 we illustrate the mechanical responses in the
adjacent critical regimes marked as A and B in Fig. 2
of the main text. In the associated critical points, indi-
cated here by small circles and intended to represent the
physiological regime of isometric contractions, the sus-
ceptibilities diverge. The closeness of these two regimes
in the parameter space allows the system to exhibit the
whole repertoire of behaviors from zero to infinite rigid-
ity.

Two half-sarcomeres in series

Here we present an elementary illustration of the fact
that the equilibrium response of a bundle of contractile
units connected in series and placed in a hard device,
cannot be described by local equilibrium constitutive re-
lations obtained in either soft or hard device ensembles.
Instead, the system exhibits an intermediate behavior.

(a) (b)

(c) (d)

A

−1 −0.5 0 0.5 1

0.2

0.4

z − z0

F

A

−1 −0.5 0 0.5 1

0.9

1

1.1

z − z0

t

t0

B

0.5 1 1.5
0

0.2

0.4

t/t0

G

B

−1 −0.5 0 0.5 1
0.8

0.9

1

1.1

z − z0

t

t0

Figure 8. The response of the system in the critical regimes A
and B shown in Fig. 2 of the main text : (a) and (b) are the
Helmholtz free energy and the tension-elongation curve in the
hard device ensemble; (c) and (d) are the Gibbs free energy
and the associated tension-elongation curve in the soft device
ensemble. Critical points are marked by the small circles.

Consider two elementary contractile units in series, see
[7] for the analysis of M such elements. Each of the
two elements represents a parallel connection of N cross-
bridges. The total energy per cross bridge in dimension-
less form for a system placed in a hard device reads

E2 =
1

2

 1

N

N∑
i

[(1 + xi1)vi1 +
1

2
(y1 − xi1)2 +

λf
2

(z1 − y1)2]

+
1

N

N∑
i

[(1 + xi2)vi2 +
1

2
(y2 − xi2)2 +

λf
2

(z2 − y2)2]


(11)

The equilibrium response of the system is obtained by
computing the partition function

Z2(z, β) =

∫
exp[−2βNE2]δ(z1 + z2 − 2z)dx

where dx =
∏N
i dxi1dy1

∏N
j dxj2dy2 and z is the (aver-

age) elongation imposed on the system. We can rewrite
the expression for Z2 in the form

Z2(z, β) =

∫
dy1dy2 exp

{
−βN [−λf

2
(z − y1 − y2)2

− 1

β

∫
dvp(v) log Z̃1(y1, v)Z̃2(y2, v)]

}
(12)
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where Z̃i(yi, v) = e−
β
2 (yi+1)2 + e−β(y

2
i /2+v). The free en-

ergy per cross-bridge is then F2(z, β) = − 1
2N logZ2(z, β).

The equilibrium tension-elongation relation for this sys-
tem, obtained from the relation t(z, β) = ∂F2(z, β)/∂z,
is shown by the thick line in Fig. 9(a). Similar thick line
in Fig. 9(b) shows the equilibrium response of a single
contractile element placed in the hard device.

(a) (b)

−2 −1 0 1 2

−0.2

0

0.2

z − z0

t/t0

−2 −1 0 1 2

−0.4

−0.2

0

0.2

0.4

z − z0

t/t0

Figure 9. (a) Tension elongation relations for a system con-
taining two half-sarcomeres in series placed in a hard device.
Thick line: equilibrium response. Dotted (dashed) line: the
response of two contractile elements in series, each one en-
dowed with its own equilibrium the hard (soft) device con-
stitutive law. (b) Response of a single half-sarcomere. Thick
line: hard device; dashed line: soft device. β = 30, σ = 0,
v0 = 0, λf = 1.

We now compare this behavior with the one obtained
under the assumption that the two elements in series are
characterized by their equilibrium free energies computed
either in a hard or in a soft ensembles.

For instance, using the hard device ensemble we can
write the total (Helmholtz) free energy of the two element
system in the form Ehd2 = F(z1, β) +F(z− z1, β), where
F is the free energy of a half-sarcomere given by Eq. 5.
The extra variable z1 can be eliminated using the equilib-
rium condition ∂F(z1, β)/∂z1 = ∂F(z − z1, β)/∂z1. The
resulting tension elongation curve is shown in Fig. 9 (a)
by a dotted line.

Similar analysis can be performed based on the re-
sponse functions for the elements loaded in a soft device.

Here we need to use equilibrium (Gibbs) free energies
of the elements (Eq. 5 in the main text) and since the
elements in series share the value of tension we obtain
GSD2 = 2G(t, β). The ensuing response of the series bun-
dle is shown in Fig. 9(a) by a dashed line. In Fig. 9(b),
the dashed line show the equilibrium response of a single
contractile element loaded in a soft device.

Observe, first, that the equilibrium response predicted
by the two ’constitutive models’ contains discontinuities,
while the response of the actually equilibrated system
(two half-sarcomeres in series) is smooth. Note also that
the actual response curves do not coincide with either
of the two ’constitutive models’ and exhibit some inter-
mediate behavior with features mimicking both models
simultaneously. The observed discrepancy is due to the
fact that in a fully equilibrated system none of the con-
tractile elements is loaded in either soft or hard device
and that the overal response of the system is fundamen-
tally non-affine, see also [7, 8].
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