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Abstract

We propose a neural architecture with the main characteristics of the most successful neural
models of the last years : bidirectional RNNs, encoder-decoder, and the Transformer model.
Evaluation on three sequence labelling tasks yields results that are close to the state-of-the-
art for all tasks and better than it for some of them, showing the pertinence of this hybrid
architecture for this kind of tasks.
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1 Introduction

Sequence labelling is an important NLP task, many NLP problems can be modeled indeed
as sequence labelling. The most traditional labelling problems are Part-Of-Speech (POS)
tagging, syntactic chunking, Named Entity Recognition (NER) (Collobert et al., 2011), and
also Spoken Language Understanding (SLU) in the context of human-machine dialog systems
(De Mori et al., 2008).

Moreover there are other NLP problems that can be decomposed into several processing
steps, the first of which can be often modeled as a sequence labelling problem.

We can place among such problems the syntactic constituency parsing, which can be de-
composed into POS tagging and constituents analysis (Collins, 1997) ; the coreference chain
resolution (Soon et al., 2001; Ng & Cardie, 2002), composed of mention recognition from
raw text and coreferent mention detection ; and also the structured named entity recognition
(Grouin et al., 2011; Dinarelli & Rosset, 2012a,b).

More widely, machine translation and syntactic constituency parsing can be modeled as end-
to-end sequence prediction problems (Sutskever et al., 2014; Bahdanau et al., 2014; Vaswani
et al., 2017; Vinyals et al., 2015), as well as a wide class of language understanding tasks
(Devlin et al., 2018). It would be possible thus, at least in principle, to design a model for
sequence prediction in a multi-task learning framework, in order to deal with most of the
NLP tasks, which shows in turn the interest in the research for sequence modelling problems.

The NLP problems that can be decomposed into several processing steps can be solved also



with a single model. For example the syntactic constituency parsing can be performed end-
to-end with a model performing POS tagging and constituent analysis at the same time, e.g.
(Rush et al., 2012). However, even in such cases, pre-training representations with neural
networks and fine-tuning them afterwards on simpler tasks, like sequence labelling, can still
improve the prediction performance (Peters et al., 2018). We can also consider this training
procedure similar to embedding pre-training, which effectiveness has already beed proved
(Lample et al., 2016; Ma & Hovy, 2016).

In this paper we focus on neural architectures for sequence modelling in the sense this is
meant in problems such as POS tagging, morpho-syntactic analysis, and semantic chunking
and tagging. The latter is performed for SLU tasks in the context of human-machine dialog
systems (De Mori et al., 2008).

We inspired our work from (Chen et al., 2018), from which we also inspired the title of
our paper, and which proposes neural hybrid models combining the Encoder-Decoder (or
Sequence-to-Sequence) and Transformer architectures. We propose an architecture with the
main characteristics of the most successful neural models of the last few years : the bidi-
rectional RNNs (Lample et al., 2016; Ma & Hovy, 2016), the Sequence-to-Sequence model
(Sutskever et al., 2014; Bahdanau et al., 2014), and the Transformer (Vaswani et al., 2017).

We evaluate our architecture on three traditional tasks of sequence labelling : Spoken Lan-
guage Understanding (SLU) in French (MEDIA corpus) (Bonneau-Maynard et al., 2006),
POS tagging in English (WSJ corpus) (Marcus et al., 1993), and morpho-syntactic tagging
in German (TIGER corpus) (Brants et al., 2004). The results outperform often the state-of-
the-art, and allow in any case to conclude that our architecture finds its place among neural
architectures.

2 Neural Architectures

The proposed neural models are inspired from the LSTM+CRF architectures (Lample et al.,
2016; Ma & Hovy, 2016) in the way input encoding (tokens, characters, etc.) is performed.
They are inspired from the Sequence-to-Sequence architecture for the overall architecture,
and from the models proposed in our previous work (Dinarelli & Tellier, 2016a,b; Dinarelli
et al., 2017; Dupont et al., 2017; Dinarelli & Grobol, 2019) for making predictions based on
a bidirectional context on the output side (labels). Afterwards we added to this architecture
some of the characteristics of the Transformer model.

