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ABSTRACT

Context. There are a number of methods that identify stellar sub-structure in star forming regions, but these do not quantify the degree
of association of individual stars – something which is required if we are to better understand the mechanisms and physical processes
that dictate structure.
Aims. We present the new novel statistical clustering tool “INDICATE” which assesses and quantifies the degree of spatial clustering
of each object in a dataset, discuss its applications as a tracer of morphological stellar features in star forming regions, and to look for
these features in the Carina Nebula (NGC 3372).
Methods. We employ a nearest neighbour approach to quantitatively compare the spatial distribution in the local neighbourhood of
an object with that expected in an evenly spaced uniform (i.e. definitively non-clustered) field. Each object is assigned a clustering
index (“I”) value, which is a quantitative measure of its clustering tendency. We have calibrated our tool against random distributions
to aid interpretation and identification of significant I values.
Results. Using INDICATE we successfully recover known stellar structure of the Carina Nebula, including the young Trumpler 14-16,
Treasure Chest and Bochum 11 clusters. Four sub-clusters contain no, or very few, stars with a degree of association above random
which suggests these sub-clusters may be fluctuations in the field rather than real clusters. In addition we find: (1) Stars in the NW and
SE regions have significantly different clustering tendencies, which is reflective of differences in the apparent star formation activity
in these regions. Further study is required to ascertain the physical origin of the difference; (2) The different clustering properties
between the NW and SE regions are also seen for OB stars and are even more pronounced; (3) There are no signatures of classical
mass segregation present in the SE region – massive stars here are not spatially concentrated together above random; (4) Stellar
concentrations are more frequent around massive stars than typical for the general population, particularly in the Tr14 cluster; (5)
There is a relation between the concentration of OB stars and the concentration of (lower mass) stars around OB stars in the centrally
concentrated Tr14 and Tr15, but no such relation exists in Tr16. We conclude this is due to the highly sub-structured nature of Tr16.
Conclusions. INDICATE is a powerful new tool employing a novel approach to quantify the clustering tendencies of individual
objects in a dataset within a user-defined parameter space. As such it can be used in a wide array of data analysis applications. In this
paper we have discussed and demonstrated its application to trace morphological features of young massive clusters.

Key words. methods: statistical – stars: statistics – open clusters and associations: general – stars: general – stars: massive –
ISM: individual objects: NGC 3372

1. Introduction

Massive stars are fundamental to the evolution of galaxies,
profoundly impacting the interstellar medium through chemi-
cal enrichment (outflows, supernovae), mixing and turbulence
(winds, outflows, supernovae), and heating/cooling (ionising
radiation).

Unfortunately while isolated low mass star formation
appears to be well described observationally (e.g. Shu et al.
1987, Andre et al. 2000, Luhman 2012), there is still little con-
sensus about the formation of massive stars. This is largely
due to observational reasons. High mass stars are rare, evolve
rapidly, and have shorter lifetimes than low mass stars. They also
emerge onto the main sequence still heavily embedded, having

formed almost exclusively in associations, groups and clusters
(de Wit et al. 2005). The linked formation and evolution of both
massive stars and clusters, and how they interact is clearly part
of the “picture” for massive star formation, but much is still
unknown (e.g. Zinnecker & Yorke 2007).

To discriminate between different models for cluster and/or
massive star formation/evolution requires a multi-pronged anal-
ysis of the structure and dynamics of the stars and gas in young
massive clusters (YMCs). To this end we created the StarFor-
mMapper1 (SFM) project.

One of the fundamental analytical techniques required is to
study how the stars and gas “cluster” together. Here, we are
1 https://starformmapper.org/
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particularly interested in the study of the intensity, correlation
and spatial distribution of point processes, which collectively
help to define the distribution and clustering of those points (see,
e.g. Møller & Waagepetersen 2007). We are not concerned in
this paper with searching for stellar “sub-structure” (discrete star
groupings), but rather for suitable statistical measures of the dis-
tribution of these point patterns. This is complicated in star for-
mation regions as the distributions of stars and gas are inherently
heterogeneous. Many of the best understood statistics from other
fields are therefore not easily applied (or are simply invalid). In
addition, we wish to use techniques which are valid in any num-
ber of dimensions and are applicable easily at different distances,
whilst still being computationally simple.

Several global methods have been used in the past. The
2-point correlation function is well studied in cosmol-
ogy, but has also been used in star forming regions (e.g.
Gomez et al. 1993, Scalo & Chappell 1999). The Q parameter by
Cartwright & Whitworth (2004) uses a very different technique,
which compares the average length from the Minimum Spanning
Tree (MST) with the average length from the complete graph
of all points, and can distinguish between a smooth overall
radial density gradient and multi-scale fractal sub-clustering
in a region. It has successfully identified signatures of sub-
structure in the Cygnus OB2 (Wright et al. 2014), Serpens,
Ophiucius and Perseus star forming regions (Schmeja et al.
2008) and has been applied to assess the dynamical status of
star clusters in numerical simulations (e.g. Parker et al. 2014).
Similar methods have also been applied to the study of mass
segregation (see e.g. Parker & Goodwin 2015). However these
methods still suffer if heterogeneous structures are present (e.g.
Cartwright & Whitworth 2009). In particular if we wish to
compare observations and simulations, great care must be taken
in such circumstances.

An alternative possible approach is suggested by the field of
geostatistics where interest has also focused on the use of local
indicators (e.g. Anselin 1995). In this case, rather than calculat-
ing a single parameter for a group of stars/gas as a whole, every
unique point has its own derived value. These can then be used to
characterise the distribution. That is the approach we will follow
here.

In this paper we present our new statistical clustering tool
INDICATE (INdex to Define Inherent Clustering And TEnden-
cies) that we are currently implementing in the SFM project.
Hopkins & Skellam (1954) established the Hopkins statistic to
assess the global clustering tendency of a dataset by testing its
spatial randomness through quantitative measurements of its uni-
formity. A single global value is calculated through a comparison
of the mean k-nearest neighbour distances between objects within
the dataset, and between points in the dataset and a similarly con-
structed uniform random sample. We propose instead to derive a
similar index but for every point in the dataset individually.

