
HAL Id: hal-02416253
https://hal.science/hal-02416253v1

Submitted on 3 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standard-compliant parallel systemC simulation of
loosely-timed Transaction Level Models

Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux, Matthieu Moy

To cite this version:
Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux, Matthieu Moy. Standard-compliant parallel
systemC simulation of loosely-timed Transaction Level Models. ASP-DAC 2020 - 25th Asia and
South Pacific Design Automation Conference, Jan 2020, Beijing, China. pp.1-6, �10.1109/ASP-
DAC47756.2020.9045568�. �hal-02416253�

https://hal.science/hal-02416253v1
https://hal.archives-ouvertes.fr

Standard-compliant Parallel SystemC simulation of Loosely-Timed
Transaction Level Models

Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux Matthieu Moy
CEA, LIST Univ Lyon, EnsL, UCBL, CNRS, Inria

Computing and Design Environment Laboratory LIP
91191 Gif-sur-Yvette CEDEX, France F-69342, LYON Cedex 07, France

{first}.{last}@cea.fr matthieu.moy@univ-lyon1.fr

Abstract— To face the growing complexity of
System-on-Chips (SoCs) and their tight time-to-
market constraints, Virtual Prototyping (VP) tools
based on SystemC/TLM must get faster while keeping
accuracy. However, the Accellera SystemC reference
implementation remains sequential and cannot lever-
age the multiple cores of modern workstations. In this
paper, we present a new implementation of a paral-
lel and standard-compliant SystemC kernel, reaching
unprecedented performances. By coupling a parallel
SystemC kernel and memory access monitoring, we are
able to keep SystemC atomic thread evaluation while
leveraging the available host cores. Evaluations show
a ×19 speed-up compared to the Accellera SystemC
kernel using 33 host cores reaching speeds above 2000
Million simulated Instructions Per Second (MIPS).

I. Introduction

Electronic System Level (ESL) design and verification is
increasingly challenging due to the soaring complexity of
System-on-Chips (SoCs) and time to market constraints.
Thus, tools involved in the SoC design process have to
support this trend. Among these tools, modeling and
simulation environments are intensively used in early
development stages to elaborate Virtual Prototypes (VPs).
Virtual prototyping is a cost-effective technique which
consists in the realization of a software model of the
actual chip under design. VPs then allow for HW/SW
co-design, system-level modeling at various levels of granu-
larity, verification, performance evaluation or Design Space
Exploration (DSE).
SystemC [1] is broadly used for VPs design in both

industrial and academic communities. It is a C++ based
HW description language supported by the Accellera Sys-
tems Initiative. We are interested in the Transaction-Level
Modeling (TLM) [2] standard for SystemC which enables
higher level of abstractions for faster simulation, increased
interoperability and model reuse. However, as specified
in the IEEE SystemC/TLM standard, concurrency is
emulated using the co-routine semantics, implemented by
the reference Accellera kernel with cooperative sequential
processes evaluation. It guarantees deterministic execution
but also enforces single-threaded evaluation. As multicore
SoCs are getting ubiquitous, the simulation speed decreases
in inverse proportion to the number of cores in the model.
To tackle this issue, it is possible to take advantage of
multicore host platforms, but a parallel implementation of
SystemC is needed.

We propose a parallel and standard-compliant SystemC
kernel which guarantees process evaluation atomicity and
simulation reproducibility. It supports any TLM model
including loosely-timed coding style together with the
Direct Memory Interface (DMI) protocol. Our technique
has a limited overhead even when used with the fastest
Instruction Set Simulators (ISS’s) available. We rely
on a conflict-avoidance heuristic combined with conflict-
detection and a fast rollback mechanism. Also, little source
code modifications are required.

The rest of the paper is organized as follows. Section II
explains the challenges exposed by SystemC parallelization.
Section III presents the related works. Section IV details
the contributions of this paper. Section V describes the
experimental setup and analyses our experimentation
results. Finally, section VI concludes the papers and
exposes our perspectives.

