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Maximum Probabilistic All-or-Nothing Paths

Noam Goldberg∗ Michael Poss†

December 17, 2019

Abstract

We consider the problem of a maximum probabilistic all-or-nothing

network path. Each arc is associated with a profit and a probability

and the objective is to select a path with maximum value for the prod-

uct of probabilities multiplied by the sum of arc profits. The prob-

lem can be motivated by applications including serial-system design

or subcontracting of key project activities that may fail. When sub-

contracting such critical success activities, each must be completed on

time, according to the specs, and in a satisfactory manner in order for

the entire project to be deemed successful. We develop a dynamic pro-

gramming (DP) method for this problem in the acyclic graph setting,

under an independence assumption. Two different fully-polynomial

approximation schemes are developed based on the DP formulations,

one of which applies repeated rounding and scaling to the input data,

while the other uses only rounding. In experiments we compare the DP

approach with mixed-integer nonlinear programming (MINLP) using

a branch-and-cut method, on synthetic randomly generated instances

as well as realistic ones.

Keywords: networks, dynamic programming, integer non-linear

programming, FPTAS

1 Introduction

Network optimization problems with an objective that involves a proba-

bility of the intersection of independent addtworandom events have been
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extensively studied. For example, in the reliability literature, some authors

propose the objective of minimizing a ratio of cost to reliability (Ahuja,

1988; Katoh, 1992). The reliability of a subgraph of a given network graph

is defined as the product of the edge probabilities, each of which corresponds

to the probability that the edge remains functional. The closely related area

of sequential system testing involves finding a least cost policy, which may

correspond to a binary decision tree, of system components to test in order

to determine whether the entire system is operational; see Ben-Dov (1981);

Boros (1999) as well as Daldal et al. (2016) and the references therein.

Similar network optimization problems also arise in the network interdic-

tion literature (Pan and Morton, 2008; Goldberg, 2017) where the model

may involve expected-value profit-probability product maximization (rather

than minimization of a cost-reliability ratio). Probabilistic all-or-nothing

expected-value maximization objectives have also been proposed in the kid-

ney exchange game theory literature (Dickerson et al., 2019), where they

are termed discounted utility. These problems share the characteristic that

value is only derived from a feasible solution (a subgraph such as a network

path) if all of the underlying arcs are functional. Our problem extends prob-

abilistic all-or-nothing subsets introduced by Goldberg and Rudolf (2017) to

maximize a similar objective over network paths. The all-or-nothing subset

problem involves selecting a subset of (unordered) activities such that the

sum of activity payoffs multiplied by the product of their success probabili-

ties is maximized.

An important application of our model is in designing series-connected

subsystems of the power grid. In particular, in renewable energy genera-

tion it is quite common to use series-connected generators, for example in

a string inverter layout, many photo-voltaic (PV) panel units may be con-

nected in series; see for example Zhang et al. (2012). Although technical

considerations may impose some bounds on the number of units to be con-

nected using a single inverter (e.g., due to voltage requirements), generally

a wide range of design and configuration choices may be available. In the

subsystems being considered, a failure of one of the units would imply the

failure of all units connected to the same inverter. Hence, the objectives of

maximizing the subsystem’s reliability and maximizing the operating state’s

power capacity (and/or associated profit) are antagonistic. Compared with

bicriteria and single-objective constrained-maximization approaches, which
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Figure 1: Series-connected power subsystem design. This example may
illustrate a string array of 7 generators to be connected in series. In each
position a generator is to be chosen given a choice of 5 generator types.
Each generator j may correspond to a different power generation capacity
csj and reliability (one minus the probability of failure) psj . Typically the
generation capacity (accordingly revenue) and the failure probability for the
same generator, j = 1, . . . , 5, would similar irrespective of the position. So
that for all i = 1, . . . , 5, csj = ci,j+5 and psj = pi,j+5.

potentially leave a large set of candidate nondominatred solutions or require

an arbitrary specification of a constraint parameter, our model maximizes

the subsystem’s expected profit, thereby it simultaneously accounts for both

the system reliability and its generation capacity. The network correspond-

ing to all feasible series subsystem can be represented as a directed acyclic

graph (DAG). An example of a design problem of a certain series-connected

power subsystem is illustrated in Figure 1. Note that in general the de-

sign network may not be a grid in cases where not all generator choices are

available in a particular position and/or if the number of generators to be

included is not a-priori fixed.

Our model can also be motivated by the important application of project

activity networks. R&D Project activity scheduling when activities may fail

has been considered by De Reyck and Leus (2008); Coolen et al. (2014).

These papers propose models for scheduling project activities in the case that

activities may fail and the overall project success depends on the success of

each and every activity. The objective is to maximize the expected profits

where each activity incurs a negative payoff (i.e., a cost) and the project

completion involves a positive payoff (revenue). In De Reyck and Leus

(2008), the overall net present value is considered by time-discounting the
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Figure 2: A multigraph that illustrates activity precedence and subcon-
tracting: An activity arc label pair (caij , paij ) along arc aij indicates, re-
spectively, the cost savings relative to a baseline activity arc (i − 1, i) (for
example, when the activity is carried out in-house) and the probability of
successful on-time completion, using subcontractor j. Note that while this
example is illustrated as a multigraph, it could be transformed into a di-
rected graph (without parallel edges) using additional dummy vertices and
0-cost, probability-1 arcs).

project revenue and costs, which are associated with each of the project’s

underlying activities. In Coolen et al. (2014), the activities are partitioned

into modules so that all modules must succeed in order for the project to

be successful (while not all activities have to succeed in each module for the

entire project to succeed).

