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  L'archive ouverte pluridisciplinaire

In the US, elementary algebra and other developmental courses have consistently been identified as barriers to student degree progress and completion in college, with only as few as one fifth of students ever successfully completing a credit-bearing math course (e.g., [START_REF] Bailey | Referral, enrollment, and completion in developmental education sequences in community colleges[END_REF]. There is evidence that students struggle in these courses because they do not understand fundamental algebraic concepts (e.g., [START_REF] Givvin | What community college developmental mathematics students understand about mathematics, Part II: The interviews[END_REF][START_REF] Stigler | What community college developmental mathematics students understand about mathematics[END_REF], and many research studies have documented the negative consequences of learning algebraic procedures without any connection to the underlying concepts (e.g., [START_REF] Hiebert | The effects of classroom mathematics teaching on students' learning[END_REF]. However, developmental mathematics classes currently focus heavily on recall and procedural skills without integrating reasoning and sense-making [START_REF] Goldrick-Rab | What Higher Education Has to Say about the Transition to College[END_REF][START_REF] Hammerman | Strategies for Developmental Mathematics at the College Level[END_REF]. This focus on procedural skills in isolation may actually be counter-productive, in that students may often attempt to use procedures inappropriately because they lack understanding of when and why the procedures work (e.g., [START_REF] Givvin | What community college developmental mathematics students understand about mathematics, Part II: The interviews[END_REF][START_REF] Stigler | What community college developmental mathematics students understand about mathematics[END_REF].

In this paper we explore student responses to conceptual questions at the end of an elementary algebra course in college. We combine quantitative analysis of responses (using latent class analysis and distractor analysis) with qualitative analysis of cognitive interviews to better understand different typologies of student reasoning around some basic concepts in algebra, and to better understand how conceptual understanding and procedural fluency may relate to one another in this context.

Research questions

Is there a latent class structure that adequately represents the heterogeneity of item responses on an algebra concept inventory among college developmental algebra students? If so, are patterns observed with distractor analysis, procedural assessment scores, and qualitative analysis of cognitive interviews consistent with the class structure, and can they contribute to class interpretation?

Theoretical framework

In this paper we use Fishbein's (1994) typology of mathematics as a human activity as a framework for analyzing student responses and thinking about how conceptual understanding and procedural fluency might inform one another. Fishbein outlines three basic components of mathematics as a human activity: 1) the formal component (which we call conceptual understanding), which consists of axioms, definitions, theorems and proofs, which need to be "invented or learned, organized, checked and used actively" (p. 232) by students; 2) the algorithmic component (which we call procedural fluency), which consists of skills used to solve mathematical problems in specific contexts and stems from algorithmic practice; and 3) the intuition component, which is an "apparently" self-evident mathematical statement that is accepted directly with the feeling that no justification is necessary.

In this study we use the term conceptual understanding not only to denote a formal understanding of abstract concepts (e.g. axioms), but also of how, when, and why procedures can be used. This is in contrast to procedural fluency in standard problem contexts, in which a student may be able to quickly solve particular types of standard problems correctly but may not understand of how, why, or when these methods work. We say that an item tests conceptual understanding if a student must use logical reasoning grounded in mathematical definitions to answer correctly, and it is not possible to arrive at a correct response solely by carrying out a procedure or restating memorized facts. We define a procedure as a sequence of algebraic actions and/or criteria for implementing those actions that could be memorized and applied correctly with or without a deeper understanding of the mathematical justification. Using these definitions, no question is wholly conceptual or procedural, but falls on a spectrum. We recognize that the definition of conceptual understanding and its relationship to procedural fluency has been much debated in the research community with no clear consensus (e.g., [START_REF] Baroody | An alternative reconceptualization of procedural and conceptual knowledge[END_REF][START_REF] Star | Reconceptualizing procedural knowledge[END_REF], and that the two forms of knowledge are interrelated (e.g., [START_REF] Hiebert | Conceptual and procedural knowledge in mathematics: An introductory analysis[END_REF]National Research Council, 2001).

In fact, each of Fishbein's three components may interact. Intuition may facilitate learning when it is consistent with logically justifiable truths (i.e. the formal component) but may also be an obstacle to learning in cases where it is inconsistent. In this paper we explore how students who develop algorithmic/procedural skills in isolation from formal/conceptual understanding may be prone to developing intuitions that are inconsistent with logically justifiable truths, and as a result, may exhibit simultaneously increased procedural fluency in standard problem contexts and decreased conceptual understanding. We consider how student justifications of answer choices may exhibit intuition components (which may be either correct or incorrect), and we consider how these intuitions may relate to both the processes of developing procedural fluency as well as conceptual understanding.