II. challenges of Parallel SystemC/TLM
Parallelizing SystemC presents some fundamental ob-

stacles which are further detailed in [3], [4]. Indeed, the
reference SystemC implementation [5], as most Discrete
Event Simulator (DES), models concurrency using the
co-routine semantics implemented with cooperative multi-
threading on a single core. In a broad outline, it results in
the alternance of two main simulation phases:
1) The evaluation phase where the new state of the model

is computed as a function of the current state by the
various processes evaluated sequentially;

2) The update phase where the kernel propagates the
results of the evaluation in the model.

The evaluation phase is usually the most compute-intensive,
which makes it the target of most parallelization approaches
(including this paper). Theses approaches rely on the
fact that sequential evaluation of processes is not strictly
enforced by the standard as long as the outcome follows
co-routine semantics, i.e. is equivalent to a sequential
evaluation of the processes. One way to enforce co-routine
semantics is to avoid any interaction between processes
during the evaluation phase. This is typically the case in
Register Transfer Level (RTL) models, where processes in-
teraction is deferred to the update phase, within controlled
channels such as SystemC’s sc_signal.

However, the absence of interaction between concurrent
processes cannot be enforced at higher levels of abstraction
such as TLM, especially with loosely-timed TLM. Indeed,
TLM processes mostly interact during the evaluation phase.
In addition, interactions between processes can take any
form allowed by C++, in particular shared states and raw

pointers. TLM even encourages these practices by providing
the DMI protocol. DMI allows initiators to directly access
the underlying memory of a component using raw pointers
and is extensively used with memories.
Also, only processes that are scheduled at the same

date are natural candidates to run in parallel. Again, it
is a common situation in RTL models where processes
are often triggered by a system clock. However, in TLM
models, processes are not synchronized by a central clock
anymore, reducing the probability of several processes
being scheduled at the same date.
Fortunately, another common acceleration technique

used in loosely-timed TLM is temporal decoupling. It
allows a process to run ahead of simulation time by a
given quantum of time, reducing the number of context
switches and speeding up the simulation. While this can
help parallelization by synchronizing the processes on the
quantums, increasing the number of processes scheduled
at a same date, temporal decoupling also increases the
amount of time simulated between two synchronizations
and therefore, the interaction between processes and the
risk of race conditions.

Finally, modern ISS’s such as QEMU [6] have achieved
great speedups in the recent years, reaching speeds above
1000 Million simulated Instructions Per Second (MIPS)
on a single-core host machine when used in standalone
mode. Hence, the solutions used to allow parallel standard-
compliant simulations must incur a very small overhead
not to hamper the speed of a modern ISS.

Section III presents the existing work related to parallel
SystemC simulation and shows that many of these issues
remain unsolved.

III. Related work
A. Parallel SystemC approaches
To this day, all attempts to parallelize SystemC sim-

ulations have made some restrictive assumptions. They
are usually related to the abstraction level of the models
that can be simulated in compliance with the SystemC
semantics and, by extension, to the type of communications
used in these models.

In the early days of SystemC parallelization, mostly cycle-
accurate model simulation was explored. In [7] processes
scheduled during a same delta-cycle are allowed to run in
parallel. In practice, such execution often yields the same
result as a sequential schedule, but this property is not
guaranteed. This approach is improved in [8] and [9] by
studying active and passive load balancing techniques to
use the available hardware more efficiently. Cycle-accurate
SystemC simulations have also been performed on GPU [10]
or on dedicated hardware such as [11] where a manycore
chip embeds a SystemC kernel accelerator. With a different
mindset, the author of [12] proposes to enhance SystemC
semantics by associating a duration to processes so that
they can be evaluated asynchronously. Yet, determinism is
not guaranteed if the asynchronous processes do not run
in complete isolation from the rest of the simulation like
in a TLM simulation.