In many industries such as construction, project activities are typically

subcontracted. Complex engineering projects can be under significant pres-

sures to be delivered at the lowest possible cost and consequently, costs

are a major concern in procurement and subcontractor selection; see for

example Kini (1999); Abbasianjahromi et al. (2014). When identifying the

subcontractor to which a particular activity or task should be assigned, both

cost and reliability considerations are taken into account. Reliability may

be defined as the probability of completing a given task successfully and

within an acceptable timeframe. Reliability considerations have been noted

as especially important for critical activities (Icmeli-Tukel and Rom, 1997;

Kim et al., 2012). Every candidate subcontractor for each activity may be

evaluated relative to a safe baseline alternative, for example, the alternative

of completing the task in-house or that of using a highly reliable “premium”

subcontractor. Both of these alternatives are likely to incur higher costs

but with the benefit of greater reliability. A multigraph that represents the

critical path subcontracting problem is illustrated in Figure 2.
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Assuming that arcs fail independent of one another, the problem that we

model can be viewed as an optimization of a nonlinear utility function over

Pareto efficient bicriteria optimal paths; the defined utility is the product of

the sum of arc profits with the product of arc probabilities. The indepen-

dence assumption is common in network reliability literature (Ahuja, 1988;

Katoh, 1992; Ball et al., 1995) as well in project management literature (see

for example Soroush (1994); De Reyck and Leus (2008)). Bicriteria shortest

paths have been extensively studied with linear objectives, as have exten-

sions with linear utility functions defined over the set of Pareto optimal

paths. For references on approximation algorithms for multicriteria opti-

mization problems, and in particular for shortest paths, see Hansen (1980);

Warburton (1987); Henig (1994); Papadimitriou and Yannakakis (2000) and

the references therein. A particular variant of a constrained shortest path

has also been extensively studied (Hassin, 1992; Ergun et al., 2002; Raz

et al., 2003). In particular, these studies have improved on the computa-

tional complexity of general schemes for bicriteria shortest path (Hansen,

1980; Warburton, 1987).

In Section 2 we model the probabilistic all-or-nothing path problem.

We develop a dynamic program (DP) with a pseudopolynomial worst-case

complexity in acyclic graphs in Section 3. Fully-polynomial time approxima-

tion schemes (FPTAS) are described in Section 5, which use scaling and/or

rounding techniques together with our previously described DPs. Our prob-

lem is reformulated as a convex integer program in Section 6. In Section 7 we

conduct experiments to compare the DP approaches with integer program-

ming methods. We consider randomly generated instances and also onces

that are based on real-life examples of IT and civil engineering projects.

2 Problem Definition

We now formally state the probabilistic all-or-nothing path problem. Let

G = (V,E) be a directed graph, s, t ∈ V be the source and the sink, and

let δ+(i) = {j ∈ V : (i, j) ∈ E} and δ−(i) = {j ∈ V : (j, i) ∈ E} be sets

of direct successors and predecessors of node i ∈ V , respectively. For each

edge e = (i, j) ∈ E, we are given a positive (integer) profit ce = cij ≥ 0 and

a probability of success pe = pij ∈ [0, 1]. Let |E| = m and |V | = n. The

all-or-nothing path problem is to find a path π from s to t such that the
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Figure 3: The instance used in the reduction of the all-or-nothing subset
problem to the all-or-nothing path problem: Traversing an upper arc in the
graph corresponds to selecting an item in the subset problem.

objective function

z(π) =
∑
e∈π

ce
∏
f∈π

pf (1)

is maximized. Given any node i ∈ V , let us denote the set of all paths from

s to i by P(i). Then, the optimization problem is to determine

z∗ ≡ max{z(π) : π ∈ P(t)}. (2)

When pe = 1 for each e ∈ E, problem (2) amounts to finding a longest

path in G. Hence, in a general graph our problem is NP-hard in the strong

sense (Garey and Johnson , 1979, pp. 199–200). We now show through a

reduction from the unconstrained all-or-nothing problem that even in Di-

rected Acyclic Graphs (DAGs), the problem is NP-hard (although in the

ordinary sense).

Proposition 1. Problem (2) is NP-hard in DAGs with a node in-degree

and out-degree of at most 2.

Proof. Consider an instance of the n-item all-or-nothing subset problem

which, given item profits c̄ ∈ Zn+ and item probabilities p̄ ∈ (0, 1)n, slightly

determines a subset S ⊆ [n] that maximizes
∑

i∈S c̄i
∏
j∈S p̄j (over all subsets

S ⊆ [n]). This problem is proved to be NP-hard in Goldberg and Rudolf

(2017). Then, let G be defined as the directed graph with 2n + 1 vertices,

as depicted in Figure 3. Let c(i−1)i = c̄i and p(i−1)i = p̄i for i = 1, . . . , n,

and let c(i−1)i′ = ci′i = 0 and p(i−1)i′ = pi′i = 1. It follows that for every

S ⊆ [n], there exists a path π in G so that i ∈ S if and only if (i− 1, i) ∈ π.

Similarly, for every path π in G there exists a subset S ⊆ [n] so that every

arc (i− 1, i) ∈ π if and only if item i ∈ S. Further, it can be verified that in

both cases
∏

(i,j)∈π pij
∑

(k,l)∈π ckl =
∏
i∈S p̄i

∑
j∈S c̄j .

Note that the reduction in the proof of Proposition 1 uses a directed graph
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that is equivalent to the path network with parallel edges in Figure 2 with ex-

actly two edges in parallel between each node pair along the chain. Also note

that compared with the problem considered in De Reyck and Leus (2008)

each item/activity i is associated with a positive payoff ci. Although, some

of our solution techniques may be extended to handle either positive or neg-

ative ci’s, compared with only negative payoffs (positive activity costs) in De

Reyck and Leus (2008) and a positive project payoff for the last activity.

The NP-hardness result of Proposition 1 applies in the case that we consider

when all of the ci’s are nonnegative. Finally, note that our objective (1) also

resembles that of the minimum cost-to-reliability ratio problems for which

negative computational complexity results remain open Ahuja (1988); Katoh

(1992).

3 Dynamic Programming

We now develop DP algorithms to solve problem (2).

DP with State Space defined by the Profit Coefficient. Let Zc(C, i)

denote the maximum objective value of a path from s to i with a realized

total profit of (exactly) C for the arc profit vector c, so

Zc(C, i) = max

{
z(π) : π ∈ P(i),

∑
e∈π

ce = C

}
. (3)

Herein, when subscript c is omitted then Z by itself will refer to the given arc

coefficients c. Let π(C, i) denote a path (a subset of arcs) that reaches the

maximum in (3) (for the sake of unambiguity assume that ties are broken

by selecting the lexicographically smallest path as a sequences of vertices).