Methods

This study focuses on student responses to the multiple choice questions on the Elementary Algebra Concept Inventory (EACI). For details on the development and validation of the EACI, see [START_REF] Wladis | Development of the Elementary Algebra Concept Inventory for the College Context[END_REF]). Here we focus on 698 students who took the inventory at the end of their elementary algebra class in 2016-2017. In order to supplement quantitative data, 10 cognitive interviews were conducted towards the end of the semester with students who were enrolled in an elementary algebra class and were analyzed using grounded theory [START_REF] Glaser | The Discovery of Grounded Theory: Strategies for Qualitative Research[END_REF], although a full qualitative analysis is not presented here due to space constraints. All students currently enrolled in the course were recruited via email to complete the EACI and then to be interviewed about their thinking immediately afterwards. The distribution of interviewees among the three classes was not significantly different from the whole quantitative sample.

In this paper we used latent class analysis (LCA) of the nine binary scored (right/wrong) multiplechoice items on the inventory. LCA is a latent variable model that presumes that items are locally independent conditional on a discrete nominal latent variable (e.g., [START_REF] Collins | Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral and Health Sciences[END_REF].

Description of the classes

Latent class analysis on binary (correct/incorrect) scoring of the items was used to look for common response patterns among the students in the quantitative sample, and this analysis revealed three distinct classes of students. While latent class analysis was used to generate the three classes, more fine-grained analyses was needed to generate potential interpretations of each class. After the initial classes were generated by latent class analysis, item response patterns, distractor analysis, and qualitative coding of cognitive interviews were used to generate characterizations of each class, and evidence was found among these different complementary approaches for the following potential characterizations of each class. The remainder of this paper describes in more detail the different approaches that were used to develop the class interpretations presented here:

• C1 (27%): Answers to most items are indistinguishable from random guessing, likely due to low procedural/conceptual knowledge, low self-efficacy, and/or low motivation. • C2 (28%): Likely have some procedural skills but limited conceptual understanding.

• C3 (45%): Likely have procedural skills and emergent conceptual understanding.

These descriptions emerged from different analyses of the data. Firstly, we consider the response patterns of students from each of the three classes, and we see some clear trends (see Figure 1). Student responses in class 1 do not vary much from what would be expected for random guessing on four-option multiple choice items. While all of the items on the test were designed to test conceptual understanding, some of them (items 2, 3, 5, and 6) use more abstract or non-standard formulations of algebraic ideas. Class 2 answers significantly worse than chance on questions 2 and 6 because of the presence of attractive distractors that likely tap into misconceptions related to the misuse of procedures. Classes 2 and 3 are distinguished by improved performance on the items = 0.000).

overall as well as different proportions of key misconceptions. Students who passed the class were most likely to be in class 3, then class 2, and least likely to be in class 1. An end of course standardized assessment that measures procedural fluency in standard problem contexts showed a similar outcome. To illustrate how different response patterns distinguish these three classes, we performed a distractor analysis and analyzed cognitive interviews for three exemplars: items 2, 4, and 6. We used the Bayes modal assignment to determine the class membership of interviewees.

Three example questions: illustrating different class response patterns

First we consider Item 4: 4. Which of the following is a result of correctly substituting 𝑥 -4 for y in the equation 3𝑦 -2 = 𝑦 2 + 1

a. 3𝑥 -4 -2 = 𝑥 -4 2 + 1 b. 3𝑥 -4 -2 = 𝑥 2 -4 2 + 1 c. 3(𝑥 -4) -2 = (𝑥 -4) 2 + 1 d. 3𝑥 -3 ⋅ 4 -2 = 𝑥 2 (-4) 2 + 1
The correct answer is c. C1's responses are scattered in a pattern consistent with random guessing (see Figure 2). By contrast, C2 and C3 have a high probability of choosing the correct response, with C3's probability significantly higher than C2. This item is behaving the way we would expect if C1, C2, and C3 were ordered on conceptual ability. Selecting c is also highly correlated with scores on the procedural exam, corresponding to a score that is higher by 10.8 percentage points. (𝑝=0.000) 

C2 (chose C):

So usually when a math question says, "substituting" that's basically putting the numbers that they give you into 𝑥 or 𝑦 that they say to put it. I automatically substituted it in, and my correct answer was 3(𝑥 -4) -2… I didn't pick any other answer, because I didn't see the parentheses.

