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“Never carry out any arithmetic”: the importance of structure in 

developing algebraic thinking  

Dave Hewitt 

Loughborough University, Centre for Mathematics Education, UK; d.p.hewitt@lboro.ac.uk 

The use of tasks which ask learners to find general rules for growing figural patterns is 

widely reported in the algebra research literature. Such tasks are sometimes seen as a way to 

develop early algebra thinking. This paper looks at examples of such activities from the 

literature and presents a theoretical argument against the common practice of learners 

creating a table of values and seeking patterns within the numbers. Instead an argument is 

made for learners to focus on more complex examples where learners are discouraged from 

counting and turning the original figures into numbers.  Instead, it is suggested that learners 

seek structure within complex examples and express what they see without carrying out any 

arithmetic but instead just writing down what arithmetic they would do. 
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Introduction 

The difference between arithmetic and algebra has been discussed at some length in the 

literature. For example, Filloy and Rojano (1989) talked about a didactic cut existing when a 

letter appears on both sides of an equation. This is, of course, an attribute of the equation 

rather than a statement about ways of thinking which might differentiate between arithmetic 

and algebraic thinking. Herscovics and Linchevski (1994) spoke about the need for learners 

to work with the unknown for something to be considered as algebraic activity. This places a 

greater emphasis on the learner rather than the object, such as the form of an equation, with 

which they are working. With the emphasis on a learner, Radford (2010a) talked of a zone of 

emergence of algebraic thinking where expressions of generalisation can be expressed in a 

variety of forms such as gesturing and actions as well as writing. For Radford, there was not a 

need for letters to be present for algebraic thinking to be emerging. Kieran (2004) allowed the 

possibility of thinking algebraically about something even if that something is not explicitly 

on the list of algebra content within the curriculum. This allows for algebraic thinking to 

happen in many different areas of the curriculum, one of which is number. In this paper I 

argue for the case to place structure at the forefront of developing the algebraic thinking of 

learners. Several researchers have included structure as a key aspect of algebra work, 

including Kieran (2004). Usiskin (1988) included the study of structures within his four 

conceptions of algebra; Kaput (1995) did the same within his five aspects of algebra; and 

NCTM’s (1998) discussion document included structure within four organizing themes for 

school algebra. Yet, I will argue that a number of reported teaching practices do not assist 

learners in placing their attention on structure; indeed often practices do the opposite and turn 

attention away from structure and onto what I would consider to be more arithmetic thinking. 

Radford (2000) posited that algebraic thinking differed from arithmetic thinking in the form 

of the mathematical practice in which learners were engaged. For him it was about the focus 

being on, for example, investigating and expressing the general term of a pattern. At one 



 

 

level, arithmetic is involved in generality in that 3+4=7 is an expression of generality: it does 

not matter what we are talking about, 3 things plus 4 more of the same things result in 7 of 

those things. This is true no matter what those things are. However, algebra, as generalised 

arithmetic, requires a second level of generalisation. It stresses the structure of the given 

situation rather than a ‘result’. Thus, 3+4=4+3 can be judged to be correct through arithmetic 

thinking, by carrying out calculations and stressing the similarity of the results from both 

sides of the equation (both sides result in 7). Algebraic thinking will stress the structure 

inherent within the operation of addition, that of commutativity; the two sides are the same 

because it does not matter which way round you do addition. Thus algebraic thinking stresses 

operations as objects of attention and structure whereas arithmetic thinking stresses processes 

and with the results being the object of attention. Linchevski and Livneh (1999) introduced 

the notion of structure sense and since then other authors have developed the notion further 

(e.g., Hoch & Dreyfus, 2004; Mulligan & Mitchelmore, 2009). In particular, they have in 

common the idea of pattern, connections and relationships. Mulligan and Mitchelmore (2009) 

offered an example of seeing a 3 by 5 rectangle as three rows of five columns or as five 

columns of three rows. Each of these views placed a structured way of seeing the object 

rather than seeing it just as a whole. My own definition of algebraic structure which will be 

used in this paper is: 

A way of viewing an object or expression such that it is seen as a combination of 

recognizable parts along with recognizable patterns which connect those parts together. Such 

a way of viewing results in an expression of the object in terms of the parts and connections 

which places the object as a particular example of a more general type.  