This work constitutes a step ahead with respect to (Dinarelli & Grobol, 2019). While we have
not run full experiments to show the improvements with respect to our previous work, and
results are equivalent in some cases, some outcomes suggest that the model proposed here is
more effective. In any case the model described here is more general, as the architecture has
been slightly modified so that it can be applied also to tasks like machine translation and
syntactic parsing, though we do not evaluate on these tasks in this work. Moreover in other
cases results are state-of-the-art, though they are obtained on data (TIGER) on which we
did not evaluate previously.



2.1 Encoder

The encoder of our network is made of a bidirectional GRU (Cho et al., 2014), which takes
as input a sequence Slex representing input tokens as the concatenation of word embeddings
(Ew(wi)) and representations computed from their characters hc(wi). The latter is computed
by an ad-hoc recurrent layer, in a fashion similar to those used in the literature Ma & Hovy
(2016), with the difference that we use a GRU recurrent layer instead of a convolution layer.

The character-level representation of a word w is computed like in (Dinarelli & Grobol,
2019) :

Sc(w) = (Ec(cw,1), . . . , Ec(cw,n))

(hc(cw,1), . . . , hc(cw,n)) = GRUc(S
c(w), h0c)

hc(w) = FFNN(Sum(hc(cw,1), . . . , hc(cw,n)))

(1)

where Ec is the matrix of character embeddings, cw,i is the i-th character of the word w,
Sc(w) is the sequence of character embeddings for the word w, GRUc is the GRU layer for
characters, hc(cw,i) is the hidden state associated to the i-th character of the word w. GRUc,
like GRUw, is a bidirectional GRU layer.

The full representation of the i-th word wi in a sequence is computed as :

Slex = ([Ew(w1), hc(w1)], . . . , [Ew(wN ), hc(wN )])

(hw1
, . . . , hwN

) = GRUw(Slex, h0w)
(2)

Since GRUw scans the sequence forward and backward, hwi
depends on the word wi and

its context. When additional features are available at token level, they are embedded in the
same way as words and concatenated to word embeddings in the sequence Slex.

2.2 Decoders

Our model uses a representation of both left and right context at label level like proposed in
Dinarelli & Tellier (2016a); Dinarelli et al. (2017); Dupont et al. (2017); Dinarelli & Grobol
(2019).

We use a
←−−−
GRUe backward layer for encoding the right context, and a

−−−→
GRUe forward layer

for the left context with respect to a given labelling position i in the input sequence. These
layers take as input the lexical level representation computed by the encoder and the label
embeddings Ee(ei), which makes them similar to the decoder used in the original Sequence-
to-Sequence architecture for machine translation Sutskever et al. (2014); Bahdanau et al.
(2014). An evolution with respect to such architecture is the use of two decoders, one for
the left label-level context and one for the right label-level context. This idea of using both
left and right context at the output item’s level has attracted some interest in the last few
years, and has been applied in different variants to machine translation (Xia et al., 2017;
Zhang et al., 2018a).

The right label-level context is computed by the backward
←−−−
GRUe decoder as follows :



←−
hei =

←−−−
GRUe([hwi

, Ee(ei+1)],
←−−−
hei+1

) (3)

The left label-level context
−→
hei is computed in a similar way by the forward

−−−→
GRUe decoder.

2.3 Output Layer

In order to allow the model to make global decisions when predicting the current label, we
add an output layer on top of the backward decoder, made of an affine transformation follo-
wed by a log-softmax activation. This computes log-probabilities of backward predictions :

log-P(←−ei ) = log-softmax(Wbw[hwi
,
←−
hei ] + bbw)

←−ei = argmax(log-P(←−ei ))
(4)

The forward decoder predicts labels using as input the label-level context representations−→
hei and

←−
hei , as well as the lexical level information hwi

computed by the encoder :

log-P(−→ei ) = log-softmax(Wo[
−→
hei , hwi

,
←−
hei ] + bo)

−→ei = argmax(log-P(−→ei ))
(5)

In order to strengthen the global character of the decision, the final output of the model
is computed as the arithmetic mean (in the log space, which gives a geometric mean of
probabilities) of the forward and backward log-probabilities : 1

2 (log-P(−→ei ) + log-P(←−ei )). This
teaches the model to compute real good predictions also in the backward phase, instead of
basing decisions on raw heuristics, or even on the forward (left) context only. Indeed, the
backward decoder has only a partial view of the output level information, while the forward
decoder uses both left and right context.

