FROM RESEARCH TO INDUSTRY

Cea den

SIMULATION PAR IRRADIATION AUX IONS DES DÉGÂTS D'IRRADIATION DANS LE COMBUSTIBLE NUCLÉAIRE USÉ EN SITUATION DE STOCKAGE GÉOLOGIQUE : APPORT DES ÉTUDES PAR DRX

<u>H. Palancher¹</u>, E. Castelier¹, M. Ibrahim^{1,2}, A. Boulle³, A. Richard^{1,4}, Ph. Goudeau⁴, M. Bornert², S. Caré², R. Belin¹, F. Rieutord⁵, J-S. Micha⁵, N. Blanc⁶, N. Boudet⁶, A. Ambard⁷

Ceaden cycle du combustible nucléaire

CeadenStockage à long terme en couchesGÉOLOGIQUES PROFONDES : PROBLÉMATIQUE HE

Production significatives d'He dans du combustible usé par décroissance α des radionucléides produits durant l'irradiation en pile

Température : <250 ℃

CEA intenal report (2004) DPC/SECR 04-032

| PAGE 3

DEUX TYPES DE MATÉRIAUX POUR SIMULER LE Ceaden **COMPORTEMENT DU COMBUSTIBLE USÉ**

120

Dopage par émetteurs α (²³⁸Pu,...) de pastilles UO₂ et étude du vieillissement

- échantillons très irradiants
- durée d'attente avant disponibilité échantillons

Stabilité mécanique ²³⁸PuO₂ après vieillissement ?

Auto-irradiation de l'ordre de 100 dpa : non représentative du C.U. en situation de stockage (UOX <5 dpa, MOX ≈ 20 dpa).

D. Roudil et al.. personal communication (2005)

Grenoble | 03 Décembre

PAGE 4

$$^{236}_{94} Pu \xrightarrow[87]{87 years} \xrightarrow{234}_{92} U(0.1 \text{ MeV}) + {}^{4}_{2} He(5.5 \text{ MeV})$$

DEUX TYPES DE MATÉRIAUX POUR SIMULER LE COMPORTEMENT DU COMBUSTIBLE USÉ

Dopage par émetteurs \alpha (²³⁸Pu,...) de pastilles UO₂ et étude du vieillissement

Ph. Garcia et al., *J. Nucl. Mater.* 430 (2012) 156–165

Ceaden matériau initial : Polycristaux d'uo2

Ceaden

MESURE DES GRADIENTS DE DÉPLACEMENT À L'ÉCHELLE DU MICROMÈTRE

Implantation de 6 disques UO₂ avec He⁺ 60 keV

Fluences : 0.1, 0.5, 1, 5, 10, 20×10¹⁵ ions/cm²

Volume sondé par les R.X. est très supérieur à

l'épaisseur de la couche implantée

- Mesure des déformations dans la couche implantée :
 - μ-DRX: échelle microscopique (taille faisceau de R.X. très inférieure à celle des grains),
 - 1×2 µm (BM32@ESRF)
 - DRX: échelle macroscopique (disque).

MESURE DES GRADIENTS DE DÉPLACEMENT À L'ÉCHELLE DU MICROMÈTRE

Implantation de 6 disques UO₂ avec He⁺ 60 keV

Fluences : 0.1, 0.5, 1, 5, 10, 20×10¹⁵ ions/cm²

- Mesure des déformations dans la couche implantée :
 UDEX: échelle microsconique (teille foissonu de D.X. très inférie
 - μ-DRX: échelle microscopique (taille faisceau de R.X. très inférieure à celle des grains), 1×2 μm (BM32@ESRF)

Influence orientation de grains

Ceaden

1×10¹⁶ ⁴He⁺/cm²

Ceaden modele mécanique : cas élastique

Hypothèses du modèle :

- L'implantation en ions He induit in gonflement isotrope,
- Réaction de la part de la zone non implantée, infiniment épaisse de l'échantillon (substrat)
- Pas d'interaction entre grains voisins : un polycristal est une somme de monocristaux

Approximations :

- Composantes du tenseur de contrainte suivant z sont nulles : $\sigma_{xz} = \sigma_{yz} = \sigma_{zz} = 0$.
- Le déplacement (u_x, u_y, u_z) ne dépend que de la profondeur.