C3 (chose C):

I didn't choose A because when trying to multiply the 𝑦, which is 𝑥 -4, you have to put the parenthesis behind 3, unless you already multiplied 3 times 𝑥 -4… [choice D] does have parenthesis on -4, but then, it will be missing the complete equation for 𝑦 because -4 is not the only equation that equals to 𝑦𝑦 is 𝑥 -4.

In these examples, the C1 student demonstrates an intuition about substitution that the 𝑦 should be replaced with 𝑥 -4 in the equation, but this does not include an awareness of the equation structure (e.g., that the 𝑥 -4 must be treated as a single unit). The C2 student also demonstrates a partiallycorrect intuition that parentheses must be used around whatever is being substituted, but doesn't execute this procedure completely correctly on both sides, and doesn't demonstrate any awareness of why the parentheses are necessary. In contrast, the C3 student shows both an awareness of the need for the parentheses and an understanding of why the parentheses are logically necessarybecause without them, the structure of the equation will be altered. Now we consider item 6, which shows a different pattern of responses: The correct answer is b. C2 and C3 were strongly attracted to option a (see Figure 3), likely because they have intuitions stemming from their experiences with procedures associated with the distributive properties, but they do not recognize the critical differences between distributing multiplication versus exponents-likely because they have no deeper conceptual understanding of how the distributive property works. Unlike item 4, selecting the correct answer is negatively correlated (and selecting the attractive distractor was positively correlated) with scores on the procedural exam-students who selected the incorrect option a scored on average 7.1 percentage points higher on the procedural exam (𝑝 < 0.000) than others. This suggests that in this context (where procedures are typically taught in isolation from concepts) procedural fluency in standard problem contexts can be inversely related to conceptual understanding of the distributive properties.

Looking at student interview responses reinforces our interpretation of the three classes, and sheds light on how intuitions developed from procedural practice may impede conceptual understanding. C2 (chose A): I feel like that's correct because in order to solve 𝑥² and 𝑦, you have to distribute…. Because I've seen problems like this before and it's like you have to solve it, there is no not solving it because there is no … there is no solution.

C1 (chose

C3 (chose A): That's how you kind of get rid of the parenthesis and get rid of the outer exponents by distributing it in the inside. Whether it's with another exponent or with a number… You want to add or multiply that exponent [outside the parentheses] to the ones inside the parentheses but I can't remember whether you add or multiply…

In these examples, the C1 student notices that there is a difference between the two equations and has an intuition that it is important, but doesn't actually know how to perform the distribution correctly. For the C2 and C3 students, we see a number of ways in which students are citing incorrect intuitions that stem from algorithmic experience-we have included only a few samples here. None of the students interviewed was able to describe when and why it is possible to distribute-they all cited incorrect intuitions related to procedural methods that they had learned in class. Next we consider item 2, which reveals another interesting pattern of responses: For this question, the correct answer is b, (the most popular choice for students in classes 1 and 3) but no examinee in class 2 chose it (see Figure 4). They were strongly attracted to option d, which was also the second most popular choice for students in both of the other classes, although at a much lower rate. Option d is a common response from students asked to solve a system of linear equations for x and y, which may explain its popularity. Both C2 and C3 were attracted to option d, again suggesting they are attempting to apply inappropriate procedural reasoning. This item is responsible for the notable separation between C2 and C3 because no examinee in C2 chose the option b, the correct response. Looking at student interview responses reinforces our interpretation of the three classes, and sheds light on students' reasons for choosing both correct and incorrect options. C2 (chose D): What I assumed was the x term and the y term, you would have to substitute. And I know there are certain numbers that will add up to ten, so there could be two solutions, since there's only a x term and a y term… Like x could equal 5, y could equal 5… since it is two terms, so you could say two different solutions.

C1 (originally chose

C3 (chose B):

Ten could equal to many things. Like five plus five could equal ten. Nine plus one could equal ten. Seven plus three. That's why I chose that, because it could be any number that will equal to ten. It's not just one certain number.