This paper is structured as follows. Sect. 2 describes how
our tool works and is calibrated. In Sect. 3 we use INDI-
CATE to trace stellar morphological features of star formation,
demonstrating its ability to cope with the complex, often poorly
defined, spatial clusterings expected in young massive star form-
ing regions/clusters. Our conclusions are presented in Sect. 4.

2. INDICATE: INdex to Define Inherent Clustering
And TEndencies

2.1. General tool description

INDICATE is a tool to quantify the degree of association of each
point in a 2+D discrete dataset. It requires no a priori knowledge

of – nor makes assumptions about – the sub-structure present in
a dataset, since it is a local statistic. The separation of the spatial
position of the jth point in the actual dataset with the Nth near-
est neighbour in an evenly spaced uniform (i.e. definitively non-
clustered) control distribution is determined. The mean value of
this separation, r̄, is then derived. Finally, INDICATE assigns an
index, I, to every point in the actual dataset, which is simply the
ratio of the actual number of real neighbours within this mean
separation, r̄, and N, the nearest neighbour number. Since our
tool fundamentally relies on properties linked to distance ratios
in the real and uniform sample, it is itself region distance inde-
pendent in principle at least (but see Appendix C). Because our
tool uses an evenly spaced grid as the comparison it is com-
putationally less intensive than a direct implementation of the
Hopkins, or similar, statistics. Below we describe step-by-step
how this index is derived for a simple 2D distribution. A future
paper will deal with the implementation to a full 3D dataset using
Gaia parallaxes.

2.1.1. Step I: Define the bounds of the dataset

INDICATE is designed to be applicable to any desired
N-dimensional parameter space. However, as outlined here, it
assumes that all dimensions have the same scaling (e.g. J2000
sky coordinates should be converted to a local coordinate frame
prior to beginning).

The bounds of the dataset parameter space are defined from
the density distribution, and the area occupied by the data, A,
measured. The shape of the delimited area has a negligible effect
on the tool (Appendix B), but for clarity we will use a rectangular
parameter space for all our explanatory datasets in the descrip-
tion of the tool. In practice, the shape is related to the problem to
be studied, and is defined by the user.

The number density, nobs, of the dataset is determined
using,

nobs =
Ntot

A
, (1)

where Ntot is the total number of points in the dataset.

2.1.2. Step II: Generate the control distribution

An adaptive evenly spaced uniform point distribution which we
designate the control distribution is generated. The control dis-
tribution is rectangular (regardless of dataset shape defined in
Step I), populates the bounded parameter space and has the same
number density as the dataset i.e.

ncon = nobs (2)

2.1.3. Step III: Measure the mean nearest neighbour
distance

The mean Euclidean distance, r̄, of each point, j, in the dataset to
its Nth nearest neighbour in the control distribution is measured
using:

r̄ =

Ntot∑
j=1

r j

Ntot
, (3)

where,

r j =

√
(x j − xcon

N )2 + (y j − ycon
N )2, (4)

A184, page 2 of 14



A. S. M. Buckner et al.: The spatial evolution of young massive clusters. I.

Fig. 1. Demonstration of how INDICATE defines the index I j,N for a point. All points within a radius of r̄ of the selected point (marked in blue)
are counted (Nr̄) and compared to the number of points expected within the same radius in an evenly spaced uniform point distribution with
the same number density as the points parent sample (N). The index of the blue point is calculated using Eq. (5) as I5 = 4.0 (left panel) and
I5 = 0.6 (right panel).

and (x j, y j) are the respective x and y axis coordinates of point j
and (xcon

N , ycon
N ) are the respective x and y axis coordinates of the

Nth nearest neighbour in the control distribution.

2.1.4. Step IV: Calculate the index, I

The number of points, Nr̄, closer than r̄ to each point, j, in the
dataset is counted (see Fig. 1). The index of point j is then the
ratio of the number of neighbours closer than r̄ in the dataset
with that expected by a non-clustered distribution i.e.

I j,N =
Nr̄

N
, (5)

where N is the Nth nearest neighbour number (e.g. if r̄ is mea-
sured for the 5th nearest neighbour, N = 5; 6th nearest neigh-
bour, N = 6...etc.). The ratio I j,N is unitless and has a range of
0 ≤ I j,N ≤

Ntot−1
N , such that the higher its value the more spatially

clustered point j is.
It is important to note the index is not a measure of local sur-

face density – Eq. (5) describes the local spatial distribution of
point j. Therefore although the index is proportional to the local
point surface density of a dataset, it is possible for two datasets
with significantly different densities to have identical index val-
ues if their points have the same spatial distribution. For exam-
ple, Fig. 2A shows index values derived for Gaussian cluster
with 100 members, using a nearest neighbour number of N = 5.
On visual inspection the highest values have been assigned to
stars with the highest degree of association. Figures 2B and 2C
show the same cluster, but with an observed angular dispersion
and surface density the cluster would have if its distance was
a factor of 4 and 16 times larger than A respectively. Applying
INDICATE under the same conditions as for Fig. 2A, the index
values for each star remain unchanged in Fig. 2B and Fig. 2C
i.e. for all members ∆ I5 ≡ 0 despite the surface density increas-
ing by a factor of 256 between Fig. 2A and Fig. 2C, as the local
spatial distribution of members in all three clusters is identical.

Hence the index can be used to directly analyse variation in
the spatial distribution of points, in any desired parameter space,

Table 1. Statistics of index values derived for clusters’ D, E, F (Fig. 3).

Cluster Mo[I5] max(I5) % stars I5 > Imax

D 8.2 10.6 81.2
E 1.6 4.8 17.5
F 3.0 6.4 34.1

Notes. The percentage of members clustered above random (I5 > Imax)
is given for each cluster.

(a) within a dataset and/or (b) comparatively between two or
more datasets.