En accord avec les résultats expériementaux

Régime élastique :

$$\overline{\sigma} = \overline{C} : (\underline{\varepsilon} - \underline{\varepsilon}_s)$$

• Calcul du gonflement libre (s) :

$$\begin{pmatrix} C_{33}^{b} & C_{34}^{b} & C_{35}^{b} \\ C_{34}^{b} & C_{44}^{b} & C_{45}^{b} \\ C_{35}^{b} & C_{45}^{b} & C_{55}^{b} \end{pmatrix} \times \begin{pmatrix} \mathcal{E}_{zz}^{b,hkl} \\ \mathcal{E}_{yz}^{b,hkl} \\ \mathcal{E}_{xz}^{b,hkl} \end{pmatrix} = \begin{matrix} s \\ 0 \\ 0 \end{pmatrix}$$

 $G = \begin{pmatrix} 0 & 0 & g_{xz} \\ 0 & 0 & g_{yz} \\ 0 & 0 & g_{zz} \end{pmatrix}$

 $\underline{\varepsilon}_{s} = \frac{s}{3} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Ceaden modele mécanique : cas élastique

• Composante ε_{zz}

Evolutions de $\varepsilon_{\prime\prime}$ et de ε_{77} sont parfaitement décrites par le modèle

Conclusion:

- Validation du modèle mécanique grâce aux données mesurées par µ-DRX Laue.
- L'implantation en ions He crée un gonflement isotrope (ε_s).

RX ET MATIÈRES

A. Richard. et al. J. Appl. Cryst. (2012) 45, 826-833.

RÉSUMÉ

RX ET MATIÈRES

A. Richard, *et al.* J. Appl. Cryst. (2012) **45**, 826-833.

MESURE DU GONFLEMENT LIBRE PAR DRX MACROSCOPIQUE θ/2θ

Pour 3 raies de Bragg, le gonflement libre $\frac{s}{3}$ peut être déterminé facilement

RX ET MATIÈRES

Ceaden

A. Richard *et al.* NIMB. **326** (2014), 251 - 255

INFLUENCE DU DOMMAGE/FLUENCE SUR LA DÉFORMATION DE LA ZONE IMPLANTÉE

DRX macroscopique $\theta/2\theta$ « poudre »

NIMB. 326 (2014), 251 - 255

Ceaden

EVOLUTION DU GONFLEMENT LIBRE AVEC LE DOMMAGE : VALIDATION (I/II)

A. Richard et al.

NIMB. 326 (2014), 251 - 255

<u>Ceaden</u> Evolui

EVOLUTION DU GONFLEMENT LIBRE AVEC LE DOMMAGE : VALIDATION (II/II)

INTERACTIONS INTER-GRANULAIRES FAIBLES DANS CES CONDITIONS

$1 \times 10^{16} \, {}^{4}\text{He}^{+}/\text{cm}^{2}$

Développement de méthodes d'analyse d'images (clichés µ-DRX) dédiées

Résultats confirmés par des modélisations éléments finis

RX ET MATIÈRES

M. Ibrahim *et al.* J. Appl. Cryst. (2015) **48**, 990-999.

Grenoble | 03 Décembre 2015

M. Ibrahim, Thèse Paris-Est (2015)

HR-XRD SUR GRAIN UNIQUE DANS UN POLYCRYSTAL UO₂ IMPLANTÉ EN IONS HE

1×10¹⁶ ⁴He⁺/cm²

Mise en évidence d'interférences entre zones (dans la profondeur) présentant des déformations différentes

Accès au profil de déformation ϵ_{zz} en profondeur

H. Palancher *et al.* Appl. Phys. Lett, submitted

Ceaden profil de déformation en profondeur

1×10¹⁶ ⁴He⁺/cm²

Ceaden Profil de déformation en profondeur

RELAXATION EN TEMPÉRATURE (II/II)

Recuit des déformations très proche entre échantillons implantés et auto-irradiés α

 R.C. Belin *et al.*,

 Grenoble | 03 Décembre 2015
 J. Nucl. Mater. 465 (2015) 407-417.
 PAGE 21

RX ET MATIÈRES

H. Palancher et al.

J. Nucl. Mater., submitted

MODIFICATIONS À HAUTES DOSES (I//II)

Ceaden modifications à hautes doses (II/II)

À très hautes doses (> 0,8 dpa), l'implantation ne crée plus un gonflement isotrope (indépendant de l'orientation des grains) :

Dans une pastille auto-irradiée, des incompatibilités de déformation peuvent apparaitre.

Méthodologie :

Ceaden

- Utilisation de nombreuses techniques/instruments (ESRF, CRG, labo) de diffraction pour caractériser le comportement mécanique des couches UO₂ implantées en ions He : Vers une caractérisation 3D
- 2. Combinaison systématique mesure /calculs mécaniques.

Apport de la démarche

- 1. Détermination des conditions d'implantation représentatives de combustibles autoirradiés. De franches avancées ont été obtenues :
 - Comportement en température
 - Évolution en fonction de la fluence
- Proposition d'hypothèse de mécanisme pour expliquer le comportement de pastilles ²³⁸PuO₂ auto irradiées.

MERCI POUR VOTRE ATTENTION