Note that Z(C, i) satisfies the optimality condition

Z(C, i) =



max
j∈δ−(i)

z(π(C − cji, j) ∪ {(j, i)}) i ∈ V \ δ+(s) or csi < C

max


csipsi,

max
j∈δ−(i)\{s}:

cji 6=C

z(π(C − cji, j) ∪ {(j, i)})

 i ∈ δ+(s), C = csi

−∞ C < 0.

(4)
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It can be observed that for (j, i) ∈ π(C, i),

z(π(C − cji, j) ∪ {(j, i)}) = C · pji
∏

f∈π(C−cji,j)

pf =

{
C · pji Z(C−cji,j)

C−cji if C − cji > 0

C · pji otherwise,

(5)

where (5) follows directly from the definition of π(C − cji, j), Z(C − cji, j)
and z (note that the second line of (5) is needed when considering the direct

successors of s). Plugging (5) into (4), for i ∈ V \ {s}, the DP equations are

Z(C, i) =



max
j∈δ−(i)

{
Cpji

Z(C−cji,j)
C−cji

}
i ∈ V \ δ+(s) or csi < C

max

csipsi, max
j∈δ−(i)\{s}:

cji 6=C

{
Cpji

Z(C−cji,j)
C−cji

} i ∈ δ+(s), C = csi

−∞ C < 0.

(6)

To determine z∗ using the DP method given an upper bound on
∑

a∈π∗ ca ≤
C̄, (6) must be evaluated for C = 1, . . . , C̄. In particular

z∗ = max
C=1,...,C̄

Z(C, t). (7)

Let C∗ denote an optimal solution of (7). A straightforward upper bound

C̄ ≥ C∗ in a DAG is
∑

a∈E ca. A tighter upper bound, although its use may

not affect the worst-case computational complexity of (7), is the longest

path from s to t in the graph with arc profits c.

DP with State Space defined by the Probability Coefficient. In

this case we first revise our DP formulation such that the product of proba-

bilities is the state variable. Also, we must now assume that the probabilities

are rational numbers, so for all e ∈ E, pe ∈ [0, 1] ∩ Q. Let Ẑp(P, i) denote

the expected total profit of a path from s to i with a probability of (exactly)

P given probability vector p ∈ [0, 1]|E|. Thus for each i ∈ V

8



Ẑp(P, i) =


max
j∈δ−(i)

{pjiẐp(P/pji, j) + P · cji} i 6= s, P ≤ 1

0 i = s, P = 1

−∞ i = s, P 6= 1.

(8)

Since the probabilities are rational, let us further suppose that they are given

as pe = qe/de for e ∈ E, where qe,de ∈ Z. Then, the DP (8) can be solved

in finitely many steps with a maximum expected total profit from node s to

node t given by

max
k=1,...,

∏
e∈E qe

Ẑp

(
k∏

e∈E de
, t

)
. (9)

Now suppose that there exists some b > 0 such that for each e ∈ E, pe = bke

for some ke ∈ Z. Then, the next proposition establishes that the running

time of DP (8) is polynomial in m,n and maxe∈E ke under this assumption.

Proposition 2. If there exists b > 0 such that for all e ∈ E, pe = bke for

some ke ∈ Z, then DP (8) can be applied to solve problem (2) with a running

time complexity of O(mnmaxe∈E ke).

Proof. The correctness of (8) follows by induction: For all π ∈ P(j) and

(j, i) ∈ δ+(j), z(π ∪ {(j, i)}) = (z(π) + cji)pji. The maximizing path to

i ∈ V is found by determining the maximum of z(π ∪ {(j, i)}) over the

predecessors j ∈ δ−(i). The base case has π = {(s, i)}, z(π) = psicsi and

trivially z(∅) = 0. Then, an optimal solution of (2) is determined by solving

max
k=0,1,...,nmaxe∈E ke

Ẑp

(
bk, t

)
,

which has a running time complexity bound of O(mnmaxe∈E ke).

We consider straightforward bounds on C∗ and z∗ as well as further

tightening of these bounds in the following section.

4 Bounding z∗ and C∗

The running time of the DP algorithm (7) directly depends on C̄ as an upper

bound on C∗. Bounds on the optimal objective value may also be necessary

to derive an approximation result. Some of the analysis that follows will be

9



used to support the approximation results that appear in Section 5, while

some will be used for the exact DP method experiments in Section 7.

For convenience, for each a ∈ E define

R(a) ≡ max
π∈P(t)

∏
e∈π

re(a), where re(a) =

cepe e = a,

pe otherwise.

Note that as each π is an elementary path, then arc a ∈ A appears at most

once in a path that is a maximizer in the definition of R(a). Denote such

a maximizer by π̄. It follows that R(a) =

ca
∏
e∈π̄ pe a ∈ π̄,∏

e∈π̄ pe otherwise.
The

following proposition establishes a lower bound on the optimal objective

value.

Proposition 3. A lower bound on the optimal objective value is given by

zLB ≡ max
π∈P(t)

{∏
e∈π

pe max
f∈π
{cf}

}
≤ z∗. (10)

Further, this bound satisfies zLB = maxa∈E R(a).

It follows that zLB can be computed by solving at most m maximum-

reliability path problems, where each provides the value R(a) for a given

a ∈ E. In a DAG the maximum-reliability path problem (similar to the

shortest path problem) can be solved in O(m) running time using a topo-

logical sort algorithm (Cormen, 2009).

Let H(v) denote the maximum number of hops, or the longest elemen-

tary path in terms of number of arcs, from s to v. The next proposition

establishes an upper bound on the optimal solution value.

Proposition 4. z∗ ≤ H(t) · zLB.