The C1 student initially chose "no solution" because they didn't know what x and y could be, but as they discussed their answer, they started to relate this to the idea that x and y could be "anything". While their reasoning is not strictly correct, they are beginning to explore the idea that x and y may have many possible values, and they show no evidence of faulty intuitions stemming from procedural practice. The C2 student exhibits an intuition about what the equation means (perhaps from standard substitution problems) to find a single solution, but they do not explore whether there might be others. They also confuse the number of solutions with the number of variables in the solution set, suggesting that their intuitions about the definition of a solution set are likely incorrect. The student from C3 describes how this equation could have multiple solutions, demonstrating some conceptual understanding of solution sets, including the fact that they describe the relationship between the two variables.

Discussion and Limitations

This study revealed several trends. Firstly, roughly one quarter of students at the end of the course appeared to guess somewhat randomly on conceptual questions, likely because of low knowledge, self-efficacy, or motivation. However, cognitive interviews suggest that these students may be able to make some progress towards conceptual understanding by relying initially on more naïve reasoning and that they are not typically hindered by incorrect intuitions stemming from misuse of procedures. About one quarter of students demonstrated some mastery of procedures in standard problem contexts, but demonstrated many misconceptions related to misuse of procedures. In contrast, roughly half the class showed evidence of emergent conceptual understanding, with lower frequency of misconceptions related to misuse of procedures. For a number of conceptual questions, particularly those that were more abstract or non-standard, conceptual understanding and procedural fluency were significantly strongly inversely related. Cognitive interviews revealed that this may happen when students develop incorrect intuitions stemming from the use of procedures.

Both local observation of courses at the research site, and national research literature on developmental mathematics classes in college (e.g., [START_REF] Goldrick-Rab | What Higher Education Has to Say about the Transition to College[END_REF][START_REF] Hammerman | Strategies for Developmental Mathematics at the College Level[END_REF] provides evidence that almost all instruction in this context teaches procedures isolated from underlying concepts, so this research may be revealing patterns specific to this type of instruction-it may be that repeated procedural practice in isolation may worsen certain kinds of conceptual understanding. We note that this study did not attempt to link student response patterns to specific types of instruction-there is a pressing need for future research to examine this relationship in order to determine which types of instruction impact student growth in conceptual understanding.
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 1 Figure 1: LCA profiles of student responses in each class
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 2 Figure 2: Item 4 Distractor Analysis Looking at student interview responses reinforces our interpretation of the three classes, and reveals how higher classes appear to have more robust and correct intuitions about substitution. C1 (chose B): It says 𝑥 -4 for 𝑦, this is what I think like because 𝑦 2 . It could be like changed to a 4 2 . I put together like 3𝑥 -4 -2 = 𝑥 2 -4 2 + 1. [I didn't pick c or d because] they [pointing to the 𝑥 -4 in the item stem] didn't have no bracket around them. [I picked B with the 𝑥 2 in it instead of A, which doesn't have the 𝑥 2 ] because 𝑥 equals 𝑦 2 so it has to have an 𝑥 2 in it because the 𝑦 is squared there.

6.

  A student is trying to simplify two different expressions: i. (𝑥 2 𝑦 3 ) 2 ii. (𝑥 2 + 𝑦 3 ) 2 Which one of the following steps could the student perform to correctly simplify each expression? a. For both expressions, the student can distribute the exponent. b. The student can distribute the exponent in the first expression, but not in the second expression. c. The student can distribute the exponent in the second expression, but not in the first expression. d. The student cannot distribute the exponent in either expression.
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 3 Figure 3: Item 6 distractor analysis

  B): [The difference between the first and second equation] is that there's a plus right there [pointing to the second equation]. I think for this one [pointing to the second equation], you have to add and for this one [pointing to the first equation] you don't…. Actually, I think like over here [pointing to the second equation] you add a 3. 3 plus 2. [For the first one] you do 𝑥 2 times 𝑥 2 and 𝑦 3 times 𝑦 3 .

2.

  Consider the equation x + y = 10. Which of the following statements must be true? a. There is only one possible solution to this equation, a single point on the line 𝑥 + 𝑦 = 10. b. There are an infinite number of possible solutions, all points on the line x + y =10 c. This equation has no solution. d. There are exactly two possible solutions to this equation: one for 𝑥 and one for 𝑦.

Figure 4 :

 4 Figure 4: Item 2 distractor analysis

C, but drifted towards B in the interview):

  𝑥 + 𝑦 equals nothing so it can't be 10. Right?... [Maybe infinite means] what could be like possible? I don't know. Like equal number maybe? 𝑥 + 𝑦 = 10. It could be possible like it equals 10. [D isn't correct] maybe because x and y could be equal to anything?