DE LA RECHERCHE À L'INDUSTRIE

ceaden

Experimental study and thermodynamic modelling of corium mixtures – Application to severe accidents in Pressurized Water Reactors

S. Gossé¹, A. Quaini¹, C. Guéneau¹, T. Alpettaz¹, D. Manara², E. Brackxs³, R. Domenger³, A. Chocard³, F. Hodaj⁴

¹ CEA Saclay ,DEN,DPC,SCCME,LM2T, 91191 Gif-sur-Yvette Cedex, France
 ² European Commission, ITU, 76125 Karlsruhe, Germany
 ³ CEA Marcoule, DEN, DTEC, SGCS, LMAC – 30207 Bagnols-sur-Cèze, France
 ⁴ SIMAP, INP Grenoble-UJF, 38402 Saint Martin d'Hères Cedex, France

Ceaden speech Layout

Context

Issues

Objective and approach

Methods and tools

Results

- \rightarrow MOx / oxidised cladding interaction
- \rightarrow Miscibility gap in the in-vessel corium liquid
- \rightarrow Corium / concrete interaction
- \rightarrow State of the art

→ CALPHAD

 \rightarrow Experimental techniques

→ U-Zr-O and U-Zr-O-Fe → UO_2 -Zr O_2 -Al₂ O_3 -CaO-Si O_2

Development of ATTILHA

Conclusions and perspectives

Ceaden issue - Mox / OXIDISED CLADDING INTERACTION

During normal functioning of a PWR \rightarrow ZrO₂ forms at the inner and at the outer surface of the Zircaloy cladding

Accidental scenario: **MOx fuel + oxidised cladding** when interacting with the metallic structures and the reactor vessel

Effect of $PuO_2 \rightarrow MOx$ fuels

Melting behaviour of the U-Pu-Zr-O system

 \rightarrow UO₂ - PuO₂ - ZrO₂ \rightarrow Experimental data are rare

Experimental data on Pu-containing systems \rightarrow

Thermodynamics of the U-Pu-Zr-Fe-O prototypic in-vessel corium

Ceaden issue - IN-VESSEL CORIUM CONFIGURATION

Key point: miscibility gap (MG) in the in-vessel corium system liquid phase

ρ=density

Ex-vessel scenario
→ Reactor steel vessel failure

Ceaden issue - corium/concrete interaction

- Large scale experiments \rightarrow Phenomenology of the severe accident
- Severe accident codes \rightarrow Design of the reactor
 - \rightarrow Mitigation actions

Data from large scale experiments: out-of-equilibrium transformations due to thermal and composition gradients

No standard composition exists for the concrete (except for the EPR concept)

The thermo-physical properties of the corium-concrete system are paramount for the comprehension and the modelling of the interaction corium/concrete

MOx / oxidised cladding interaction

 \rightarrow UO₂-PuO₂-ZrO₂ : NO EXPERIMENTAL DATA

Miscibility Gap in the in-vessel corium liquid phase

→ U-Zr-O-(Fe) : isothermal data ISABEL1 at CEA: two tie-lines in the U-Zr-O and U-Zr-O-Fe systems MASCA project: T and composition gradients

Corium / concrete interaction

→ Large scale experiments: VULCANO at CEA Cadarache MOCKA at KIT COTELS

CEA Saclay | 10th December, 2015 | PAGE 8

Ceaden objective & Approach

OBJECTIVE

Improve the thermodynamic models of the in-vessel and ex-vessel corium systems

OBJECTIVE of the development of ATTILHA

New experimental setup for the investigation of complex mixtures at very high temperature (T > 2300 K)

CEA Saclay | 10th December, 2015 | PAGE 9

Kaufman & Bernstein (1970)

CEA Saclay | 10th December, 2015 | PAGE 10


```
Thermal analysis \rightarrow Transition temperatures (T<sub>liquidus</sub>, T<sub>solidus</sub>, T<sub>eutectic</sub>)
```

```
Laser heating setup (ITU)
```

Manara et al., Rev. Sci. Instrum. 2008

Isothermal measurements \rightarrow tie-lines, equilibrium phases

Joule effect furnace (W-resistor) : T_{max} ~ 2600 K

Rare experimental setup for very high temperature measurements (T > 2300 K)