The use of figural patterns (either based upon quasi-real life situations, such as the number of 

chairs around a line of tables, or purely geometrical, such as the length of the perimeter of a 

line of regular hexagons joined together) is widely reported in the literature (e.g., 

Montenegro, Costa & Lopes, 2018; Blanton et al., 2015b). I will analyse some examples of 

such tasks and consider ways in which the students have worked towards trying to find a 

functional rule for a given initial figural growth pattern. I will argue that taking students’ 

attention away from the original figural situation and onto numbers generated from those 

patterns reduces the likelihood of students finding functional rules. A key to generalising is to 

keep attention with the figurative context and to focus on noticing structure. Carrying out 

arithmetic hides any inherent structure which had been noticed and thus reduces still further 

the opportunity to express generality. I start off by looking at the common practice of looking 

at the first few cases of a figural grown pattern and creating a table of values. 

Tables of values 

Asking learners to create a table of values for the first few cases is a common strategy which 

is either suggested by teachers or included in the task instructions. Transferring learners’ 

attention from the original problem situation to a table of values means that they can lose 

contact with three important elements to assist with generality. Firstly the structural 

properties inherent within the original situation can be lost as learners stare only at numbers. 

Secondly, the nature of a classic table of values is that it is structured to be in term order from 



 

 

1 onwards. This brings a natural temporal aspect where recursive rules are more likely to be 

articulated. Thirdly, if a functional rule is found for the numbers, there can never be certainty 

by looking at the table of values that the rule will apply to the original situation. I will now 

consider each of these three elements in turn. 

Losing connection with the context 

In Blandon et al.’s (2015b) study, one task involved finding the number of people sitting 

round a certain number of square tables which were joined in a line. Drawings of the first two 

cases were given and then the learners were asked to record their results in a table of values. 

They were asked to find patterns in the table. One 1
st
 grade learner noticed a pattern in their 

table of values (Figure 3) where the numbers were the same along diagonals. Whilst this is, 

indeed, a pattern in the table, Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens 

(2015a) report that this could have been any symbol set where the symbols were the same 

along a diagonal and was not an observation which necessarily related to a sense of number 

let alone the contextual situation. Indeed, the creation of a table of values takes away the 

context within which those numbers were generated. 

I observed a group of lower attaining 12-13 year olds spending half an hour building 

examples of the first few cases of a ring of tiles surrounding a 1 by n rectangle. The task was 

to find a general rule for how many tiles would be needed to surround such a rectangle. They 

began by making the first few cases with multi-link cubes and constructed a table of values 

for these first few cases. They then spent a long time looking at the numbers in the table and 

not getting further than noticing the recursive rule of the numbers going up in twos. They did 

not turn their attention back to the multi-link cubes but instead kept staring at the numbers in 

the table of values. I will say more about how this activity was concluded in a later section. 

The point here is that they no longer paid attention to the original situation. 

These examples are in contrast to when learners’ attention remains with the original context 

and where a structured way of viewing that context can lead to finding a functional rule, as 

can be seen from the following example. For example, Ferrara and Ferrari (2017) discussed a 

group of 10-11 year olds working on finding the number of circles in further terms of the 

sequence shown in Figure 1. 

 

 

Figure 1: A figural pattern of dots 

They were also asked to explain to someone from another class how to find the number of 

circles in any term in this sequence. An example of work from a group of three students 

showed how they justified their rule by seeing the figural patterns in a structured way. For 

example, Figure 2 shows a link between the notational expression and the pictorial situation 

for the 6
th

 term. 



 

 

 

Figure 2: Re-drawn version of a learner’s response from Ferrara & Ferrari (2017, p. 28)  

They also showed an alternative way of structuring the geometric figure when one of them 

explained that “The figure is made of two rows: First row, second row, which, the second 

row is equal to the first row, plus 1” (p. 28). The written explanation for the 6
th

 term (Figure 

2) and the more verbal articulation in terms of the two rows, reveal two ways of imposing a 

structured way of viewing the geometric figure rather than seeing it as a single collection of 

circles. Both of these ways of viewing reveal a sense of generality where I feel confident they 

would be able to calculate the number of circles for any term in this sequence. 

