DE LA RECHERCHE À L'INDUSTRIE

C22

www.cea.fr

GRAIN GROWTH AND MO HOMOGENIZATION IN U-7MO ATOMIZED PARTICLES

X. Iltis^a, V. Klosek^a, I. Zacharie-Aubrun^a, N. Tarisien^a, T. Blay^a, E. Suard^c, T. Hansen^c, Y. Calzavara^c, E. Hervieu^b, H.J. Ryu^d, Y.J. Jeong^e, J.M. Park^e, Z.-G. Mei^f, L. Liang^f, A.M. Yacout^f, A. Leenaers^g, D.D. Keiser^h, F. Vanniⁱ, B. Stepnikⁱ, <u>H. Palancher^a</u>

^ACEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex – France
^BCEA, DEN, DISN, 91191 Gif sur Yvette– France
^CILL – France
^DKAIST - Republic of Korea
^EKAERI – Republic of Korea
^FANL, USA
^GSCK-CEN
^HINL, USA
^IAREVA-CERCA

INTRODUCTION: DISPERSE U-MO DEVELOPMENT NEEDS

Two main sources for the swelling:

- 1. Growth of an IDL
- **Coating of U-Mo particles with micrometer thickness**
- 2. Enhanced precipitation of fission products after U-Mo grain

recrystallization

S. Van den Berghe, *et al.*, J. Nucl. Mater. 442 (2013) 60–68 U-Mo microstructure optimization (grain growth, Mo

homogenization)

Y.S. Kim, *et al.*, J. Nucl. Mater. 454 (2014) 238-246.

INTRODUCTION: DISPERSE U-MO DEVELOPMENT NEEDS

U-Mo microstructure optimization is based on thermal treatments. Reference conditions (1000°C, 1h) were set to provide both:

- Grain growth,
- Mo homogenization.

Can both mechanisms be de-correlated?

Outline

1. Grain Growth

- 2. Mo-homogneization
 - 1. Fresh powder
 - 2. Methods: neutron diffraction
 - 3. Mo-homogenization kinetics
 - 4. Destabilization kinetics

3. Conclusions

In depth analysis of atomized microstructures (EMPIrE batches):

The as-atomized case:

2-3 µm average grain size in excellent agreement with nano-XRD CT experiments

After heat treatment at 1000 °C during 1 h:

- 32-35 µm average grain size in excellent agreement ANL modelling
- Significant grain growth
- Good reproducibility of the heat treatment, whatever the equipment and the operator

Annealing conditions validated for "optimized" in-pile performances (EMPIrE, SEMPER-FIDELIS tests)

Z.-G. Mei et al., J. Nucl. Mater. (2016) 308-316

X. Iltis et al., J. Nucl. Mater. 495 (2017), 249-266.

Outline

1. Grain Growth

2. Mo-homogneization

- 1. Fresh powder
- 2. Methods: neutron diffraction
- 3. Mo-homogenization kinetics
- 4. Destabilization kinetics

3. Conclusions

MATERIALS: FRESH U-MO POWDER (I/II) – EDS/XRD

Mo concentration (wt%):

- KAERI : 8 ± 0.3 wt%
- EDS:
 - Semi-quantitative analysis
 - 0.6 wt% higher than for EMPIrE powders
- XRD :
 - Two UMo phases with different lattice constants

3.425113 3.417783

- Dwight's Law
- Result : ~8 wt%

Impurities (wt%):

	Weight fraction (%)	Comments
U(C,O, N)	2	High value
UO ₂	~0.3	

38th RERTR Conference

MATERIALS: FRESH U-MO POWDER (I/II) – EDS/XRD

Mo concentration (wt%):

- KAERI : 8 ± 0.3 wt%
- EDS:
 - Semi-quantitative analysis
 - 0.6 wt% higher than for EMPIrE powders
- XRD :
 - Two UMo phases with different lattice constants

3.425113 3.417783

- Dwight's Law
- Result : ~8 wt%

Impurities (wt%):

	Weight fraction (%)	Comments
U(C,O, N)	2	High value
UO ₂	~0.3	

MATERIALS: FRESH U-MO POWDER (I/II) - EBSD

MATERIALS: FRESH U-MO POWDER (I/II) - EBSD

Reliability of EBSD analyses on atomized powders and reproducibility of production

BASIS OF THIS WORK Litterature Neutron diffraction on as-atomized U-10 Mo powders 2400 2400 (310) Yinterior 2100 2100 (220) (220)1800 1800 (a.u.) 1500 γ_{boundary} 1500 (220)1200 Intensity (1200 900 900 600 600 300 300 0 0 -300 -300 -600 103 105 93 95 97 99 101 2 Theta (deg.) 120 110 115 3500 This XRD work **FWHM decrease** (310)3200 (« narrowing ») of γ U-Mo 2 2900 2600 Bragg lines is a marker of Mo g. 2300 homogenization in γ U-Mo.) (2000 1700 1400 1400 **Kinetics can be determined** 1100 800 by an in situ diffraction 500 analysis during TT 200 7.47 7.50 7.53 7.56 7.59 7.62 7.65 7.41 7.44 20 (°) B.S. Seong et al., J.M. Park et al., 38th RERTR Conference Chicago (US) | 12 November 2017 | PAGE 13