Actinide containing systems

Interaction sample / crucible

Thermocouples are not adapted \rightarrow optical monitoring of the temperature

U-Zr-O and U-Zr-O-Fe systems

Experimental results: U-Zr-O

→ Calculations: U-Zr-O and U-Zr-Fe-O

→ Summary

Ceaden U-Zr-O EXPERIMENTAL RESULTS

Heat treatment at 2567 K for 45 minutes

SEM-EDS/WDS analyses at LMAC, CEA Marcoule

OUZr_2 and OUZr_3 \rightarrow Miscibility gap

- Starting materials: U, Zr, ZrO₂ (in-situ fabrication)
- W crucible

MISCIBILITY GAP IN THE U-Zr-O SYSTEM

U-Zr-O and U-Zr-O-Fe systems

→ Experimental results: U-Zr-O

→ Calculations: U-Zr-O and U-Zr-Fe-O

→ Summary

Ceaden MISCIBILITY GAP IN THE U-Zr-O SYSTEM

Comments:

- Reassessment of the U-Zr-O system
- Tie-lines at 2567 K \rightarrow improvement of the description of the miscibility gap in the liquid phase
- Good agreement between calculations and experimental results
- MG exists between ~2450 K and ~3100 K along the UO₂-Zr section

Ceaden Fe-Zr-O AND Fe-U-O SYSTEMS

Ceaden Application Calculation - IN-VESSEL CORIUM

Present TD model of U-Zr-Fe-O system → interpretation of the microstructure

Arc furnace

SEM-EDS/WDS analyses →Distribution of the elements in oxide and metallic liquids

CEA Saclay | 10th December, 2015 | PAGE 18

Ceaden Application Calculation - IN-VESSEL CORIUM

Initial composition $U_{0.145}Zr_{0.185}Fe_{0.308}O_{0.362}$

Ceaden In-vessel corium - oxide Liquid

U-Zr-O and U-Zr-O-Fe systems

→ Experimental results: U-Zr-O

→ Calculations: U-Zr-O and U-Zr-Fe-O

→ Summary

Synergic exchange between post-experiment analyses and calculations Powerful tools for the interpretation of complex microstructure

CEA Saclay | 10th December, 2015 | PAGE 22

UO₂-ZrO₂-Al₂O₃-CaO-SiO₂ system

→ Experimental results

→ Calculation results: in-vessel corium + TAF-ID database

→ Summary

EX-VESSEL CORIUM SAMPLES

Simplified system of the ex-vessel corium : UO₂-ZrO₂-Al₂O₃-CaO-SiO₂

oxidised corium concrete

CORIUM_1: 80 tons UO_2 + 20 tons ZrO_2 + lime-rich concrete CORIUM_2: 80 tons UO_2 + 20 tons ZrO_2 + silica-rich concrete

Composition of the liquid pool after 24h of the MCCI Calculation performed using TOLBIAC-ICB (A. Boulin, CEA Cadarache)

wt%	CORIUM_1	CORIUM_2
Al ₂ O ₃	1,8	2,1
CaO	32,4	11,0
SiO ₂	24,6	64,0
UO ₂	30,8	15,4
ZrO ₂	10,4	7,8

Heat treatment at 2500 K for 30 minutes

In-situ fabrication starting from AI_2O_3 , CaO, SiO₂, UO₂ and ZrO₂ powders in W crucible

Joule effect furnace

Ceaden EX-VESSEL CORIUM SAMPLES

CORIUM_1 (Lime-rich concrete)

Dendritic structure: $(U,Zr,Ca)O_2$ and $(Zr,U,Ca)O_2$ \downarrow Single liquid at 2500 K

CORIUM_2 (Silica-rich concrete)

SiO₂ based matrix (black matrix) + droplets \downarrow Miscibility gap in the liquid phase

CEA Saclay | 10th December, 2015 | PAGE 25

Ceaden close-up on corium_2

SiO₂ based matrix (black matrix) + droplets \downarrow Miscibility gap in the liquid phase

CEA Saclay | 10th December, 2015 | PAGE 26

UO₂-ZrO₂-Al₂O₃-CaO-SiO₂ system

→ Experimental results

→ Calculation results: in-vessel corium + TAF-ID database

→ Summary

APPLICATION CALCULATIONS ON CORIUM_1

Ceaden

UO₂-ZrO₂-Al₂O₃-CaO-SiO₂ system

→ Experimental results

→ Calculation results: in-vessel corium + TAF-ID database

→ Summary

Experiments performed under controlled conditions + accurate temperature monitoring

Corium / Calcia-rich concrete: single liquid phase

Corium / Silica-rich concrete: miscibility gap in the liquid state

- \rightarrow U-enriched liquid
- \rightarrow non-containing U liquid

Re-criticality issue

In-vessel corium TD model + TAF-ID database

Supplementary tool for experiments interpretation Coupling with severe accident codes