However, with the introduction of TLM, SystemC models
now have a higher level of abstraction to benefit from

the speed-accuracy trade-off. We target the TLM level of
abstraction, for which techniques targetting cycle-accurate
models are not efficient. To tackle this, Parallel Discrete
Event Simulation (PDES) [13] can be used to relax the
synchronization constraints between the processes of a
simulation. In [14], several compute nodes are used to
run a distributed simulation where synchronization occurs
between neighbour nodes. Similarly, TLM-DT [15] splits
the design into clusters but operate at the TLM level. Each
cluster is simulated in a dedicated host thread which can
run in parallel to the other clusters. Each cluster manages
its own local time and synchronizes with the others through
timestamped messages. Other similar approaches have been
proposed such as [16] where the clusters are connected
through channels with latencies. It allows a cluster to
run ahead of its neighbours without risking to receive
a message from the past. These solutions require all
communications between clusters to use channels and are
best suited to simulate platforms presenting different zones
with mostly internal communication to reduce the amount
of interactions, as opposed to Symmetric Multirocessing
(SMP) platforms which usually rely on a single shared
memory.

Another approach exposed in [17] or [18] relies on static
compiler-driven analysis to identify data and event depen-
dencies between processes. Based on that, a parallel sched-
ule can be issued. However, data and event dependencies
are hard to spot at higher levels of abstraction resulting in
too much execution sequentialization. This would hamper
performances. In particular, in a typical TLM model,
the RAM is a variable potentially shared between all
initiator components on the bus, and static analysis cannot
guarantee the absence of concurrent accesses to a particular
memory location without heavyweight alias analysis.
All the aforementioned approaches target at most ap-

proximately timed models which are rather slow at a few
tens of MIPS. Loosely-timed models present a number of
additional obstacles to parallelization as they tend to make
extensive use of shared variables. Also, as the time between
two synchronizations increases, so does the risk of atomicity
violation while running a process. With raw simulation
speed and ease of use in sight, [19] proposes a multiprocess
simulation engine. Interprocess communications are then
strictly restricted to messages implemented using POSIX
shared memories. While determinism is not guaranteed
anymore, interprocess communications must be avoided as
much as possible to keep performance high. In addition,
DMI cannot be used between processes, limiting the simu-
lation speed. A contrasting approach is taken in [20]. Our
work is strongly influenced by this work so subsection III-B
details it further.

B. SCale, advantages and limitations
SCale, the parallel SystemC kernel described in [20] uses

memory access monitoring as its central mechanism to
detect and prevent process atomicity violations. Monitoring
memory accesses allows for building a process dependency
graph used to guarantee SystemC standard compliance and
simulation reproducibility. To that extent, SCale provides
an annotation function that must be called before every

memory access. However, SCale relies on user-provided
annotations to tag some address ranges as shared and
serialize SystemC processes that would otherwise violate
the SystemC semantics.

Also, every access must be atomic with the corresponding
instrumentation. That is, once a process P0 instruments
an access to a variable a0, no other process can access
a0 before P0 has performed its access to a0. Otherwise,
the recorded order of memory accesses could be different
from the real order, inducing incorrect dependency analysis.
This constraint is not addressed in [20], leaving to the user
to implement. The simplest solution consists in putting the
instrumentation and the access together inside a critical
section protected by a mutex. But this is very costly and
does not accommodate higher core counts.
The work presented in this paper, while inspired

from [20], tackles its main functional limitations while
providing significant speed and scaling improvements. In
particular, we do not require any manual annotation of ad-
dress ranges and detect shared addresses at runtime. Also,
instrumentation and accesses are atomically performed
without requiring any additional synchronization.

IV. Proposed parallel SystemC kernel
Similarly to [20], we start the evaluation with a par-

allel phase where all scheduled processes are launched
concurrently. During this parallel phase, processes access-
ing potentially conflicting addresses are descheduled. We
enhance this solution by removing the need for static
declaration of shared and read-only addresses through
dynamic shared address detection. Descheduled processes
are blocked until the parallel phase is over, and are
rescheduled to continue their execution in a sequential
phase. In addition, process atomicity violation checking is
now performed asynchronously and process level rollback
is used if violation occurred, ensuring SystemC standard
compliance. The next subsections present the main imple-
mented mechanisms.
A. Shared Addresses Detection and Conflict Avoidance
In modern applications, shared memory addresses are

too complex or even impossible to statically enumerate.
Dynamic memory allocation and memory virtualization are
two of the main reasons. Also, memory regions might be
shared only during some phases of the simulated program.
Declaring all of them as shared for the entire program
might result in numerous useless sequentializations. To
provide flexibility and reduce the risk of falsely shared
memory regions, we rely on dynamic detection of shared
addresses. It requires the instrumentation of all simulated
memory accesses and is based on the ID of the process
making the access and the type of the access (read or
write).