We conduct a series of statistical tests on randomly generated
samples to calibrate, and investigate edge and field effects on, our
index. The methodology and results of these tests are described
in detail in Appendices A–C respectively. In brief:

1. There is a logarithmic relationship between the maximum
index value for a random distribution and sample size.

2. The index is independent of a samples number density.
3. There is a relationship between the typical index value for

a random distribution and the chosen Nth nearest neighbour
number.

4. The size of the control distribution is essentially arbitrary
(but care should be taken when a point in the sample has an
index value which is on the boundary of a chosen signifi-
cance threshold).

5. Uniformly distributed interloping field stars (e.g. in observa-
tional datasets) typically do not significantly affect the index
values of true cluster members.

6. If interloping field stars are distributed in a gradient, the
index derived for true cluster members is independent of gra-
dient shape for small nearest neighbour numbers (N = 3).

We note that in samples which contain interloping field stars,
that the field stars are also assigned index values by INDICATE,
so care must be taken when interpreting the values and drawing
conclusions on the physical origins of the clustering tendencies
of stars in these samples.
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Fig. 2. Panels A–C: index values derived by INDICATE for a synthetic Gaussian cluster with 100 members, using a nearest neighbour number of
N = 5 in all three instances. In B and C the angular dispersion of the cluster was reduced to simulate how it would be observed if its distance was
a factor of 4 and 16 times larger than A, respectively. Despite the significant increase in point surface densities, the index values derived for each
star is unchanged because there is no change in the relative spatial distribution of members.

Fig. 3. Index values derived by INDICATE for members of synthetic clusters D, E, F using a nearest neighbour number of N = 5 and a standard
control distribution (CDA – see Appendix B).

2.2. Implementation example

In Sect. 3 we apply our tool on a real stellar catalogue of
NGC 3372. Here we demonstrate using synthetic datasets INDI-
CATE’s ability to quantify the degree of association for each
point in a 2D discrete dataset and suitability as a statistical mea-
sure for comparative analysis of the spatial distributions of points
in multiple datasets.

Figure 3 shows three clusters (D, E and F) with different
degrees of elongation, angular dispersion, sub-structure, surface
density and number of members. We apply INDICATE to each
using a Nth nearest neighbour number of N = 5 and a standard
control distribution (CDA – see Appendix B). Table 1 shows
their mode and maximum index values, and the percentage of
members with I5 > Imax (Eq. (A.2)).

Cluster D is the most elongated, and its members have been
identified by INDICATE as having the strongest clustering ten-
dencies (highest index values) of the three clusters. We find that
the greatest degree of association is within its central region (up
to 53 neighbours within r̄) and spatial clustering of members is
asymmetrical – stars to the NE of the highest index members
have significantly higher index values than those to the SW.

Members of cluster E have a markedly different spatial distri-
bution and clustering tendencies to those of cluster D. The spatial
distribution of members lacks a strong radial correlation and two
concentrations of (relatively) high index stars are identified. Stars
with the greatest degree of association have 24 neighbours within
r̄ (a factor of 2 less than D), typically the degree of association of
members of E is a factor of 6.6 less than members of cluster D

(i.e. members of E are significantly less tightly clustered than
those of D). Of course, as the clusters are being analysed in a 2D
parameter space it is conceivable that stars in cluster D and E may
have very similar spatial distributions but are being viewed from
different rotations around the 3D axis. We therefore advise caution
when drawing conclusions from comparisons of the INDICATE
values of two or more observational 2D datasets alone.

Cluster F has three concentrations of high index members
(marked on Fig. 3 as R1, R2, R3). Stars that form part of R1 and
R3 have similar index values, that is they have similar cluster-
ing tendencies, but those of R2 are less spatially clustered. If
this were a real dataset, where clustering behaviours are dic-
tated by underlying physics, these index values could be used
as a starting point to explore the physical causes of the identi-
fied discrepancies between the clustering behaviours of the three
concentrations (e.g. differences in evolutionary stage, initial con-
ditions, stellar mass of members) and also the identified dis-
parity of members clustering behaviours between clusters D, E
and F. This form of quantitative analysis and comparison of spa-
tial behaviours, as achieved here by INDICATE, is not possible
with the discussed global methods and/or established clustering
algorithms.

3. Tracing morphological features

The Carina Nebula (NGC 3372) is a massive star forming HII
complex in the southern sky at a distance of 2.3 kpc, con-
taining >105 M� of gas+dust (Preibisch et al. 2011a). It is one
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Fig. 4. Stellar catalogue by Kuhn et al. (2014), with stars represented as grey dots. The positions of the Trumpler 14 (Tr14), Trumpler 15 (Tr15),
Trumpler 16 (Tr16), Treasure Chest (TC) and Bochum 11 clusters are overlaid as black ellipses (see text for details).

of the nearest and richest concentrations of OB stars (>130;
Kuhn et al. 2014) in the Galaxy and includes some of the most
massive and luminous known single and binary stars (e.g. Eta
Carinae, HD 93129, W25). The region is well studied and
has considerable sub-structure including the Trumpler 14-16,
Collinder 228, Collinder 232, Collinder 234, Bochum 10 and
Bochum 11 clusters. Triggered star formation is ongoing in the
complex, driven by massive star feedback (Smith et al. 2008,
2010; Preibisch et al. 2011b; Gaczkowski et al. 2013). Coupled
with its low line of sight extinction, the Carina Nebula is there-
fore an ideal laboratory in which to study massive star formation.
For a review of the region see Smith et al. (2008).