Improve the model for the liquidus temperature prediction Improve the model of the $Ca_2SiO_4 \rightarrow solubility$ of U and Zr Introduce the model for the USiO₄ (Tchernobylite)

CEA Saclay | 10th December, 2015 | PAGE 30

Advanced Temperature and Thermodynamics Investigation by a Laser Heating Approach

ATTILHA setup

Description of the apparatus

→ Results

→ Summary and perspectives

ATTILHA SETUP

Levitating AI_2O_3 droplet in the Al-nozzle

Ceaden development approach

 \rightarrow Optimisation of the instrumentation position on the optical table

CO₂ laser – HgCdTe detector – Rapid infrared camera – Pyrometer

CEA Saclay | 10th December, 2015 | PAGE 34

ATTILHA setup

→ Description of the apparatus

 \rightarrow Results: Al₂O₃-ZrO₂

→ Summary and perspectives

$Ceaden RESULTS: Al_2O_3-ZrO_2$

 $T_{liquidus} + T_{eutectic} \rightarrow$ good agreement with literature

Al₂O₃ Eutectic

Eutectic composition \rightarrow good agreement with literature

CEA Saclay | 10th December, 2015 | PAGE 36

ATTILHA setup

- → Description of the apparatus
- → Results: MG in the Fe-Zr-O system
- → Summary and perspectives

MISCIBILITY GAP IN THE Fe-Zr-O SYSTEM

New result

Ceaden

Starting composition: $Fe_{0.85}Zr_{0.15}$

Levitation gas: He

Composition moved into the ternary Fe-Zr-O system

tie-line: $Fe_{0.97}O_{0.03} - Fe_{0.05}Zr_{0.32}O_{0.63}$

Infrared camera footage

Acquisition 200 Hz Video player 12.5 Hz

Observation of dynamic phenomena: → Formation of 2 liquids in-situ

Estimation of the emissivity ratio between the two liquids

 $\rightarrow \varepsilon_{\text{oxide}} \sim 2\varepsilon_{\text{metal}}$

ATTILHA setup

- → Description of the apparatus
- → Results: MG in the Fe-Zr-O system

→ Summary and perspectives

Versatile experimental setup

Investigation of the thermochemical and thermo-physical properties of corium

Validation of the technique on AI_2O_3 and AI_2O_3 -ZrO₂

Preliminary results on the extension of the miscibility gap in the liquid state of the Fe-Zr-O system

Future developments

ATTILHA

Nuclearisation of the setup \rightarrow investigation of prototypic U-containing coria Ultra rapid camera (5 kHz) \rightarrow viscosity and density measurement

<u>Ceaden</u> conclusions

ATTILHA

- Aerodynamic levitation
- Containerless
- Flexibility in wavelengths choice

High temperature dynamic phenomena - Formation of MG (Fe-Zr-O)

Thermochemistry of corium (T_{liquidus}, T_{solidus})

- \rightarrow Validation on Al₂O₃ and Al₂O₃-ZrO₂
- \rightarrow Python code for image processing \rightarrow emissivity estimation
- → Miscibility gap in the Fe-Zr-O system

DE LA RECHERCHE À L'INDUSTRIE

Ceaden perspectives

Experiments	Modelling	ATTILHA
Pu-containing systems	Validation of the current database	Nuclearization of the setup
T _{liquidus} and T _{solidus} measurement on in-vessel	Liquidus for in-vessel and	Prototypic coria samples
and ex-vessel mixtures	ex-vessel mixtures	Ultra rapid visible camera to obtain thermal-physical
	Vaporisation of Pu- containing species	properties (surface tension, viscosity) of coria
	U and Zr solubilities in the Ca_2SiO_4 model	
	Coupling with severe accident codes and phase field codes	

CEA Saclay | 10th December, 2015 | PAGE 42

Acknowledgments

E. Brackx, R. Domenger, A. Chocard (LMAC)
D. Bossu, J. Braun, P.E. Giroux (LTMEx)
S. Poissonnet, P. Bonnaillie (SRMP)
R. Belin (LCC)
M. Tabarant (LISL)

D. Manara, A. Smith, P.E. Raison (JRC-ITU)

F. Gamboa, L. Risser (IMT Toulouse)

Eric Lizon A Lugrin, Thierry Alpettaz and the LM2T team

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 21 70 F. +33 (0)1 69 08 92 21

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction de l'Energie Nucléaire Département de Physico-Chimie SCCME Laboratoire de Modélisation Thermodynamique et Thermochimie CEA de Saclay