Data Completion Method For the Helmholtz Equation Via Surface Potentials for Partial Cauchy Data - Archive ouverte HAL
Article Dans Une Revue Inverse Problems Année : 2020

Data Completion Method For the Helmholtz Equation Via Surface Potentials for Partial Cauchy Data

Résumé

We propose and study a data completion algorithm for recovering missing data from the knowledge of Cauchy data on parts of the same boundary. The algorithm is based on surface representation of the solution and is presented for the Helmholtz equation. This work is an extension of the data completion algorithm proposed by the two last authors where the case of data available of a closed boundary was studied. The proposed method is a direct inversion method robust with respect to noisy incompatible data. Classical regularization methods with discrepancy selection principles can be employed and automatically lead to a convergent schemes as the noise level goes to zero. We conduct 3D numerical investigations to validate our method on various synthetic examples.
Fichier principal
Vignette du fichier
PartialData.pdf (1.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02416548 , version 1 (17-12-2019)

Identifiants

Citer

Matthieu Aussal, Yosra Boukari, Houssem Haddar. Data Completion Method For the Helmholtz Equation Via Surface Potentials for Partial Cauchy Data. Inverse Problems, 2020, 36 (5), pp.055012. ⟨10.1088/1361-6420/ab730c⟩. ⟨hal-02416548⟩
172 Consultations
271 Téléchargements

Altmetric

Partager

More