3.1. Identification of stellar structure

We apply INDICATE to the stellar catalogue of 2790 stars for
the region as described by Kuhn et al. (2014), and plotted in
Fig. 4, with a nearest neighbour number of N = 5 and an
extended control distribution (CDB – see Appendix B). This
catalogue was selected because it covers an inner region of
the Carina Complex (∼0.38◦) which is rich in sub-structure,
containing at least 20 sub-clusters (detected by the original
authors) and includes the young Trumpler 14 (Tr14), Trum-
pler 15 (Tr15), Trumpler 16 (Tr16), Treasure Chest (TC) and
Bochum 11 clusters. The position and radius of the TC cluster in
Fig. 4 is as given by Dutra & Bica (2001), and the position and
radius of Tr14-16 and Bochum 11 clusters by the MWSC cat-
alogue (Kharchenko et al. 2013). On visual inspection, stars in
the North West (NW) region of the catalogue have significantly
higher degrees of association than those in the South East (SE)
region.

The top plot in Fig. 5 and left plots of Fig. 7, show the
distribution of stars with their index values and the boundaries

Table 2. Statistics for stars within the radial boundaries of the Tr14,
Tr15, Tr16, TC and Bochum 11 clusters with an index value of I5 > Isig.

Cluster Total Ī5 max I5

Tr14 470 (85.2%) 12.4 29.6
Tr15 75 (29.1%) 3.9 6.6
Tr16 212 (73.4%) 3.6 5.6
TC 25 (83.3%) 4.3 4.8

Bochum 11 10 (5.8%) 2.7 3.0

of the Tr 14-16, TC, Bochum 11 clusters overlaid. We define
a significance threshold – that is the value of I5 above which
a star is significantly clustered above random – of three stan-
dard deviations above the mean value expected from a ran-
dom distribution of the same size evaluated with N = 5 and
CDB, such that Isig = Īrandom

5 + 3σ = 2.3. All five clusters are
clearly identified by stars within their radial boundaries hav-
ing an index above the defined significance threshold. This is
an expected result as by definition the spatial distribution of
cluster stars – particularly at their centres – should display a
higher degree of clustering than a random (and background)
field.

Table 2 gives statistics on the index values derived for each
cluster. More than 80% of the stars within the bounds of Tr14
and TC clusters are clustered above random, which is markedly
larger than Tr15 (29.1%) and Bochum 11 (5.8%). Trumpler 16
has a comparable proportion of stars with index values above the
threshold to that of the Tr14 and TC clusters (73.4%) but unlike
the other four clusters these stars are not centrally concentrated
and instead are in less compact concentrations across the clus-
ter region, which is consistent with results of previous studies of
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Fig. 5. Index values, I5, calculated by INDICATE for the Carina region with positions of the Tr14, Tr15, Tr16, TC and Bochum 11 clusters overlaid
as black ellipses (top panel) and 19 sub-clusters identified by Kuhn et al. (2014) overlaid as red ellipses (bottom panel; see text for details). The
borders of our designated NW and SE regions are marked with blue dotted and green dashed lines respectively. Stars with an index value above
the significance threshold (I5 > 2.3) coloured as described by the colour bar. Grey dots are stars with I5 < 2.3.

the cluster’s structure (e.g. Wolk et al. 2011). Interestingly, stars
clustered above random in Tr15, Tr16 and TC have similar mean
index values – that is they have similar degrees of association and
clustering tendencies. Stars within the bounds of Tr14 display
the highest degree of clustering behaviour with a mean index
value a factor of 3 larger than those of the Tr15, Tr16 and TC
clusters. In addition, Tr14 also contains the most spatially clus-
tered stars in the Carina region, centrally concentrated at its core,
with stars here having up to an additional 137 stars in their local
neighbourhoods above that expected in a spatially random distri-

bution. By contrast, stars above the threshold within the bounds
of Bochum 11 display the lowest degree of clustering behaviour
of the five clusters – having a maximum of just 3 – 4 stars in
their local neighbourhoods above random. The high/low propor-
tion of stars within the radial boundary of Tr14/Bochum 11 with
an index value above the significance threshold, suggests these
clusters are the most and least tightly clustered respectively in
the region. In the absence of kinematic data however, we refrain
from drawing any conclusions as to the physical origin of this
trend.
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Fig. 6. Index values calculated for the OB population by INDICATE when applied to the entire stellar catalogue, Ipop,OB
5 (top panel); and OB

sub-sample, Isamp
5 (bottom panel; see text for details). Positions of the Tr14, Tr15, Tr16, TC, Bochum 11 and M (sub-) clusters are overlaid as black

ellipses. The borders of our designated NW and SE regions are marked with blue dotted and green dashed lines respectively. Coloured triangles
represent OB stars with an index value above the respective significance thresholds. Grey triangles are OB stars below the respective significance
thresholds.

The bottom plot in Fig. 5 shows the distribution of stars
with their index values and the positions of the 19 sub-clusters2

found by Kuhn et al. (2014), as stellar overdensities using finite
mixture models, overlaid. Fifteen sub-clusters are clearly iden-
tified with a significant number of members that have an index
value above the defined threshold. Four sub-clusters (F, P, R,

2 The 20th sub-cluster, their “G” cluster, is ignored in our analysis due
to its large angular extension across the centre of the region.

S ) do not contain any (or very few) stars spatially clustered
above random, suggesting these sub-clusters may not be real
clusterings but instead fluctuations in the dispersed population
field.

We now look at the clustering tendencies of individual stars
across the Carina Nebula. A total of 35.2% of stars in the cata-
logue are clustered above random. Stars in the NW region typi-
cally have higher index values than the SE region, with 49.9%
and 9.1% clustered above random respectively. To gauge the
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Fig. 7. Zoomed-in plots of clusters Tr14, Tr15, Tr16, TC and Bochum11 as shown in (Left panel) top of Fig. 5, (Middle panel) top of Fig. 6 and
(Right panel) bottom of Fig. 6.

significance of this difference between the NW and SE regions
we run a 2 sample K–S test of the index values for all stars in
the NW region against those for all stars in the SE region, with
a strict significance boundary of p < 0.01, finding a value of
p � 0.001 i.e. stars in the NW and SE regions have significantly
different clustering tendencies. This result is not entirely unex-
pected as the NW region is heavily sub-structured, containing
3/5 of the young clusters, and 12/19 of the sub-clusters detected
by Kuhn et al. (2014) – whereas the SE region is comparatively
sparsely populated and being shaped by radiative winds of the
Tr14 and Tr16 clusters (Smith et al. 2008). Therefore the dis-
parity of the SE and NW regions clustering tendencies is reflec-
tive of differences in the apparent star formation activity in these
regions.