2.4 Learning

All models described in this paper are learned minimizing the minus log-likelihood LL of
the training data. More precisely :

− LL(Θ|D) = −
|D|∑
d=1

Nd∑
i=1

1

2
(log-P(−→ei ) + log-P(←−ei )) +

λ

2
|Θ|2) (6)

The first sum scans the data D of size |D|, while the second sum is over training examples
Sd, of size Nd.

Since data used in this work for evaluation are relatively small, while our models are relatively
complex, we add a Gaussian regularization term L2 with a coefficient λ.



2.5 The best of three worlds

The neural architecture described so far uses the same ideas introduced in (Dinarelli & Tel-
lier, 2016a; Dinarelli et al., 2017; Dupont et al., 2017; Dinarelli & Grobol, 2019) for predicting
labels using both representations of left (forward) and right (backward) contexts, and for
both input-level information (words, characters, etc.) and labels. Our model integrates also
the characteristics of bidirectional RNNs and of Encoder-Decoder architectures. Moreover
we use two decoders, instead of one like in the original architecture.

Starting from this neural architecture we added also some of the characteristics of the Trans-
former model.

We note that the paper from which we inspired our work (Chen et al., 2018) investigated the
combination of two Encoder-Decoder architectures, one based on recurrent layers (Sutskever
et al., 2014; Bahdanau et al., 2014), while the other is based on the Transformer model,
which is not a recurrent network. This work shows that such combination is possible and
effective compared to the two combined architectures.

In this work we combined three different architectures with the goal of putting together
their strengths, and trying to overcome some limitations.

First of all, in the tasks of sequence labelling used for evaluation in this work, there is
a one-to-one correspondence between input and output items (words and labels, respecti-
vely). Our preliminary experiments on mention detection for coreference resolution using a
Transformer, as well as some experiments in the literature (Guo et al., 2019), suggest that
ignoring such correspondence leads to a remarkable performance drop. 1 For this reason the
encoder and the decoders used in our architecture exploit the one-to-one correspondence of
sequence labelling tasks. We are aware though this information could not be used in real
sequence-to-sequence problems such like machine translation or syntactic parsing.

Second, we chose an Encoder-Decoder overall architecture since this proved to be the most
effective for sequence-to-sequence problems (including sequence labelling). Moreover, we
showed that keeping a label-level context into account, in some sequence labelling problems,
using a decoder is more effective than doing the same with a CRF neural layer (Dinarelli
et al., 2017), we will show the same also in this work. As we already mentioned, in our
architecture we use two decoders. This solution allows for an even more effective modelling
of a label-level context. This solution is not possible, at least in principle, with the original
Transformer model.

Third, we decided to integrate some of the characteristics of the Transformer in order to
overcome limitations of RNNs concerning the learning phase. As discussed in (Vaswani et al.,
2017), RNNs are difficult to train because of the length of paths the learning signal has to
back-propagate through. The length of such paths is the consequence of the recurrent nature
of the networks.

The Transformer model (Vaswani et al., 2017) proposed an alternative, non-recurrent Encoder-
Decoder architecture based on a multi-head attention mechanism. Recent works (Dehghani
et al., 2018; Dai et al., 2019) suggest however that using some kind of recurrent connections
Transformer ’s performance can be improved.

1. F1 measure drops more than 3 points using the Transformer in our experiments
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Figure 1 – High-level architecture, from a conceptual point-of-view, of each block of a
Transformer model (in the middle). On the left we show its instantiation in the Transformer,
on the right we show its instantiation in our architecture, where we use a bidirectional GRU
layer to encode contextual features

Another interesting characteristic of the Transformer is the use of residual connections, or
skip-connections (Bengio et al., 2003). This characteristic allows for alleviating the vanishing
gradient problem of deep networks. Indeed, the use of gates in recurrent networks reduces
the amplitude of this problem, however the literature and our own experiments suggest that
for long sequences, gates are not sufficient for an effective learning.

The attention mechanism does not suffer from this problem. Each element of the input
sequence is related to a small, fixed number of layers in the attention mechanism. The back-
propagation path of the learning signal is thus much shorter than that of RNNs. Moreover the
use of skip-connections contributes in keeping a higher learning signal amplitude, allowing
to skip a whole layer, over which the learning signal would be weakened (because of gradient
multiplications).