To detect shared addresses a Finite State Machine
(FSM) is associated to each address. Each address can
independently be in one of the four states illustrated in
Fig. 1:
1) no_access: After initialization or reset.
2) owned: When an address has been accessed by only

one process and with at least a write since last reset.
This process is called the owner of the address.

no_access
Owner=⊥

owned
Owner=x

read_exclusive
Owner=x

read_shared
Owner=⊥

w(x) r(x)

rw(x)

rw(x̄)

w(x)

r(x̄)

r(x)

w(x̄)

w(x|x̄) r(x|x̄)

Fig. 1: Memory access monitoring FSM. x is the process doing
the access from no_access; x̄ designates any process other than
x; r and w designates read and write. Processes are descheduled
on transitions.

3) read_exclusive: When an address has been only
read by a single process since last reset. This process
is also called the owner of the address.

4) read_shared: When an address has been only read
and by at least two processes since last reset.

The read_exclusive state is crucial to make the FSM
efficient. Indeed, after a reset followed by one or more reads
from a single process at address a0, it is impossible to know
whether a0 is going to be read by another process, making it
read_shared, or if it is going to be written by the current
reader process, making it owned. The read_exclusive
state allows to wait for one of these scenarios. Indeed,
identifying a read address as systematically read_shared
would result in forced sequentialization for addresses read
and written by a single process (e.g. stack accesses),
drastically hampering performance.

We use this FSM to prevent process atomicity violations
by preventing dependencies between processes. During
a parallel evaluation, accesses to shared memory causes
dependencies between processes. In general, in a given
simulation quantum, a process P0 that writes to an address
a0 depends on all processes that accessed a0 before P0 and
all processes that will access a0 after will depend on P0. Our
goal is to prevent the appearance of circular dependencies
which correspond to atomicity violations. In our case,
any access that would introduce a dependency during the
parallel phase leads to the process being descheduled before
the access, that is if a process:

• tries to write to an address already owned by another
process;

• or tries to read an address in the owned state whose
owner is another process.

This ensures that no process dependency can be introduced
during the parallel phase, avoinding most common conflict
situations by construction. However, conflicts involving
multiple addresses might occur during the sequential phase.
Because of that, exhaustive conflict analysis must be
performed at the end of every sequential phase, as explained
in subsection IV-C.

B. FSM reset policy
In the FSM depicted on Fig. 1 no transition leave

the states owned and read_shared, meaning that

once reached, such state would last during the entire
simulation. This accommodates programs whose memory
accesses pattern is constant over its execution. However,
addresses are often used by a thread and then by another
in dataflow processing for instance. In that case, such
addresses would be detected as shared, which is true
at the full program level but not at the dataflow stage
level. Because accesses to shared addresses cause a time-
consuming process sequentialization, it is important to
avoid false positives.

We achieve this by reseting all FSMs whenever a process
got descheduled during the previous quantum. This reset
policy relies on the observation that truly shared addresses
such as mutexes are seldom used in parallel programs due
to their performance cost. In practice, most of the addresses
detected as shared were data being passed from a process to
another. With our reset policy, the process receiving some
data from another process is sequentialized only during a
single quantum when it accesses this data for the first time.
Then, the state of all addresses would be reset so that the
process can become the new owner of the data it received.
Other addresses’ state would naturally be reinstated due
to steady program access patterns. Other reset policies like
resetting only addresses that caused a deschedule have been
explored and lead to significantly worse results. Indeed, a
first conflicting address is often followed by others as data
is often passed as a block. Resetting all addresses is a good
strategy to avoid further conflicts.