3.2. Clustering tendencies of the OB population

We create a sub-sample of the OB stars in the catalogue. To iden-
tify OB stars a cross-match search of the catalogue with the SIM-
BAD3 database was performed, finding 134 stars listed as either
O or B spectral type. Thirteen of these have an ambiguous spectral
type or are flagged as being higher order systems so are excluded
from the sub-sample, leaving a final selection of 121 stars.

The term “mass segregation” is used interchangeably in the
literature to describe two quite different realisations. The first
definition (hereafter Type 1) refers to a system in which the mas-
sive stars are concentrated together at its centre; whereas the sec-
ond definition (hereafter Type 2) refers to a system in which the
3 http://simbad.u-strasbg.fr/simbad/
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Fig. 8. Index values calculated for the OB population by INDICATE when applied to the entire stellar catalogue, Ipop,OB
5 , and the sub-sample, Isamp

5 .
Dashed black lines represent the respective significance thresholds (see text for details). Red Triangles represent OB stars within the radius of
Trumpler 14 (top left) Trumpler 15 (top right) Trumpler 16 (bottom panel).

massive stars are in stellar concentrated regions, but are not nec-
essarily concentrated together.

As the index quantifies the degree of association of stars,
it by definition identifies (and quantitatively measures) Type
2 mass segregation as values are assigned to stars based on
the degree of spatial clustering in their local neighbourhood.
Figures 6 and 7 show the index distribution of the OB stars with
the positions of the Tr14-16, TC, Bochum 11 and M (sub) clus-
ters overlaid. We find the Tr14, Tr15, Tr16, TC, Bochum 11 and
M (sub) clusters have signatures of Type 2 mass segregation. A
total of 57.0% of OB stars are clustered above random, which is
notably higher than the general populations 35.2% (Sect. 3.1) i.e.
cluster concentrations are more frequent around massive stars
than typical for stars in this region. Massive stars in the NW
region have notably different clustering tendencies to those in
the SE region, with 68.1% and 18.5% clustered above random
respectively. To gauge the significance of this difference we run
a 2 sample K–S test of the index values for all sub-sample stars
in the NW region against those for all sub-sample stars in the
SE region, with a strict significance boundary of p < 0.01,
finding a value of p � 0.001, which confirms OB stars in the
NW and SE regions have significantly different clustering ten-
dencies. These results show signatures of Type 2 mass segre-
gation are present across Carina but are primarily found in the
NW region.

It is also possible to use our tool to find signals of the
“classical” Type 1 mass segregation. We apply INDICATE to
the sub-sample of OB stars with a nearest neighbour number of

N = 5 using an extended control distribution (CDB) and define
a significance threshold – that is the value of I5 above which a
star is significantly clustered above random – of three standard
deviations above the mean value expected from a random distri-
bution of the same size evaluated with N = 5 and CDB, such
that Isig = Īrandom

5 + 3σ = 2.1. As the index is a quantitative mea-
sure of the degree of clustering of OB stars with other OB stars,
it is a local measure of Type 1 mass segregation. We find the
massive population is notably more self-clustered than is typi-
cal amongst the general stellar population with a total of 64.5%
of stars in the sub-sample clustered above random (∼ a factor
of two larger than for the general population). The Tr14, Tr15
and Tr16 clusters have signatures of Type 1 mass segregation
with a significant number of OB members more clustered than
expected for a random distribution, and mean index values of OB
stars within their cluster radii of Isamp

5 = 5.4, 3.0 and 3.9 respec-
tively. Neither the TC or Bochum 11 clusters have signatures of
mass segregation, with mean index values of 0.2 and 0.8 respec-
tively. Massive stars in the NW region have completely different
clustering tendencies than the SE region, with 83.0% and 0.0%
clustered above random respectively. To gauge the significance
of this difference we run a 2 sample K–S test of the index val-
ues for all sub-sample stars in the NW region against those for
all sub-sample stars in the SE region, with a strict significance
boundary of p < 0.01, finding a value of p � 0.001, which
confirms OB stars in the NW and SE regions have significantly
different clustering tendencies. These results clearly show that
signatures of Type 1 mass segregation are present in the NW
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region but not in the SE region – massive stars here are not spa-
tially concentrated together above random.

Finally, we look for correlations in the clustering behaviour
of OB stars – is there a relation between the stellar concentra-
tions around massive stars and the self-concentration of the OB
population in the Carina region? Figure 8 shows a comparison of
the index values derived for the OB population of Tr14, Tr15 and
T16 from the application of INDICATE to (1) the entire stellar
catalogue (Sect. 3.1) and (2) the OB sub-sample (Sect. 3.2). In
both Tr14 and Tr15 there is a clear trend between the concen-
tration of OB stars and the concentration of (lower mass) stars
around OB stars: while there is a maximum degree of associa-
tion an OB star can have w.r.t. other OB stars, stellar concentra-
tions around an OB star may continue to increase. We find that
Tr16 does not follow this trend, which is consistent with what
is known about the structure of the Trumpler clusters. Unlike
the Tr14 and Tr15 clusters, Tr16 does not have a strong cen-
tral concentration but instead is irregularly shaped and heavily
sub-structured with multiple sub-clusters (Ascenso et al. 2007,
Wang et al. 2011, Wolk et al. 2011). Thus the index values of
Tr16 reflect that the OB stars are not clustered together in a sin-
gle concentration with a (near) constant degree of clustering, but
are instead scattered across a region with local concentrations of
stars and a variable degree of association.