We can interpret each block of a Transformer architecture, both encoder and decoder, as
the combination of a sub-module which “encodes” contextual features, we call this sub-
module ctx-encoder, and a feed-forward sub-module which “maps” contextual features into
a deeper feature space, we call the second sub-module deep-encoder. The output of the two
sub-modules is added to their respective input (skip-connection) and normalized with a layer
normalization. This interpretation is shown in the figure 1 in the middle. Skip-connections
are highlighted in red.

The Transformer proposed in Vaswani et al. (2017) instantiate the generic architecture
described above using as ctx-encoder the multi-head attention mechanism, while it uses a
two-layer feed-forward network as deep-encoder. A single block of this architecture is shown
in the figure 1 on the left.

We modified our neural architecture for instantiating the generic architecture. In our solution
we use a bidirectional GRU layer as ctx-encoder, while we use exactly the same sub-module
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Figure 2 – Overall architecture of our model, this is the same as the model presented in
our previous work Dinarelli & Grobol (2019)

as the Transformer as deep-encoder. A block of our architecture is shown in the figure 1 on
the right.

The characteristics of the Transformer model we integrated in our architecture are thus the
skip-connections and layer normalization (Add&Norm in the figure 1), as well as the two-
layer feed-forward sub-module to re-encode contextual features once the skip-connection has
been applied (FFNN in the figure 1). Following the computation chain suggested by Chen
et al. (2018), the output of our encoder is computed as follows :

Ŝlex
i = Norm(Slex

i )

ĥwi
= GRUw(Ŝlex

i , hwi−1
)

hwi
= FFNN(Norm(Dropout(ĥwi

) + Ŝlex
i ))

(7)

where we use Norm for the layer normalization, and Dropout for a dropout regularization
(Srivastava et al., 2014). The other GRU layers of our architecture, introduced in previous
sections, are modified in a similar way.

In this work we don’t use any attention mechanism like in the Transformer, context is
granted by the use of GRU layers (cf. section 2.1). Our choice is motivated by the work
described in Levy et al. (2018), where it is shown that RNNs, such like GRU, can encode
long contexts as a weighted mean of the inputs, in a way that can be considered similar to
an attention mechanism. Moreover, using GRU layers avoid the use of positional encoding,
the sequential structure of an input sentence is encoded implicitly by the RNNs. 2

The overall architecture of our model is the same as our previous work (Dinarelli & Grobol,
2019) (cf figure 2), the difference is in the computation of layer’s output described in previous
sections.

2. We don’t exclude however that using positional encoding would improve our architecture



Training Dev Test
# sentences 12 908 1 259 3 005

Words Concepts Words Concepts Words Concepts
# tokens 94 466 43 078 10 849 4 705 25 606 11 383
dictionary 2 210 99 838 66 1 276 78
OOV% – – 1,33 0,02 1,39 0,04

Table 1 – Statistics of the French corpus MEDIA

Training Dev Test
# sentences 38 219 5 527 5 462

Words Labels Words Labels Words Labels
# tokens 912 344 – 131 768 – 129 654 –
dictionary 43 210 45 15 081 45 13 968 45
OOV% – – 22,61 0 20,00 0

Table 2 – Statistics of the English corpus WSJ

3 Evaluation

We evaluate our models on three tasks of sequence labelling :

The French corpus MEDIA (Bonneau-Maynard et al., 2006) was created for evaluating
spoken dialog systems in the context of hotel information and reservation in France. Data
have been annotated following a rich concept ontology. Simple semantic components can be
combined to create more precise and complex semantic units. 3 Concepts span in general
more than one word, the goal is thus to tag words and then reconstruct semantic units from
the tags. Statistics of the corpus MEDIA are shown in figure 1.

This task is modelled as sequence labelling splitting semantic units over multiple words using
the BIO formalism (Ramshaw & Marcus, 1995). We already evaluated on this task in the
past, using a large variety of probabilistic models (Dinarelli et al., 2009a,b; Quarteroni et al.,
2009; Hahn et al., 2010; Dinarelli, 2010; Dinarelli & Rosset, 2011; Dinarelli et al., 2011).