Proof. Let π∗ denote a solution that is optimal for (2) and let π̂ denote a

solution that is optimal for (10). By the optimality of π̂,

zLB =
∏
e∈π̂

pe max
f∈π̂

cf ≥
∏
e∈π∗

pe max
f∈π∗

cf .

10



Since π∗ is an elementary path with |π∗| ≤ H(t),

H(t)zLB ≥
∏
e∈π∗

peH(t) max
f∈π∗

cf ≥
∏
e∈π∗

pe
∑
f∈π∗

cf = z∗.

For convenience in the following, for a vector v ∈ Rβ, let vmax =

maxβi=1 vi and vmin = minβi=1 vi. The bounds on the optimal objective value

do not necessarily imply bounds on C∗ ∈ argmaxC{Z(C, t)}. However, given

a lower bound on the optimal objective value, it may be possible in some

cases to tighten the otherwise loose bounds on C∗. The following proposition

summarizes the bounds on C∗.

Proposition 5. Suppose that C∗ ∈ argmaxC{Z(C, t)}. Then,

(i) C∗ ∈ [minπ∈P(t)

∑
e:e⊆π ce,maxπ∈P(t)

∑
e:e⊆π ce] ⊆ [cmin, H(t)cmax].

(ii) C∗ ∈
⋃
e∈E [ce, H(t)ce].

(iii) Let a∗ ∈ argmaxaR(a). If for all a 6= a∗ satisfying H(t)R(a) > zLB,

ca∗ ≥ ca, then [mina:(n−1)R(a)>zLB ca, H(t)ca∗ ] ∩ argmaxC Z(C, t) 6= ∅.

Proof.

Proofs of (i) and (ii). Straightforward.

Proof of (iii). Suppose that ca∗ ≥ ca for all a 6= a∗ such that H(t)R(a) >

zLB and suppose also that for all π∗ that are optimal to (2), C∗ =
∑

a∈π∗ ca >

H(t)ca∗ . Let f ∈ argmaxe∈π∗{ce}. Then, (n−1)R(f) ≥ (n−1)cf
∏
e∈π∗ pe ≥

z(π∗) > z(π) ≥ zLB. Since H(t)R(f) > zLB, it follows that ca∗ ≥ cf . But

then H(t)ca∗ ≥ H(t)cf ≥ C∗ thereby establishing a contradiction.

Note that the tightening of the bounds in Proposition 5-(i), in particular

the upper bound, relies on the computation of the longest path in a graph

and so it can be determined in polynomial time in DAGs. This is while the

straightforward upper bound H(t)cmax ≤ (n−1)cmax applies also in the case

of general graphs. Also, note that although the bound of Proposition 5-(ii)

corresponds to m intervals, the advantage of using this bounding set is that

each interval has an upper bound that is only a (polynomial) factor of (n−1)

times the lower bound.

We now describe a family of (deterministic) instances to illustrate the

utility of tightening the bound on C∗ based on Proposition 5-(iii).

11



s

1 2 · · · k
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v′1 v′2 · · · v′k

M, 1

M, 1 M, 1 M, 1

M, 1

L, 1/2

L, 1/2 L, 1/2 L, 1/2

L, 1/2

2L, 1
2·22 3L, 1

3·23 kL, 1
k2k

kL, 1
k2k

(k−1)L,
1

(k−1)2k−1

2L, 1
2·22

Figure 4: Deterministic instances that illustrate the utility of tightening the
bound on C∗ using the result of 5-(iii).

Example 1. In the example of Figure 4 let M > 1 and L =
⌊

(M−1)2k+1

k+1

⌋
.

Evidently, path π∗ = {(s, 1), (1, 2), . . . , (k − 1, k), (k, t)}, z∗ = M(k+ 1) and

zLB = M . Observe that for each a /∈ π∗, R(a) = L/2k+1 ≤ (M−1)/(k+1) <

zLB/(k + 1). Then, Proposition 5-(iii) implies that C∗ ≤ (k + 1)M <<

2L+(k−1)M (where 2L+(k−1)M is the next longest path). In particular,

C∗ ∈ O(kM) and for all (exponentially many in n) paths other than π∗ the

path length is in O(M2k).

Example 1 illustrates an application of Proposition 5-(iii). In practice the

tightened bound can be used to make the DP more efficient or, perhaps, to

preprocess a given graph more effectively by deleting arcs that cannot be

a part of an optimal path. In particular, in Example 1 the graph can be

reduced to the single path π∗ = {(s, 1), (1, 2), . . . , (k, t)}.

5 Approximation Schemes

We now consider two different approximation schemes. First, a scaling and

rounding scheme is applied to the c coefficients.

Profit coefficient scaling and rounding scheme. Consider Algorithm 1

as an approximation scheme given a relative error bound 0 < ε < 1 and an

interval [`, u] so that there exists a C∗ ∈ [`, u] where C∗ ∈ argmaxC Z(C, t).

Following the discussion of the previous section, a straightforward ratio of

bounds is given by u
` ∈ O(ncmax/cmin). The computational complexity of

our algorithm will depend on the magnitude of this ratio. Thus, we will also

12



consider the repeated application of the algorithm when given a union of

intervals of polynomially-bounded upper to lower bound ratios.

Algorithm 1 Profit Rounding and Scaling Approximation Scheme

Input: G = (V,E), p, c, 0 < ε < 1, `, u {Bounds `, u satisfy ` ≤ C∗ ≤ u.}
1: a∗ ← argmaxa∈E R(a)
2: while q = 0, . . . , dlog u− log `e − 1 do
3: K ← ε2q`

n−1

4: c̄e ←

{
−∞ ce > 2q+1`

bce/Kc otherwise

5: z̄q ← K · max
C=0,...,b 2(n−1)

ε
c Zc̄(C, t); let πq = π(C, t) be the corre-

sponding path.
6: end while
7: Select q∗ ∈ argmax{zq}

Output: z(πq)

Following Algorithm 1, we define the scaled objective as

zc(π) =
∑
e∈π

c̄e
∏
f∈π

pf ,

and the scaled problem is max{zc(π) : π ∈ P(t)}. The next lemma estab-

lishes an approximation relation between solutions of the scaled problem

when `2q ≤ z∗∏
e∈π∗ pe

≤ `2q+1 in the main loop of Algorithm 1 and solutions

that are optimal to (2).