4. Conclusions

We have developed a powerful novel statistical clustering tool
called INDICATE (INdex to Define Inherent Clustering And
TEndencies) to study the intensity, correlation and spatial distri-
bution of point processes in discrete astronomical datasets. The
tool assesses the clustering tendency of each object in a dataset
and assigns it an index I j,N (Eq. (5)), using a nearest neigh-
bour approach by comparing the spatial distribution of objects in
its local neighbourhood with that expected in an evenly spaced
uniform (i.e. definitively non-clustered) distribution. INDICATE
requires no a priori knowledge of, and makes no assumptions
about, the shape of a distribution, presence/number of clusters
and/or sub-structure of a dataset.

For any application of INDICATE there are three variable
parameters: (1) size and (2) number density of the distribution
it is being applied to; and (3) the Nth nearest neighbour number
used by the tool. We calibrated our tool against random distribu-
tions to define statistically significant values of I j,N (see appen-
dices) finding:
1. There is a logarithmic relationship between the maxi-

mum I j,N value for a random distribution and sample size
(Eq. (A.2)).

2. I j,N is independent of a distributions number density.
3. There is a relationship between the typical modal I j,N value

for a random distribution and the chosen Nth nearest neigh-
bour number (Eq. (A.3)).

4. The size of the control distribution is essentially arbitrary,
as the modal difference between I j,N values calculated for a
random distribution using the standard size (Sect. 2.1) and
an expanded size (Appendix B) is inversely proportional the
the Nth nearest neighbour number (Eq. (B.3)). However, care
should be taken when including/excluding points which are
on the boundary of a chosen significance threshold value of
I j,N based solely on their index values during an analysis,
particularly for indices derived for small sample sizes using
large nearest neighbour numbers.

5. Uniformly distributed (interloping) field stars in observa-
tional datasets typically do not significantly affect the index

values of true cluster members. The error on the index value
derived for true cluster members is given by Eqs. (C.1)–
(C.3).

6. If interloping field stars are distributed in a gradient, the
index derived for true cluster members is independent of gra-
dient shape for small nearest neighbour numbers (N = 3).
However, as field stars are also assigned index values, care
must be taken when drawing conclusions on the physical
origins of the clustering tendencies of stars in the dataset.

One of the primary strengths of our tool is its versatility and
flexibility to be applied to a user-defined analysis. In this paper
we demonstrated one potential application of the tool – to look
for signals of mass segregation and trace variations in degree of
stellar association in star forming regions/clusters.

Arguably the three most popular established methods to
identify mass segregation are: (i) Radial Mass Functions (e.g.
Sagar et al. 1988), (ii) the ΛMSR parameter (Allison et al. 2009),
and (iii) the Local Density Ratio (Maschberger & Clarke 2011;
Küpper et al. 2011; Parker 2014). Each have their respective
strengths and weaknesses (see Parker & Goodwin 2015 for a
discussion), but primarily the decision of which method one
employs is based upon what type of mass segregation one is
searching for. In the literature, “mass segregation” is used inter-
changeably to describe two quite different realisations: (1) the
concentration of massive stars together at a system’s centre and
(2) (lower mass) stellar concentrations around the massive stars
in a system but which are not necessarily concentrated together.
In our case, we are interested in better understanding the role
of local and global environmental conditions in massive star
formation. Our aim therefore was to measure the degree of asso-
ciation (or lack thereof) of each high mass star with the gen-
eral stellar population and with each other, in young (<5 Myr)
regions, i.e. look for signatures of both types of mass segrega-
tion. For our purpose, it is ideal to employ a single method to
search for and quantify signatures of both types in a given region,
so that they can be directly compared and a quantitative analy-
sis of the impact of local environment formation conditions on
spatial structures undertaken. This is possible using INDICATE,
as demonstrated in Sect. 3.2.

Additional strengths of INDICATE are:
– Our tool does not require a priori knowledge of the centre,

and works independently of the shape, of the distribution.
– The index has been calibrated against random distributions,

so statistically significant values are easily identified.
– As I j,N is a measure of spatial association (not density), the

clustering behaviour (index values) of massive stars in two
or more regions can be directly compared, regardless of dif-
ferences in their distances, average angular separation of
sources and/or field sizes.

– It can provide both a global and local measure of Type 1
mass segregation. By definition I j,N is a local measure, and a
global measure can be obtained for the subset by e.g. calcu-
lating the mean index value of the massive stars and compar-
ing it to that expected by a random distribution (Sect. 3.2).

– Conclusions on Type 1 mass segregation in a system are
not based on the larger spatial distribution of other stars
in the system as a whole. Index values for high mass
stars are derived through comparison to a control distri-
bution, not internally with other sub-samples of the sys-
tem (low mass stars), and significant values are determined
through comparison to those expected in a random distri-
bution. Therefore high mass stars index values are indepen-
dent of the completeness of the resolved low mass population
census.
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– As a local measure, INDICATE is robust against outliers
as they (a) will not influence the index values of the other
members in a subset, (b) are easily identifiable by their com-
parative low index values and as such (c) in an global analy-
sis of a system to find signatures of Type 1 mass segregation
will have a statistically negligible effect on the overall con-
clusions drawn for the subset.

We applied our tool to the stellar catalogue of the Carina Nebula
(NGC 3372) by Kuhn et al. (2014), a region chosen because of
its known high mass stellar content (>130 OB stars) and exten-
sive sub-structure:
1. We recover known stellar structure in the region, including

the Tr14-16, Treasure Chest and Bochum 11 clusters.
2. We find members of the 4/19 sub-clusters identified by

Kuhn et al. (2014) as stellar overdensities are more clus-
tered than typical for the extended distribution of stars in
the Carina region, but contain no, or very few, stars with a
degree of association above random. This suggests these sub-
clusters may be fluctuations in the dispersed population field
rather than real clusters.

3. Stars in the NW and SE regions have significantly different
clustering tendencies. The NW region is known to be heavily
sub-structured, whereas the SE is more sparsely populated
and being shaped by radiative winds of the Tr14 and Tr16
clusters (Smith et al. 2008). Therefore this result is reflective
of differences in the apparent star formation activity in these
regions. Further study is required to ascertain the physical
origin of that difference.