In the MEDIA corpus some word classes (clusters) are provided with the annotation. Such
classes allow for a better generalization on words belonging to categories for which lists can
be easily retrieved, or constructed, in the context of a real human-machine dialog system.
Examples of such classes are the name of cities in France (class CITY ), the hotel brands
(class HOTEL), currency amounts (AMOUNTS ), etc. We used these classes in some of our
experiments, this is indicated with FEAT in the tables of the following section.

The English Penn TreeBank corpus (Marcus et al., 1993), named WSJ henceforth, is
one of the most used corpus for evaluating models for sequence labelling. The task consists in
assigning each word its POS tag. For our experiments we use the most common data split :
sections 0-18 are used as training data, sections 19-21 as development data, and sections
22-24 are used for testing. Statistics of this corpus are given in the table 2.

The German corpusTIGER (Brants et al., 2004) is annotated with rich morpho-syntactic
information. These include POS tags like in the WSJ corpus, but also gender, number,
cases, and other inflection information, as well as conjugation information for verbs. The

3. For example the component localization (we translate from French) can be combined with city,
relative-distance, general-relative-localization, street, etc.



Training Dev Test
# sentences 40 472 5 000 5 000

Words Labels Words Labels Words Labels
# tokens 719 530 – 76 704 – 92 004 –
dictionary 77 220 681 15 852 501 20 149 537
OOV% – – 30,90 0,01 37,18 0,015

Table 3 – Statistics of the German corpus TIGER

combination of all these pieces of information constitutes the output labels. This task is
similar to the POS tagging from a sequence labelling point of view, however it is made more
difficult on one side by the language (German has more complex syntactic structures than
English), on the other side by the relatively large number of labels to be predicted (694 in
total, while there are 138 labels in MEDIA and 45 in the WSJ corpus). We use the same
data split used in (Lavergne & Yvon, 2017). Statistics of this corpus are given in the table 3.
As we can see from tables, the size of dictionaries, for both words and labels, is relatively
large in the WSJ and TIGER corpora.

We note that the Out-Of-Vocabulary (OOV) rate in the MEDIA corpus is quite small. Indeed
there are only two OOV words in both Dev and Test data, moreover they are function words.
There is basically no unknown word in this task. In contrast the OOV rate in both the WSJ
and the TIGER corpora is quite high : roughly one word out of five in the first and one out
of three in the second.

3.1 Settings

We used the corpus MEDIA for fine-tuning the hyper-parameters of our models in (Dinarelli
& Grobol, 2019). MEDIA is the smallest corpus among the three used, and allows thus a
faster optimization. The settings used in this work are the same as those used in (Dinarelli
et al., 2017; Dinarelli & Grobol, 2019), where the same data were used for evaluation (except
for the TIGER corpus). The settings for the WSJ corpus are the same, except for the word
embeddings (300 dimensions) and the learning rate (2,5× 10−4). We use the same settings
for WSJ and TIGER. Since the latter corpus is the largest, we ran few experiments to choose
the correct hidden layer size (300).

Like we already explained in (Dinarelli & Grobol, 2019), at first our experiments were not
fitting in the memory of our GPUs. In order to solve this problem we found two solutions.
In the first we organize the training data as a single stream of items. This is then split into
chunks of fixed size, shifting each chunk by one token with respect to the previous (thus
consecutive chunks overlap). The second solution is more intuitive and consists in clustering
sentences of the same length. This way, very long (rare) sentences are assigned to very small
clusters, thus fitting in memory, and small and average clusters form bigger clusters, which
still fit in memory. In our experiments we found out that the first solution works far better
on the MEDIA corpus. On the WSJ and TIGER corpora the two solutions are equivalent,
we thus prefer the second for these two tasks, which is more intuitive and is expected to
work better on bigger corpora.