C. Conflict Check and Recovery
We presented in the previous sections how per address

conflicts can be prevented during the parallel phase using
process descheduling. However SystemC consistency con-
flicts involving accesses to several addresses and spread
accross both the parallel and the sequential phase can still
occur.
To detect such situation, it must be checked that no

conflict occurred at the end of an evaluation phase despite
the shared memory addresses detection. The evaluation
phase flow chart of our SystemC kernel showing the parallel
and the sequential phase is represented Fig. 2. At the end
of the parallel phase, if there was no descheduled processes,
it means that no dependency exists between processes,
hence no conflict either. But in case there are descheduled
processes, an exhaustive analysis must take place. To that
extent, during both the parallel and the sequential phases,
all memory accesses are recorded to perform the final graph
analysis if needed. At the end of the sequential evaluation
phase, the recorded accesses are asynchronously checked
for conflicts using the same graph analysis algorithms as
in [20] while the simulation continues. Because this analysis
seldom takes place and is performed asynchronously using
spare host cores, its impact on simulation speed is reduced
to the bare minimum.

The conflict analysis results are gathered by the kernel
thread during the parallel phase. Two results are returned.
First, the analysis tells if there was a conflict during the
checked evaluation phase. If there is no conflict, a linear
ordering of the processes involved in the dependencies is
saved. It is used to ensure reproducible simulation in a

Fig. 2: Evaluation phase flow chart of our parallel SystemC
kernel.
replay mode where dependent processes evaluation order
is constrained. This mode allows for strict simulation
reproduction for debug and analysis purposes as required
by the SystemC standard. But in case of conflict, the
simulation is no longer valid and it must rollback to the
last saved state.

Rollback is achieved at OS process level using CRIU [21].
This software is able to perform full OS process state dump
to disk and restore a process from these files. In particular,
it can restore threaded OS processes, which is not possible
with fork()-based checkpoint/restore approaches like [22].
Also, CRIU supports incremental dumps, speeding up
drastically the checkpointing operation. Together with OS
automatic file caching or RAM disk, this makes the process
dump overhead negligible.
Concretely, an initial dump is performed before the

simulation starts. Then, the simulation runs until a po-
tential conflict arises. If so, the simulation is rolled back
and run again until the conflicting quantum is reached.
This quantum is sequentially evaluated to prevent the
conflict from occurring again. A new snapshot is made
after this quantum to be used as the next restore point
if another conflict arises later on. This checkpoint/restore
policy is simple but efficient as conflicts tend to be very
rare in practice. Rollback is a fallback plan, should all
previous mechanisms fail to prevent conflict from occurring.
Preliminary experiments show that conflicts do occur when
running an operating system such as Linux, and efficiently
dealing with them is part of our future works

D. Atomic Instrumentation
One crucial property of parallel simulation correctness

lies in the atomicity of the memory accesses instrumen-
tation. Indeed, it must be guaranteed that the memory
accesses are recorded in the same order as they are actually
performed.

As explained in subsection IV-A, thanks to our conflict
avoidance mechanism, no dependency can be introduced

during the parallel phase. It means that during the parallel
evaluation phase, only concurrent reads are allowed at
a given address. Because the order of concurrent reads
has no influence on a process atomicity, the recorded
order of concurrent reads can differ from the real order
without changing the conflict analysis outcome. In case of a
write, if the address is no_access or the writer is already
owner, it becomes or remains owned and no other process
can access it during the parallel phase. If the address is
read_shared, then the writer is descheduled.

As a result, as long as an access is instrumented before it
is performed, there is no need for extra synchronization to
ensure atomicity of instrumentation together with accesses.
This crucial property actually comes at no performance and
complexity costs thanks to our conflict avoidance policy.

V. Evaluation

A. Experimental Setup

Experiments have been conducted on a 36-core bi-
Xeon Gold 6154 clocked at 3.5GHz with frequency scaling
disabled. All measures are done 3 times. The average is
reported together with an error bar on the graphs.