4. The different clustering properties between the NW and SE
regions are also seen for OB stars and are even more pro-
nounced.

5. There are no signatures of classical (Type 1) mass segrega-
tion present in the SE region – massive stars here are not
concentrated together above random.

6. Stellar concentrations are more frequent around massive
stars than typical for the general population, particularly in
the young Tr14 cluster.

7. For Tr14 and Tr15 we find a relation between the concen-
tration of OB stars and the concentration of (lower mass)
stars around OB stars. This relation is notably absent from
Tr16. Unlike the Tr14 and Tr15 clusters, Tr16 does not
have a strong central concentration but instead is irregularly
shaped and heavily sub-structured with multiple sub-clusters
(Ascenso et al. 2007, Wang et al. 2011, Wolk et al. 2011).
Therefore this result reflects the known structure of the

clusters: Tr14 and Tr15 are centrally concentrated, whereas
in Tr16 the OB stars are not clustered together in a single
concentration with a (near) constant degree of clustering, but
are instead scattered across a region with local concentra-
tions of stars and a variable degree of association.
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Appendix A: Calibration of the index

Table A.1. Constants of Eq. (A.2) for a Nth nearest neighbour number
of N = 3, 5, 7 and 9 with their respective fit correlation coefficient (R)
and standard error (SE).

N C1 C2 R SE

3 2.508 0.489 0.831 0.047
5 2.291 0.361 0.851 0.032
7 2.244 0.206 0.796 0.023
9 2.093 0.197 0.777 0.023

We conduct a series of baseline tests to aid interpretation and
identification of significant index values. These tests (a) define
the threshold at which an index value becomes significant i.e. the
value above which it can reasonably be assumed point j was not
drawn from a random distribution and (b) quantify the impact
of dataset parameters and the choice of Nth nearest neighbour
number on the distribution and range of index values INDICATE
generates.
(i) Sample size
We generate random samples of size, S , in the range 50 ≤ S <
100 000. For each sample size 100 realisations are created with
a constant number density of nobs = 1 object per unit area and
INDICATE is implemented with a Nth nearest neighbour num-
ber of N = 5. We keep the number density and Nth nearest neigh-
bour number for every sample constant to ensure any identified
trends or patterns in samples’ index values can be attributed to
sample size alone.

There is no dependence between the index and the size of
a sample, with typical modal and mean values of Mo[I5] = 0.8
and Ī5 = 1.0 for random distributions under the above stated
conditions. However, we find there is a logarithmic relationship
between the upper range limit4 of I j,N and sample size for ran-
dom distributions, i.e.

0.0 ≤ I j,N ≤ Imax, (A.1)

where

Imax = C1 + C2 × log10 S, (A.2)

and C1,C2 are constants which are dependant on the Nth near-
est neighbour number (see Table A.1). Equation (A.2) defines as
a function of sample size the threshold value above which we
can definitively assume a point does not have a spatially random
distribution.

(ii) Field density
We generate random samples of number density, nobs, in the
range 10−6 ≤ nobs ≤ 106, in increments of an order of mag-
nitude. For each value of number density 100 realisations are
created, with a constant sample size of 10 000 and INDICATE is
implemented with a Nth nearest neighbour number of N = 5. We
find there is no dependence of I j,N on field density.

(iii) Nth nearest neighbour number, N.
We generate a 100 realisations of random samples of size S =
10 000 and number density nobs = 1. For each sample INDI-
CATE is implemented with a Nth nearest neighbour number
of N = 3, 5, 7 and 9. There is a relationship between the

4 Derived as the maximum value over all realisations.

upper range limit of I j,N , sample size and Nth nearest neighbour
number (Eq. (A.2), Table A.1). The typical modal index value,
Mo[I j,N], of randomly distributed samples vary as a function of
N:

Mo
[
I j,N

]
≡

N − 1
N
· (A.3)

The typical mean index values of randomly distributed sam-
ples are 0.9 ≤ ĪN ≤ 1.0.

Appendix B: Investigation of edge effects

Section 2.1.2 described how the control distribution used by
INDICATE is generated. Here we investigate whether the prox-
imity of a point in a dataset to its delimited boundaries and/or
the total length of each axis of the control distribution influ-
ences a sample’s index values. We repeat the calibration tests
(Appendix A) using two different types of control distribution:
1. Control distribution A (CDA) – occupies the same bounded

parameter space and has the same number density (Eq. (2))
as the test sample;

2. Control distribution B (CDB) – occupies the same, and is
extended beyond the, bounded parameter space of the test
sample; such that area of the control distribution is a fac-
tor of four times larger than the test sample (see Fig. B.1).
Increasing the area of the control distribution by a factor of
four ensures that the r j of edge points in the test sample
(Eq. (4)) is not calculated using edge points of the control
distribution (which in principle could subsequently increase
r̄, and decrease I j,N). It has the same number density as the
test sample (Eq. (2)).5

We define an “edge point” as any point in the sample dataset
whose (x,y) position is less than that of the second smallest x
and/or y positions and/or greater than the second largest x and/or
y positions of points in CDA (i.e. where the measured nearest
neighbour distance of the sample point to the control distribution
points would be affected due to lack of control points in any
given direction in the control distribution for point j).

For N > 5 the modal index value of edge points, Mo[I E
j,N],

deviates from that of the sample as a whole using CDA
(Eq. (A.3)), such that

Mo
[

IE
j,7

]
≡

N − 2
N

for N = 7 , (B.1)

Mo
[

I E
j,9

]
≡

N − 3
N

for N = 9. (B.2)

For a proportion of all (edge and non-edge) points in the test
samples’ there is a statistically small discrepancy between the
index values calculated using CDA and CDB. The modal differ-
ence between the two sets of indices is inversely proportional to
N i.e.