The seduction towards finding recursive rules 

The second concern I have about tables of values is that their usual sequential nature can 

seduce students into noticing recursive rules rather than functional rules. Recursive rules give 

a way in which the next term can be generated from the previous term. This can involve the 

carrying out of a long series of arithmetic operations if a ‘far’ term in a sequence is to be 

found. Learners can also find it difficult to make use of a recursive rule in order to generate a 

functional rule; recall, for example, the case of the learners trying to find a rule for a ring of 

tiles surrounding a 1 by n rectangle. They had a recursive rule but this did not help them 

towards finding a functional rule. 

Montenegro et al. (2018) described a class of 18 Portuguese students aged between 10 and 13 

working on a sequence of growing geometric figures in the shape of an ‘L’. Two of the four 

groups were not able to find a functional rule even though they had found a recursive rule. 

All groups had turned their attention to working with numbers from the first six cases as this 

had been encouraged from the questioning of the task. The teacher decided that the students 

had missed the potential within the visual representation of the ‘L’ shapes and focused their 

attention on the shapes; asking students to say what was the same and what was different 

about the figurative representations. This led to students making comments such as “Figure 

15 has one common square and 15 on each side” and “figure n will have a common square 

and n squares on each side”. This led to an exclamation of “Ahhhhh!” (p. 102) and the 

students were able to quickly find the functional rule. The focus being turned from trying to 

find patterns in numbers to looking for structure within the original geometric context was 

significant in the success obtained by those students. 

The sequential nature of a table of values encourages learners to see a recursive rule, which is 

often ‘easier’ than a functional rule as it is usually additive rather than multiplicative, linear 

rather than quadratic, etc. It also does not always help with finding a functional rule. 



 

 

Is the rule correct? 

The third concern I have about tables of values is that even if a functional rule is found for 

the data in the table, students can never know from the table alone if that rule is correct for 

the original contextual situation. For example, without me telling you, you would not know 

the context which the table in Figure 4 represented. The contextual situation has disappeared 

and the activity becomes one of pure number pattern spotting. There is a danger that this can 

lead to little awareness of the mathematical situation from which those numbers originated 

(Hewitt, 1992). Some patterns spotted may not actually apply to the general situation from 

which the numbers originated. The table in Figure 4 gives a strong sense of the rule 2
n-1

, 

however if the numbers came from the first five cases of looking at the maximum number of 

regions formed within a circle when n points on the circumference are joined to each other by 

chords, then this rule would not be correct. The case for six points produces a maximum 

number of 31 regions and not the 32 which might be expected from looking only at the table 

of values. 

Justification or proof is never possible when attention is solely with a table of values. Palatnik 

and Koichu (2017) reported a pair of 9
th

 grade students who obtained formulae connected 

with the problem of finding the maximum number of pieces a pizza can be cut into with n 

straight ‘cut’ lines. The students had a sense that their formulae were correct as they fitted 

with the numbers in the table of values. However, when challenged to work on why the 

formulae worked, the students had to return to the context of the problem to articulate reasons 

for why they were correct. So, the common practice of encouraging learners to construct a 

table of values (e.g., Blanton et al., 2015a; Blanton et al., 2015b) restricts any pattern spotting 

to the level of conjecture at best. Any sense of certainty of generality requires attention to be 

on the structure of the original problem situation, not a table of numbers. 

 

p x 

3 4 

4 5 

5 6 

6 7 

Figure 3: Numbers on a diagonal are the same 

1 1 

2 2 

3 4 

4 8 

5 16 

Figure 4: A table of values. What is the rule?