J. Nucl. Mater. 397 (2010) 27

J. Nucl. Mater. 277 (2000) 274

IN SITU NEUTRON DIFFRACTION: MEDIUM-TO-HIGH ANGULAR RESOLUTION

NEUTRONS FOR SOCIETY

biological protection of heavy concrete at Collimators Monochromators H+V slits Shutter H+V slits Sample H+V slits Sample Biological protection Biolog

D20 beamline

λ = 1.54 Å

36th RERTR Conference

Chicago (US) | 12 November 2017 | PAGE 14

IN SITU NEUTRON DIFFRACTION: MEDIUM-TO-HIGH RESOLUTION

D20 beamline

420000 10000 (310)370000 A 80000 € 60000 **TH** 40000 ф270000 т 20000 111.0 111.7 112.4 113.1 113.8 114.5 115.2 115.9 116.6 117.3 118.0 120000 20 (%) 70000 20000 20 40 60 80 100 120 140 160 20 (°) Diffractometer well suited for this experiment

λ = 1.54 Å

36th RERTR Conference

Chicago (US) | 12 November 2017 | PAGE 15

Cea

SELECTED THERMAL TREATMENT CONDITIONS

1000

—— Temperature set (°C)

----Sample temperature

Influence of temperature on homogenization kinetics

SELECTED THERMAL TREATMENT CONDITIONS

Influence of temperature on homogenization kinetics

	Homogenization		Destabilization at 450 ℃
	Temperature	Duration	Duration (h)
	(\mathfrak{O})	(h)	
TT_900	900	4	6
TT_730	730	12	15
TT_ref	1000	1	< 3 h

E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, 7th ed., 1992.

For both temperatures (730 and 900 °C), Mo homogenization is completed (i.e. the most significant part of this process) before sample temperature is stable.

For the reference case (1000°C, 1h), Mo is therefore homogenized

38th RERTR Conference

Destabilization kinetics are different for both powders whereas they exhibit the same initial Mo homogenization level - Interpretation ?

In the reference case (homogenization at 1000°C during 1h), a very low destabilization level in the particles is expected after fuel plate fabrication

Evaluation of the U-Mo grain size after homogenization TT:

After Mo homogenization TT at 730 and 900°C, <u>modelling</u> shows that grain size is very different

38th RERTR Conference

Z.-G. Mei, *et al.*, J. Nucl. Mater. **473**, 2016, 300–308. **Evaluation of the U-Mo grain size after homogenization TT:**

• First SEM/EBSD characterizations (after destabilization TT however)

Average grain size: very low

High level of destabilization: observation are difficult

Average grain size EBSD: ~13 μ m

Destabilization ? High UC content ?

After Mo homogenization TT at 730 and 900°C, <u>modelling and experiment</u> show that grain size is very different

Destabilization kinetics are different for both powders whereas they exhibit the same initial Mo homogenization level - Interpretation ?

In the reference case (homogenization at 1000°C during 1h), a very low destabilization level in the particles is expected after fuel plate fabrication

Destabilization kinetics are different for both powders whereas they exhibit the same initial Mo homogenization level - Interpretation ? Grain size effect

In the reference case (homogenization at 1000°C during 1h), a very low destabilization level in the particles is expected after fuel plate fabrication

38th RERTR Conference

CONCLUSIONS

Two high temperature "processes" were investigated on as-atomized U-7Mo

- 1. Grain growth analysis using EBSD
 - EBSD is a very powerful technique after sample surface preparation optimization
 - Validation of the reference TT conditions for grain coarsening: reproducibility assessed
- 2. Mo-homogenization using in situ neutron diffraction
 - Preliminary step (further confirmation work in progress)
 - Mo-homogenization at T>730°C is a swift process: it is completed during the temperature ramp
 - Mo-homogenization completed in the reference conditions (1000°C, 1h)
 - γU-Mo destabilization kinetics influenced by grain size

Mo-homogenization kinetics are not correlated to grain growth

X. Iltis et al., J. Nucl. Mater. 495 (2017), 249-266.

- After TT 900°C 4h (i.e. after Mo homogenization)

38th RERTR Conference

THANK YOU FOR YOUR

ATTENTION !!!

AS-ATOMIZED U-MO PARTICLES: MICROSTRUCTURE

Crystallographic relationships between Mo-rich and Mo-depleted areas (core and grain boundary areas)

AS-ATOMIZED U-MO PARTICLES: MICROSTRUCTURE

Crystallographic relationships between Mo-rich and Mo-depleted areas (core and grain boundary areas)

Dendrites are single crystals

Grain orientation map

Image quality map

Overlay

G. Champion, Ph.D. thesis Rennes University, 2013. X. Iltis *et al.*, J. Nucl. Mater. **495** (2017), 249-266.

Chicago (US) | 12 November 2017 | PAGE 28

METHODS: PREPARATION FOR RODS/PLATES ?

Sucessfull sample preparation using FIB milling

38th RERTR Conference

X. Iltis et al., J. Nucl. Mater. 495 (2017), 249-266.

Chicago (US) | 12 November 2017 | PAGE 29