Lemma 1. If K ≤ εL
(n−1) where L ≤ z∗∏

e∈π∗ pe
, then π̄ ≡ πq in the main loop

of Algorithm 1 satisfies ∑
e∈π̄

ce
∏
f∈π̄

pf ≥ (1− ε)z∗.

Proof. The result follows from the optimality of π̄ for the rounded profits c

13



and the assumption on K, specifically∑
e∈π̄

ce
∏
f∈π̄

pf ≥ Kzc(π̄) (Rounding of c)

≥
∑
e∈π∗
bce/KcK

∏
f∈π∗

pf (Optimality of π̄ for c)

≥ (
∑
e∈π∗

ce − (n− 1)K)
∏
f∈π∗

pf (Rounding of c)

≥ (1− ε)z∗ (Assumed upper bound on K)

Intuitively, Lemma 1 shows that the desired approximation guarantee is at-

tained as long as the scaling factor K is sufficiently small. It remains to show

that such a “sufficiently small” scaling factor also allows for a polynomial

running time complexity bound. The correctness and complexity bound of

Algorithm 1 are established in the following proposition.

Proposition 6. The output z of Algorithm 1 satisfies z ≥ (1 − ε)z∗. The

complexity of Algorithm 1 is O(1
εmn log(u/`)).

Proof. The first part of the claim is evident from Lemma 1 and from the

fact that the scaled DP is run over an interval that contains a maximizer

C∗. In particular, the main loop goes through q = 0, . . . , dlog u− log le − 1

and the intervals [2q`, 2q+1`] partition the interval [`, u]. Each maximiza-

tion using the DP with scaled profits in line 5 has a complexity bound of

O(mn/ε), while the number of iterations of the main loop is bounded by

O(log(u/`)). Together, these bounds imply an overall complexity bound of

O(1
εmn log(u/`)).

Corollary 1. Algorithm 1 invoked with ` = cmin, u = ncmax outputs a

solution with objective z ≥ (1 − ε)z∗. The complexity of Algorithm 1 is

O(1
εmn log(ncmax/cmin)).

Observe that Proposition 6 establishes a polynomial complexity bound

for Algorithm 1, although it is not strongly polynomial. The following

proposition establishes a strongly polynomial time complexity at the cost

of repeatedly invoking Algorithm 1 (m times).

14



Proposition 7. Algorithm 1 can be invoked repeatedly to output a solution

with objective z ≥ (1− ε)z∗ with a complexity bound of O(1
εm

2n log n).

Proof. By invoking Algorithm 1 once for each arc a ∈ E, with ` = ca

and u = (n − 1)ca, and outputting the best solution value. This approach

uses the straightforward observation that C∗ ∈
⋃
e∈E [ce, (n− 1)ce] (see also

Proposition 5-(ii). So, the analysis of the complexity bound is similar to that

in the proof of Proposition 6 except that the algorithm is invoked m times

and each invocation now involves O(log(u/`)) = O(log n) iterations.

Note that for every π∗ that is optimal to (2), the pair (C∗, P ∗) ≡
(
∑

e∈π∗ ce,
∏
e∈π∗ pe) must be Pareto efficient: for all π ∈ P(t), if PC 6=

P ∗C∗ then either C =
∑

e∈π ce < C∗ or P =
∏
e∈π pe < P ∗. It fol-

lows that approximation schemes for multicriteria shortest path problems

could be adapted to determine an optimal solution for our problem. Hansen

(1980) and Warburton (1987) developed a fully-polynomial time approxima-

tion scheme (FPTAS) for bicriteria and constant-number multicriteria path

problems, respectively.

More efficient approximation schemes were developed by Hassin (1992)

for the related problem of the (linear) constrained shortest path. In contrast

to the situation in the current problem, in the constrained shortest path case,

it is possible to binary search a bounded interval of the logarithm of objective

values. Subsequent improvements to Hassin’s scaling-based approximation

scheme for constrained shortest paths were developed by Lorenz and Raz

(2001) and Ergun et al. (2002).

Probability-rounding scheme. We now consider a rounding scheme

(without scaling) that is applied to the probability coefficients. Proposi-

tion 2 shows that under the assumption that the probabilities are powers

of a common base, then the exact solution can be determined using DP (8)

in polynomial time. In the absence of this assumption, we develop an ap-

proximation scheme that further exploits the result of Proposition 2. This

rounding based scheme is given by Algorithm 2.

For convenience let zp(π) denote the objective value of path π (similar

to Ẑp) with probability vector p. The following proposition establishes that

Algorithm 2 is an FPTAS.
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Algorithm 2 Probability Rounding Approximation Scheme

Input: G = (V,E),p, c, ε

1: For each e ∈ E, let p′e = (1− ε)dlog
(1−ε)1/n pee/n.

2: z′ = maxk=1,...,ndlog
(1−ε)1/n (pmin)e Ẑp′

(
(1− ε)k/n, t

)
. Let π be the corre-

sponding path.
Output: z(π)

Proposition 8. Algorithm 2 computes a solution for (2) with an objective

at least (1− ε)z∗ in time O(−1
εmn

2 log(pmin)).

Proof. Consider π, which is the output of Algorithm 2, and π∗, which is

optimal to (2). By (i) the definition of p′, (ii) the maximum number of arcs

that form an elementary path and (iii) the optimality of π and π∗ for their

respective problems, it follows that

zp(π) ≥ z′(π) ≥ z′(π∗) ≥
∏
e∈π∗

pe(1− ε)1/n
∑
f∈π∗

cf ≥ (1− ε)z(π∗).

The complexity of the algorithm (recalling that for positive x, log x ≤ x−1)

is

O(−m
∑
f∈E

log(1−ε)1/n pf ) ⊆ O
(
−1

ε
mn2 log(pmin)

)
.