The reference VP used for the evaluation of our contribu-
tions is a RISC-V SMP platform. Each core is modeled by
an instance of QEMU encapsulated in a SystemC wrapper.
The platform is composed of 1 to 32 cores (64 cores cannot
run in parallel on our test machine). These cores are
connected through a bus to a ROM, a RAM and a UART.
DMI is used to access the memories for faster simulation.
Our goal is to shorten the memory accesses simulation
to the maximum to evaluate the relative overhead of
instrumentation in worst-case conditions.
We have selected three benchmarks to evaluate the

performance of the proposed approach:
1) Matmul: 32 classic parallel multiplications of two

square matrices of size 512. Each thread computes
an horizontal block of the result. Threads only syn-
chronize before ending.

2) Deriche [23]: A 10-pass Deriche filtering is applied
in place to a 4 megapixels image. This benchmark
is composed of an horizontal followed by a vertical
filtering, making the whole image shared by all the
threads.

3) MobileNet [24]: a 31-layer classification convolutional
neural network analyzing 3 triple channel 160x160
images. The parallelism potential varies depending on
the computed layer and much more synchronizations
occur than in the first two benchmarks.

A last validation application has been designed to verify
that the replay mode effectively allows for reproducible
simulations. It is composed of 32 synchronization barriers.
The ID of the thread which unlocks each barrier is stored
until all barriers have been unlocked. At that point, in
replay mode, we expect the list of thread IDs to be
persistent from a simulation to another guaranteeing
practically, if not yet formally, the repeatability from run
to run of the approach, required by the SystemC standard.

B. Results
Fig. 3a illustrates the impact of quantum size on

simulation speed. As expected, increasing the quantum
size results in a significant speedup reaching up to 2000
MIPS with Matmul. However, when the quantum gets too
large, speed decreases for Deriche and MobileNet. This
is due to the much higher number of synchronizations in
a single quantum. Each synchronization leads to process
sequentializations as they rely on shared variables. When
the quantum increases, the amount of time sequentially
simulated increases to a point where it is no longer
compensated by the speedup in the parallel phase. For
the rest of the evaluations, we use a quantum of 30,000
instructions as a performance compromise between the
three benchmarks.
To evaluate the influence of memory accesses instru-

mentation and processes sequentialization four versions
of the kernel are compared on Fig. 3b. The overhead of
instrumentation and sequentialization compared to fully
parallel simulation ranges from 12 to 40%. Significant
part of this speed reduction is due to sequentialization
as the overhead of instrumentation alone is under 9%.
Sequentialization overhead is non-compressible as it results
from strict co-routine semantics enforcement. Also, the
increase in speed compared to [20] is significant ranging
from ×25 to ×50. It is mostly due to the much faster
instrumentation techniques together with the asynchronous
conflict checking.
Fig. 3c illustrates how our simulation kernel scales

with the number of host cores used to simulate a 32-
core platform and Fig. 3d shows the impact of simulated
platform complexity (number of simulated cores) on speed
when always using one host core per simulated core. Overall,
speedups using 32 host cores (plus the kernel core) range
between ×16 and ×23 compared to using a single host
core. Also, while using the Accellera kernel is faster to
simulate a single core platform due to a simpler scheduler
and the lack of instrumentation, the speedup is already
significant on a dual-core platform simulated in parallel
as shown on Fig. 3d. It reaches up to ×19 on a 32-core
simulated platform running Matmul.

In all benchmarks, all conflicts were avoided and rollback
was unnecessary. In general, conflicts are systematically
avoided if processes always synchronize using a shared
variable before using data produced by another process,
as in our benchmarks. Indeed, all processes get correctly
ordered relatively to this single variable before accessing
the new data.
Finally, our simulation kernel exposed the expected

behaviour on the validation application. Without replay
enabled, the process ID sequence varies randomly from one
execution to another. However, when replay is enabled, the
sequence remains the same across successive executions.