Our neural network system is coded with pytorch 4, experiments are run under Linux Debian

4. https ://pytorch.org/docs/stable/index.html



Model Accuracy F1 CER

MEDIA DEV

Seq2Biseq (Dinarelli & Grobol, 2019) 89.97 86.57 10.42
Seq2Biseq2-opt (Dinarelli & Grobol, 2019) 90.22 86.88 9.97
Seq2Biseq-Transformer2-opt 90.08 86.93 9.87
Seq2Biseq-Transformer+FEAT2-opt 90.14 87.05 9.54

MEDIA TEST

BiGRU+CRF (Dinarelli et al., 2017) – 86.69 10.13
LD-RNNdeep (Dinarelli et al., 2017) – 87.36 9.8
Seq2Biseq (Dinarelli & Grobol, 2019) 89.57 87.50 10.26
Seq2Biseq2-opt (Dinarelli & Grobol, 2019) 89.79 87.69 9.93
Seq2Biseq-Transformer2-opt 89.98 87.81 9.67
Seq2Biseq-Transformer+FEAT2-opt 90.12 87.94 9.48

Table 4 – Results of different variants of our model for the semantic tagging task of the
corpus MEDIA, compared to the state-of-the-art

distribution with GeForce GTX 1080 GPUs.

3.2 Results

Results for the MEDIA task are means over 10 experiments, the parameters are initialized
at random 5 for each experiment. On this task we evaluate our models in terms of accuracy
and, since the goal is to re-construct semantic units spanning over multiple words, also
with F1 measure and Concept Error Rate (CER). CER is computed by aligning the model
prediction with the gold annotation with the Levenshtein distance algorithm, then the sum
of insertions, deletions and substitutions is divided by the length of the gold annotation. On
the other two tasks, since there is no label splitting over multiple words, we evaluate the
models only in terms of accuracy.

Since the model presented in this paper is an evolution of the Seq2Biseq model proposed in
(Dinarelli & Grobol, 2019), the model proposed here is named Seq2Biseq-Transformer, as it
adds characteristics of the Transformer on top of the Seq2Biseq model.

Results on Dev and Test data of the MEDIA task are shown in table 4. For comparison we
show also results presented in our previous works (Dinarelli et al., 2017; Dinarelli & Grobol,
2019), which are state-of-the-art on this task.

As described in (Dinarelli & Grobol, 2019), the Seq2Biseq model gives better results when
trained with 2 optimizers (see (Dinarelli & Grobol, 2019) for details), one for each decoder.
The Seq2Biseq-Transformer model is thus always trained with 2 optimizers.

As we can see in table 4, results obtained on MEDIA with the Seq2Biseq-Transformer model
are slightly worse than Seq2Biseq’s results in terms of accuracy, and they are slightly better
in terms of F1 and CER. 6 Adding word classes available for the MEDIA task (cf. the begin

5. Using default initialization of the Pytorch library
6. We did not perform significance tests



Model Accuracy

WSJ DEV WSJ TEST

LD-RNNdeep (Dinarelli et al., 2017) 96.90 96.91
LSTM+CRF (Ma & Hovy, 2016) – 97.13
Seq2Biseq (Dinarelli & Grobol, 2019) 97.13 97.20
Seq2Biseq2−opt (Dinarelli & Grobol, 2019) 97.33 97.35
Seq2Biseq-Transformer2−opt 97.33 97.36

Models using pre-trained embeddings 8

Transformer+Char (Guo et al., 2019) – 97.14
LSTM+CRF + Glove (Ma & Hovy, 2016) 97.46 97.55
LSTM+LD-RNN + Glove (Zhang et al., 2018b) – 97.59
Star-Transformer+Char (Guo et al., 2019) – 97.64

Table 5 – Results of different variants of our model for the POS tagging task on the WSJ
corpus, compared to the state-of-the-art

of section 3, data description) as input to the model, results improve with all evaluation
metrics and constitute the new state-of-the-art on this task with manual transcription. 7.

Results of POS tagging on the WSJ corpus are presented in table 5. As we can see in this
case, adding functionalities of the Transformer to the Seq2Biseq model give exactly the
same result as the Seq2Biseq model on the Dev data, and slightly better on the Test data
(on a single experiment).

Keeping both these results and those on the MEDIA task into account, we could conclude
that the Seq2Biseq-Transformer model does not really improve our previous model. However
we would like to point out that the main goal of this work was to integrate characteristics of
the Transformer model, and to come up with a generic architecture, which can be applied not
only to traditional sequence labelling tasks, but also to tasks such like machine translation
and syntactic parsing. Indeed the Seq2Biseq-Transformer architecture has been modified,
with respect to our previous model, in order to perform all these tasks. We consider that
obtaining similar results (which are still state-of-the-art) with a more versatile model is still a
positive result. Additionally, observing the training procedure of the Seq2Biseq-Transformer
model, we found out that while final results are similar, the loss values on both training
and Dev data are better than those obtained with the Seq2Biseq model. This could actually
mean the model is over-fitting, and we speculate that instead of using the same settings as
in (Dinarelli & Grobol, 2019), since the Seq2Biseq-Transformer is more complex (at least
in terms of parameters, and see below), a fine-tuning of parameters could lead to better
performances.