Discussion. To summarize the approximation results of this section, our

strongly polynomial profit scaling and rounding based FPTAS has a com-

plexity of O(1
εm

2n log n). Our alternative, simple probability rounding

based FPTAS has a runtime complexity of O(−1
εmn

2 ln pmin). The latter

may be preferable if the probabilities are sufficiently large with respect to n,

in particular, if pmin ∈ Ω(e−n logn). Also, note that using the directed graph

reduction in the proof of Proposition 1, the all-or-nothing subset problem

can be solved using our methods with m ∈ O(n). This implies a strongly

polynomial runtime complexity of O(1
εn

3 log n) to solve the subset problem,

which outperforms the O(n4/ε) runtime complexity of the corresponding

algorithm presented by Goldberg and Rudolf (2017).
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6 A Convex Mixed-Integer Nonlinear Program (MINLP)

Formulation

In this section we develop a MINLP model and a specialized MINLP method.

The latter will serve as a benchmark for empirically evaluating the efficiency

of the DP as an exact solution technique in the following section. Introducing

decision variables x ∈ {0, 1}m to indicate which arcs are selected to form a

path, and accordingly the set of feasible paths

Π ≡
{

x ∈ Rm
∣∣∣ ∑

(j,i)∈E xji=
∑

(i,j)∈E xij , i∈V \{s,t}∑
(s,i)∈E xsi=1,

∑
(j,t)∈E xjt=1

}
,

the problem can be formulated as a MINLP. Following Goldberg and Rudolf

(2017) we rewrite z(π) as

z(x) =
∑
e∈E

cexe
∏
f∈E

p
xf
f . (11)

Further, maximizing z(x) is equivalent to maximizing its logarithm, so (11)

can be replaced by the concave objective function

ln(z(x)) = ln

(∑
e∈E

cexe

)
+
∑
f∈E

ln(pf )xf . (12)

Then the derived MINLP formulation is

max {ln(z(x)) | x ∈ Π ∩ {0, 1}m } . (13)

It can be observed that as a concave maximization problem with linear

constraints, this formulation is a convex MINLP. In Section 7 we conduct

experiments using this formulation and treat it as a benchmark for our

proposed computational techniques.

To solve this model using state-of-the art linear integer programming

solvers, we implement our own MINLP linearization and objective-based

cutting plane techniques. While our convex MINLP method implementation

is fairly standard, it specializes the general techniques for our problem. In

particular, following the concavity of ln(z(x)), subgradient objective cuts

can be derived for problem formulation (13). For any x̄ that is feasible for
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formulation (13), the following inequality

ln(z(x)) ≤ ln(z(x̄)) +∇ ln z(x̄)T (x− x̄)

= ln(z(x̄)) +

[
1∑

e∈E cex̄e
c+ ln(p)

]T
(x− x̄)⇔

ln

(∑
e∈E

cexe

)
≤ ln

(∑
e∈E

cex̄e

)
+

∑
e∈E cexe∑
e∈E cex̄e

− 1

is valid for the set of optimal solutions of (11). For convenience define, for

x, x̄ ∈ Π and 0 ≤ t ≤ ln
(∑

e∈E ce
)
,

g(x, x̄, u) ≡ u−
∑

e∈E cexe∑
e∈E cex̄e

− ln

(∑
e∈E

cex̄e

)
+ 1 ≤ 0. (14)

Now consider a linearized subproblem given a set of inequalities (14) cor-

responding to a (finite) set of solutions Π0 ⊂ Π ∪ {1}, also known as the

relaxed master problem in the literature on decomposition algorithms.

max
x,u

u+
∑
e∈E

ln(pe)xe (15a)

subject to x ∈ Π (15b)

g(x, x̄, u) ≤ 0 x̄ ∈ Π0 (15c)

x ∈ {0, 1}m. (15d)

For a solution (x, u) that is feasible to (15), Algorithm 3 dynamically gener-

ates the cuts (14) required to solve (13) as a sequence of mixed-integer linear

programs (MILPs) (15) to within a given relative-optimality gap γ ∈ [0, 1).

Note that although Algorithm 3 solves a sequence of MILPs, where each

MILP may be solved to optimality, it can instead be implemented such that

step 3 outputs any upper bound. Indeed, an approach that is usually more

efficient in practice is to generate the inequalities (15c) dynamically and to

“hot-start” the previous iteration’s branch-and-bound tree in step 3 of the

algorithm, or equivalently, to generate the inequalities (15c) as a part of a

branch-and-cut algorithm. We conduct experiments using a branch-and-cut
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Algorithm 3

Input: G = (V,E), c, p, 0 ≤ γ < 1
1: Π0 ← {1}
2: while True do
3: Solve (15) to determine a feasible solution x̄, u.
4: if ln z(x̄) ≥ (1− γ)

(
u+

∑
e∈E ln(pe)xe

)
then

5: break.
6: else
7: Π0 ← Π0 ∪ {x̄}
8: end if
9: end while

Output: z(x̄)

approach in Section 7.

7 Computational Results

In this experimental analysis, we compare our MINLP method (Algorithm 3)

and DP (7) with a standard MINLP solver for solving problem (13), Bon-

min. Algorithm 3 was implemented using Gurobi and was based on its cut

generation routine. The next subsection contains further implementation

details, while the following subsections detail our experiments using three

sets of instances: random graph instances, specific types of graphs, and

realistic instances based on project management.