Mo
[

∆I j,N

]
≡ Mo

[
I CDA

j,N − I CDB
j,N

]
≡

1
N

for N ≥ 3, (B.3)

where I CDA
j,N and I CDB

j,N are the index values calculated for each
sample point j using CDA and CDB respectively. For any given
point j if

∆I j,N > 0 ↔ I CDA
j,N > I CDB

j,N . (B.4)

5 For samples with non-rectangular delimited areas this distribution
should always be used.
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Fig. B.1. Dimensions of control distributions CDA (blue shaded) and
CDB (all visible) as described in Appendix B, where Lx and Ly are the
length of a test sample’s x and y axis respectively; and the black dots
are the points of the control distributions.

The proportion of all points with ∆I j,N > 0 increases with
decreasing sample size and increasing nearest neighbour num-
ber, reaching ∼90% for sample size of S = 50 using N = 9;
it is independent of field density. The number of edge points
with ∆I j,N > 0 is proportionally lower than non-edge points i.e.
expanding the control distribution has less of an effect on edge
points than non-edge points. This is because the r j measured for
edge points in CDB is (slightly) smaller than in CDA (as it is no
longer artificially increased due a lack of control points in any
given direction), which subsequently causes a small decrease in
r̄ (Eq. (3)). In both control distributions a radius of r̄ from an
edge point can partially encompass an area outside the bounds of
the dataset (where there can be no neighbouring points), but for
non-edge points a radius of r̄ always encompasses an area within
the bounds of the dataset (neighbouring points can be present in
any given direction within r̄). Thus a small decrease in r̄ is more
likely to exclude a nearest neighbour (decrease Nr̄, and subse-
quently I j,N – Eq. (5)) for a non-edge point than an edge point.

To conclude, as the typical ∆I j,N for any given point between
the two control distributions is very small, choice of control dis-
tribution type (CDA or CDB) is essentially arbitrary, but care
should be taken when including/excluding points which are on
the boundary of a chosen significance threshold value of IN dur-
ing an analysis – particularly indices derived for small sample
sizes using large nearest neighbour numbers.

Appendix C: Investigation of field effects

To ascertain the influence of interlopers on the index values of
true cluster members we conduct additional calibration tests. A
dataset consisting of a Gaussian cluster with 500 members is
generated and the index value of each member determined using
the steps outlined in Sect. 2.1.

Table C.1. Constants of Eqs. (C.2), (C.3) for a Nth nearest neighbour
number of N = 3, 5, 7 and 9.

N C3 C4 C5 C6 C7

3 2.549 0.510 4.725 0.830 −6.077
5 2.033 0.438 3.394 2.133 −3.844
7 1.617 0.320 3.715 1.467 −4.140
9 1.421 0.306 3.156 1.867 −3.559

In our first test, field stars are introduced to the dataset with
incrementally increasing frequency, such that the number of
interloping field stars at any given time is equal to a fraction, F,
of total cluster members in the range 0.01 ≤ F ≤ 1.0. The posi-
tions of the field stars are randomly drawn from a uniform distri-
bution. For each fraction of field stars 100 realisations are made,
and for each realisation the difference, ∆I j,N , between the index
values derived for cluster members in the dataset that does not
contain field stars and the current level of field star contamina-
tion is measured for a Nth nearest neighbour number of N = 3, 5,
7 and 9. As we are simulating an observational dataset for which
cluster membership is uncertain, Ntot = S = 500 + (F × 500).

We find the modal difference for all combinations of F and
N is Mo[∆I j,N] = 0, i.e. typically the index values of true cluster
members are unaffected by the presence of interloping field stars.
The proportion of cluster members with ∆I j,N , 0 increases
with increasing F and N, reaching a maximum of ∼95% for
F = 1.0 and N = 9. In observationally obtained datasets the
error on the index value derived for true cluster members is
therefore

I j,N + F2 ≤ I j,N ≤ I j,N + F1, (C.1)

where

F1 = max
[
∆I j,N

]
= C3 + C4 × log (F) , (C.2)

F2 = min
[
∆I j,N

]
= C5 × exp (C6 × F) + C7, (C.3)

and C3−7 are constants dependant on the Nth nearest neighbour
number (see Table C.1).

In our second test F = 1.0 field stars are distributed in three
large scale gradient patterns (Fig. C.1) which are randomly gen-
erated in the same parameter space as the Gaussian cluster. For
each gradient 100 realisations are made, and for each realisation
the difference, ∆I j,N , between the index values derived for clus-
ter members in the dataset that does not contain field stars and
the current level of field star contamination is measured for a Nth
nearest neighbour number of N = 3, 5, 7 and 9. As we are simu-
lating an observational dataset for which cluster membership is
uncertain, Ntot = S = 500 + (F × 500) = 1000.

We find the modal difference for all gradients with N = 3
is Mo[∆I j,N] = 0, i.e. for small values of N the index derived
for cluster members is independent of gradient shape. This is
expected as the index is a local measure, and the value of N
essentially defines its resolution (the smaller N, the higher the
resolution). Thus index values are more susceptible to the effects
of variation in the degree of field star association within the gra-
dient when larger values of N are employed.

As noted previously, INDICATE is distance independent for
a fully resolved dataset. However, in practice, clearly INDICATE
cannot detect unresolved binaries and higher order systems in
datasets nor a priori know any difference between a member
of a grouping and a fore- or background field star. Even with
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Fig. C.1. A realisation of the three gradient field population shapes tested in Appendix C.

best efforts, not all field stars will be removed from observa-
tionally obtained datasets before analysis, so consideration must
be given before drawing conclusions about the clustering ten-
dencies of region stars. In particular, when a pronounced large
scale 2D spatial distribution gradient of the field population is
present, and cluster membership is uncertain, caution must be
taken when drawing conclusions about the physical origins of
the clustering tendencies of stars – as field stars within the denser

regions of the gradient naturally will have a higher degree of
association and thus index. Similar care must be taken when
interpreting index values for 2D datasets in which a smaller
angular resolution cluster is superimposed onto a larger angular
resolution cluster, or that contains two clusters at significantly
different distances. Simulations and bootstrapping techniques
can be used to test the magnitude of such effects on individual
datasets.
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