In table 5 we can see that, whether we use one or two decoders for training, our models
improve the LSTM+CRF model (Ma & Hovy, 2016) without using the embeddings pre-
trained with GloVe (Pennington et al., 2014). For a matter of comparison, we show also the
best results on this task, obtained with pre-trained embeddings. Though our results are lower
than state-of-the-art in terms of accuracy, they are not too far, proving that our hybrid neural

7. SLU is performed on automatic transcription, in this work however we evaluate our models against
sequence labelling problems



Model Accuracy

TIGER DEV TIGER TEST

Seq2Biseq2−opt 93.90 (98.30) 91.86 (97.74)

VO-CRF (Lavergne & Yvon, 2017) – 88.78

Table 6 – Results of different variants of our neural architecture for the morpho-syntactic
tagging task on the TIGER corpus, compared with state-of-the-art

architecture is quite effective. In particular, we compare our results with those reported in
(Guo et al., 2019) obtained with the Transformer and Star-Transformer models. 9 Whether
the Transformer model has been trained with or without pre-trained embeddings, our models
outperform it by a significant margin. As we mentioned in section 2.5, we have experienced a
drop of 3 points in the F1 measure using a Transformer for mention detection in preliminary
experiments (not reported in this work). We hypothesize that the one-to-one correspondence
between input and output units in sequence labelling tasks is a very useful information, and
the lack of performance of the Transformer on sequence labelling tasks can be explained by
the fact that this model doesn’t use it.

In table 6 we show results obtained on the morpho-syntactic tagging task on the German
corpus TIGER. To the best of our knowledge, the best results in the literature for this task
are reported in Lavergne & Yvon (2017), obtained using a Variable Order CRF (VO-CRF).
We can see thus that our model improves the state-of-the-art on this task. It is important to
note however that the TIGER corpus has been less used for the evaluation of neural models
for sequence labelling. Results reported in Lavergne & Yvon (2017) are indeed obtained with
a discrete-representation based, though quite sophisticated, CRF model. In table 6 we report
also, between parenthesis, POS tagging results. These are obtained from morpho-syntactic
tagging results extracting the POS tag from the complete label. That is no model training
has been performed for the POS tagging task alone.

4 Conclusions

In this paper we proposed a neural model for sequence labelling integrating characteristics
of the most successful models of the last couple of years : bidirectional RNNs, Sequence-
to-Sequence model, and the Transfomer model. An evaluation on three tasks of sequence
labelling shows that the proposed model is very effective for this kind of tasks. Indeed it
achieves results comparable to the state-of-the-art, but keeping a generic architecture that
allows to use the same model on other kind of tasks like machine translation and syntactic
parsing. Moreover in some cases our model outperforms state-of-the-art models, proving
that our hybrid architecture has its place among current neural architectures.

9. In (Guo et al., 2019) it is actually not clear if the Transformer and Star-Transformer models have been
trained with or without pre-trained embeddings. Authors report “Advanced Techniques except widely-used
pre-trained embeddings” in the caption of table 5. However results are compared with literature models
using pre-trained embeddings, and this is not mentioned in the text.



Acknowledgments

This research is part of the program “Investissements dAvenir” funded by the French Na-
tional Research Agency (ANR) ANR-10-LABX-0083 (Labex EFL).

This work has been partially funded by the French ANR project DEMOCRAT (“Description
et modlisation des chanes de rfrence : outils pour l’annotation de corpus et le traitement
automatique”) project ANR-15-CE38-0008.

References

Bahdanau D., Cho K. & Bengio Y. (2014). Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Bengio Y., Ducharme R., Vincent P. & Jauvin C. (2003). A neural probabilistic
language model. JOURNAL OF MACHINE LEARNING RESEARCH, 3, 1137–1155.

Bonneau-Maynard H., Ayache C., Bechet F., Denis A., Kuhn A., Lefèvre F.,
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