7.1 Implementation details

All experiments were carried out on a CPU Intel i7-5500 3.0 GHz processor

under the Ubuntu 16.04 operating system. Our algorithms were coded in

Julia 5.1 using the package JuMP (Dunning et al., 2017) to interact with the

MIP solvers. The MINLP (13) was solved in two different ways: using Bon-

min 1.8.4 (with MUMPS as the linear solver) and using a branch-and-cut

algorithm that generates the cuts (14) at the integer nodes found along the

tree and interacts with Gurobi 7.02 through callbacks. It is essentially sim-

ilar to Algorithm 3 (setting γ = 10−4) but using Gurobi’s callback facility

to incorporate the generation of cuts within its branch-and-cut implemen-

tation.
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7.2 General Random Graph Instances

We consider below two sets of random instances generated uniformly as

topologically ordered DAGs, which means that for an ordering 1, ..., n ∈ V ,

all edges (i, j) ∈ V × V with i < j have the same probability of appearing

in each graph. Furthermore, we consider s = 1 and t = n and ensure that

there exists at least one path between s and t (otherwise the current graph is

discarded and another one is generated). Similar to the random generation

of knapsack instances (see for example Pisinger (1997)), as well as other

constrained combinatorial optimization problems, we find that the degree

of correlation between item profits and constraint coefficients may heav-

ily affect the observed difficulty in solving the generated instances. Thus,

we consider two different schemes for generating the probability coefficients

(analogous to budget constraint coefficients in constrained settings):

Probabilities generated uniformly at random (independent of profits).

All graphs are generated given the following parameters: the number of

vertices, the graph density, and the maximum edge profit. The number

of vertices n ranges in {50, 100, 150, 200, 250, 300, 350, 400}, edge densi-

ties in {0.1, 0.2, 0.3, 0.4, 0.5}, maximum profit cmax ∈ {50, 100, 150, 200},
and minimum probability pmin ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The cost ce

for each edge e is an integer uniformly generated between 1 and cmax

and the probability pe is uniformly generated in [pmin, 1].

Probabilities inversely related with profits. For the second set of in-

stances, we focus on smaller graphs (n = 50) with cmax ranging in

{50, 200, 400, 600, 800, 1000}. The cost ce is again uniformly generated

between 1 and cmax while the probability is now given by the relation

pe = e−α
ce

cmax where α ranges in {1, 10, 20, 30}.

We now examine the results of our experiments. Figure 5 reports the av-

erage solution times of the five implementations on acyclic graphs: MINLP

using Gurobi, MINLP using Bonmin, and DP using the following three

bounds on C∗ used. The first bound computes the longest path from s

to each node using lengths c̄ (local UB), the second bound only computes

the longest path from s to t (global UB), and the third bound applies Propo-

sition 5-(iii). We limited our experiments with Bonmin to instances with

n = 100 nodes, as larger instances took an excessive length of time. Clearly,
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Figure 5: Non-correlated probabilities: A comparison of solution times for
the case where probabilities are independent of profits.

as |V | increases, Bonmin is outperformed by the other algorithms by orders

of magnitude. We also see that, for small values of cmax, the dynamic pro-

gramming algorithms are faster than MINLP (Algorithm 3 using Gurobi).

When cmax increases, the DP algorithms slow down while the MINLP is

barely affected. In fact, the MINLP is fastest for cmax ≥ 150. The most

efficient variant of the DP algorithm is the one that uses a local upper bound

based on the longest path value at each graph vertex. It is evident that, for

these instances, the running time of computing the bound of Proposition 5-

(iii) on C∗ is not justified by the actual bound reduction. The inefficiency of

Proposition 5-(iii) for these instances is further illustrated on In fact, when

examining these experiments it appeared the upper bound computed using

Proposition 5-(iii) provided no reduction at all on these instances.

Figure 6 reports the average solution times for the same algorithms, with

the exception of Bonmin, on the second group of instances. These show

that Proposition 5 now provides a worthwhile time reduction, especially

when α ≥ 20. This is in-line with the bounds reported in Figure 7, where

we report the averages ratios Ci/C
∗ for i ∈ {1, 2} where C1 is the upper
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Figure 6: Correlated probabilities: A comparison of solution times for the
case where probabilities are set to be inversely related to the profits.

bound provided by the aforementioned longest path given arc length vector

c (referred to as global UB in Figure 6), and C2 = H(t)ca∗ with a∗ defined

in Proposition 5-(iii) (referred to Prop 5. in Figure 6). It also appears the

greatest improvement of the bound computed based on Proposition 5-(iii) is

obtained with “small” correlated probability values corresponding to a large

value of α. At the same time, it should be noted that for these instances

Gurobi is much faster than the dynamic programming algorithms, which is

explained by the larger bounds on C∗ used, which is consistent with the

large ratios indicated by Figure 7 (in the experiments of Figure 5 with non-

correlated instances the corresponding ratios appeared to be significantly

less than 400%).

7.3 DAGs to Further Illustrate the Effect of the Tightening

of Bounds on C∗

The results of Section 7.2 for random-probability graphs appear to indicate

that the bound on C∗ based on Proposition 5-(iii) reduces the overall effi-
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Figure 7: Correlated probabilities: A comparison of bounds on C∗ for the
case where probabilities are set to be inversely related to the profits.

ciency of the DP algorithm (it has a marginally positive effect in the case

of the inversely related probabilities). This is partly due to the running

time of computing the bound, which appears to increase in the number

of vertices and graph density. Figure 8 shows an example graph with edge

probabilities that are inversely related to the edge profits. One optimal path

has z∗ = C∗ = 2 and all other paths π are optimal with
∑

e∈π ce = 2M ,

which can be orders of magnitude larger than C∗. In particular, experiments

with 2000 ≤ M ≤ 8000 are shown in Figure 9. Here the DP algorithm (7)

with C̄ based on Proposition 5-(iii) yields the lowest running time for all

values of |V | and M considered. The DP with the local upper bounds on∑
e∈π ce, with π ∈ P(v) for each v ∈ V , performs second best among the DP

variants. It is outperformed by the branch-and-cut algorithm (Algorithm 3

using Gurobi) for small values of |V | but it performs much better than the

branch-and-cut method as |V | grows larger. The bounds on C∗, illustrated

on Figure 10, are in line with the solution times observed in Figure 9.
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7.4 Real Project Critical Path Experiments

In this subsection we perform experiments using the critical paths of real

projects appearing in Batselier and Vanhoucke (2015). In particular, for

each project, an activity-on-arc network is created in order to determine

the critical path given the planned activity durations. Then, for each arc a

on the critical path, an arc a0 is created in the subcontracting chain graph

with ca0 = 0 and pa0 = pmax = 0.99. In addition, s ∈ {5, 10, 20, 50, 100}
“parallel arcs” are created, with ca1 , . . . , cas , each joined with a dummy

vertex and additional arc with cost 0 and probability 1, which correspond

to the alternatives to subcontracting activity a (similar to the multigraph

in Figure 2 but converted into an equivalent graph). For i = 1, . . . , s, cai is

assigned r/2 of the total budgeted cost of activity ai, where r is generated

uniformly at random from [0, 1]. Then, for a given α > 0, the success

probability of subcontract arc ai is set to pai = pmaxe
−αr.