 

Never carry out any arithmetic 

I will now return to the story of the lower attaining students who were trying to find a functional 

rule for the number of tiles surrounding a 1 by n rectangle. They spent a long time looking at their 

table of values without getting anywhere towards finding a functional rule. After a long while 

observing them, I asked them how many tiles there would be in a situation where the rectangle was 

47 long. They replied quickly that it would be two lots of 47 plus 3 for each end. Within one minute 



 

 

they had expressed the rule of 2n+3+3. The articulation of 2x47+3+3 rather than the single number 

of 100, which would be the result of carrying out the arithmetic of that expression, meant that the 

structured way in which they viewed the tiles was contained within that expression. The stressing of 

the structure allowed them to see the generality that, however long the rectangle was, they needed 

two lots of that length plus another two sets of three tiles. A significant aspect of this anecdote is 

that the rectangle was long enough so that they would not attempt to build this and count the 

number of tiles. As Radford (2010b) noted, it is important to work with a case where the numbers 

involved are too big for a learner to carry out arithmetic or to count. This forces the need to seek 

structure. Indeed I go further and say that in order to head towards algebra in such situations, all 

arithmetic should be avoided. 

 

 

 

Figure 5: Chairs round tables 

Chimoni, Pitta-Pantazi & Christou (2018) give an indicative answer from a group of 10-13 year 

olds who were successful in solving all the tasks given to them. In this case they were asked to find 

how many children could be seated around a group of 10 trapezoidal tables (see Figure 5 for the 

first two cases). The answer was presented similar to N10 = 5+(9x3) = 32. The number 32 may be 

seen as the answer to the question but it is the expression 5+(9x3) which reveals the structural way 

of seeing the situation. It is this expression, not the 32, which offers the insight to go on to express a 

general rule of 5+((n-1)x3), which may be written in the conventional form of 5+3(n-1). I argue that 

in order to head towards general algebraic statements learners should never do any arithmetic, just 

write down the arithmetic they would do. This is another reason why a table of values is often not as 

helpful as it might initially be considered to be; arithmetic is carried out in order to enter each value 

into the table. This means that any structural insights obtained are lost. Ferrara and Sinclair (2016) 

describe a teacher who worked with a class of grade 3 learners to see if they could work out the 

position number of 26 in the sequence 2, 4, 6,… The teacher stressed that this was not to be done by 

counting. After a while several children were clear that doubling was involved. The teacher asked 

what number would be in position 99. One learner answered “Hum, I don’t know the double of 99” 

(p. 13). For algebra, I argue that you do not need to know the double of 99, you just need to express 

the arithmetic you would do (i.e. 2 x 99). This then leads towards an articulation of 2xn, or 2n. In 

some ways a learner might struggle to carry out some arithmetic whilst just writing down what 

arithmetic they would do can feel easier. In that sense expressing an algebraic structure in written 

form can feel easier than having to carry out any arithmetic involved. 

Summary and implications 

The research literature has shown a frequent practice of presenting learners with figural diagrams 

and encouraging them to construct a table of values for the first few terms. This results in learners’ 

attention being focused on to numbers rather than the context from which those numbers arose. The 

activity for learners then becomes number pattern spotting and there are examples of students 



 

 

finding patterns in the numbers which can be detached from the contextual situation. The nature of 

a table of values is such that recursive rules are likely to be found and students do not always find it 

easy to translate such rules into a general functional rule. The argument I have made is that it may 

be preferable to stay with the contextual situation and encourage learners to find ‘structural ways of 

seeing’. This is supported by Strømskag (2015), who identified staying with the context as 

important for a successful pattern-based approach to algebra. Indeed, learners who stayed focused 

on the original figures were more likely to take a functional approach (El Mouhayar & Jurdak, 

2016) and find several important connected features (El Mouhayar, 2018), whereas those who 

focused on numbers were more likely to take a recursive approach and noticed features which were 

disconnected with each other. 

The principle of never carrying out any arithmetic but just writing down what arithmetic you would 

do can allow the structured way of seeing to be expressed within a written expression. Such 

expressions, and their associated ways of seeing, are a step towards seeing generality through a 

particular example (Mason, 1987). To aid this process of not carrying out any arithmetic and 

stressing structure instead, it is worth teachers considering offering just one example for learners to 

work on. This example should be one which is sufficiently complex so that learners are not able to 

count and are unlikely to be able to do any necessary arithmetic (Radford, 2000). This will increase 

the likelihood of learners expressing the structure they observe and writing it in a form which 

preserves that structure. Since a large number will be involved, this acts as a quasi-variable (Fujii & 

Stephens, 2001) in which the number acts as if it were a variable as learners have a sense that this 

could be any other number and the expression would still be true. 
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