Based on the results with random probabilities in Section 7.2, it is ev-

ident that the MINLP algorithm outperforms the DP method for all but

negligible values of the cost parameter. In the current experiments, we ran

MINLP algorithm 3. The results are shown in Tables 1 and 2. For each

experiment with different values of the parameters s (accordingly |V |) and

α, the results of the running time, the optimal solution probability and the

objective (expected) value are indicated. The number of subcontracted ac-

tivities is also reported. The results confirm the running time efficiency of

the MINLP algorithm in practice for actual project network instances. It

can be observed overall that the number of activities that are subcontracted,

as well as the probability P ∗ and the objective value of the optimal solution,

increase as α decreases. Further, as would be expected, for a given value of α,

as s (the number of subcontracting alternatives) increases, the optimal ob-

jective value also tends to increase. Perhaps less intuitive is the finding that

P ∗ tends to decrease rather than increase under the same circumstances.

Therefore, it appears that a greater variety of subcontracting alternatives

results in somewhat riskier optimal solutions with higher returns to justify

the increased risk.
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Table 1: Project subcontracting instances based on the IT-project critical-
path data of Batselier and Vanhoucke (2015). The network was generated
based on that project’s original 22-arc critical path. Running times in sec-
onds are indicated for solving the instances using the MINLP Algorithm 3.

s |V | α Time P ∗ z∗ Sub #

5 133 0.6 0.0 0.49 1205.31 3
10 243 0.6 0.0 0.45 1324.04 2
20 463 0.6 2.0 0.45 1320.96 2
50 1123 0.6 18.0 0.45 1323.76 2
5 133 0.4 0.0 0.49 1454.29 3
10 243 0.4 0.0 0.46 1638.98 3
20 463 0.4 2.0 0.46 1591.61 3
50 1123 0.4 27.0 0.45 1657.44 3

s |V | α Time P ∗ z∗ Sub #

5 133 0.2 0.0 0.53 2134.87 5
10 243 0.2 0.0 0.51 2285.07 5
20 463 0.2 2.0 0.51 2279.60 5
50 1123 0.2 32.0 0.50 2306.15 5
5 133 0.1 2.0 0.62 2875.47 6
10 243 0.1 1.0 0.61 2938.63 6
20 463 0.1 2.0 0.61 2943.30 6
50 1123 0.1 31.0 0.60 2995.01 6
5 133 0.05 0.0 0.68 3161.81 8
10 243 0.05 1.0 0.67 3361.73 8
20 463 0.05 2.0 0.67 3320.29 8
50 1123 0.05 22.0 0.67 3525.86 8
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Table 2: Project subcontracting instances based on the Tappan-Zee Bridge
critical-path data of Batselier and Vanhoucke (2015). The network was
generated based on the 9-arc critical path of that project. Running times
in seconds are indicated for solving the instances using the MINLP Algo-
rithm 3.

s |V | α Time P ∗ z∗ Sub #

5 55 0.6 0.0 0.57 3.40E8 2
10 100 0.6 0.0 0.52 3.63E8 2
20 190 0.6 0.0 0.53 3.59E8 2
50 460 0.6 2.0 0.51 3.70E8 2
100 910 0.6 9.0 0.51 3.71E8 2
5 55 0.4 0.0 0.66 4.24E8 2
10 100 0.4 0.0 0.63 4.49E8 2
20 190 0.4 0.0 0.63 4.33E8 2
50 460 0.4 2.0 0.62 4.51E8 2
100 910 0.4 9.0 0.62 4.51E8 2

s |V | α Time P ∗ z∗ Sub #

5 55 0.2 0.0 0.72 5.14E8 3
10 100 0.2 0.0 0.70 5.51E8 3
20 190 0.2 0.0 0.70 5.69E8 3
50 460 0.2 2.0 0.69 5.60E8 3
100 910 0.2 12.0 0.68 5.73E8 3
5 55 0.1 0.0 0.72 6.56E8 6
10 100 0.1 0.0 0.71 6.62E8 6
20 190 0.1 0.0 0.69 6.81E8 6
50 460 0.1 2.0 0.69 6.81E8 6
100 910 0.1 10.0 0.69 6.89E8 6
5 55 0.05 0.0 0.82 7.12E8 6
10 100 0.05 0.0 0.81 7.07E8 6
20 190 0.05 0.0 0.80 7.71E8 6
50 460 0.05 2.0 0.80 7.88E8 6
100 910 0.05 10.0 0.80 8.00E8 6
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8 Conclusion

In this paper we introduced a new probabilistic all-or-nothing path prob-

lem motivated by critical-path analysis and procurement applications. We

developed the analysis and a suite of solution techniques to address this

problem: approximation schemes with theoretical guarantees with respect

to the quality of the solutions that are determined, as well as practical com-

putational approaches. In our computational experiments we found that our

specialized MINLP algorithm was most effective in general, in particular for

large values of cmax, although the DP method, including its variants that

compute tightened state space parameter bounds, outperformed the MINLP

algorithm in some cases. We showed that the MINLP method applied to

networks constructed based on critical paths of real projects runs within

less than a minute of CPU time. The observed optimal solutions show that

increasing the variety of task subcontracting alternatives may result in some-

what riskier optimal solutions but with sufficiently higher profits to justify

this risk.

In ongoing work we consider solution methods for a partial success model

similar to the one considered in Dickerson et al. (2019), in which functional

subpaths of a network path solution also yield a partial value. This extension

may be useful for additional applications such as for the problem of deter-

mining optimal transplant-donation chains in kidney exchange compatibility

graphs.
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