VI. Conclusion
This paper introduced a new technique to paral-

lelize loosely-timed SystemC TLM models in a standard-
compliant fashion using memory access monitoring, dy-
namic detection of shared addresses and error recovery
through process level rollback. It improves on previous

(a) (b)

(c) (d)

Fig. 3: (a) Simulation speed analysis depending on the simulation quantum size. The highest point of each curve is annotated.
(b) Impact of instrumentation and processes descheduling compared to free parallel execution. Version 1 consists in a parallel
simulation without enforcing processes atomicity. Version 2 shows the overhead of instrumentation and conflicts detection alone
without process sequentialization. Version 3 implements all the contributions of this paper and is standard compliant. Version 4 is
the kernel from [20]. (c) Scaling of the simulation speed with the number of used host cores. (d) Simulation speed per simulated
core with parallel (1 host core per simulated core) and sequential simulation (Accellera kernel).

methods by avoiding manual declaration of shared ad-
dresses making it practical for any shared-memory appli-
cations. Also, the small overhead induced by our solution
accommodates the fastest ISS’s and reaches 2000 MIPS
on 33 host cores when simulating a 32-core platform. Our
solution scales well with the number of available host cores
as it shows speedups up to ×25 between using 1 and 32
host cores (plus the kernel core). Finally, it demonstrates
to be a clear improvement over the Accellera simulation
kernel with up to ×19 speedup. We now plan to work on
interrupts instrumentation to support simulation of models
running OS like Linux for instance.

References
[1] IEEE Standard for Standard SystemC R© Language Reference

Manual. 2012.
[2] J. Aynsley, “OSCI TLM-2.0 language reference manual,” in

OSCI, Tech. Rep, 2009.
[3] D. Becker, M. Moy, and J. Cornet, “Challenges for the paral-

lelization of loosely timed SystemC programs,” in RSP, 2016.
[4] R. Dömer, “Seven Obstacles in the Way of Standard-Compliant

Parallel SystemC Simulation,” in IEEE Embedded Systems
Letters, 2016.

[5] https://www.accellera.org.
[6] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,”

in USENIX, 2005.
[7] Z. Hao, Q. Lei, L. Hongliang, X. Xianghui, and Z. Kun, “A

parallel SystemC environment: ArchSC,” in ICPADS, 2009.
[8] P. Ezudheen, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi,

“Parallelizing systemC kernel for fast hardware simulation on
SMP machines,” in PADS, 2009.

[9] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parSC:
Synchronous parallel SystemC simulation on multi-core host
architectures,” in CODES+ISSS, 2010.

[10] S. Vinco, D. Chatterjee, V. Bertacco, and F. Fummi, “SAGA:
SystemC Acceleration on GPU Architectures,” in ASP-DAC,
2012.

[11] N. Ventroux, J. Peeters, T. Sassolas, and J. C. Hoe,
“Highly-parallel special-purpose multicore architecture for Sys-
temC/TLM simulations,” in SAMOS, 2014.

[12] M. Moy, “Parallel programming with SystemC for loosely timed
models: A non-intrusive approach,” in DATE, 2013.

[13] R. M. Fujimoto, “Parallel discrete event simulation,” in Com-
munications of the ACM, 1990.

[14] P. Combes, E. Caron, F. Desprez, B. Chopard, and J. Zory,
“Relaxing synchronization in a parallel SystemC kernel,” in ISPA,
2008.

[15] A. Mello, I. Maia, A. Greiner, F. Pecheux, I. M. aind A. Greiner,
and F. Pecheux, “Parallel Simulation of SystemC TLM 2.0
Compliant MPSoC on SMP Workstations,” in DATE, 2010.

[16] J. H. Weinstock, R. Leupers, G. Ascheid, D. Petras, and
A. Hoffmann, “SystemC-Link : Parallel SystemC Simulation
using Time-Decoupled Segments,” in DATE, 2016.

[17] Weiwei Chen, Xu Han, and R. Dömer, “Out-of-order parallel
simulation for ESL design,” in DATE, 2012.

[18] T. Schmidt, Z. Cheng, and R. Dömer, “Port call path sensitive
conflict analysis for instance-aware parallel SystemC simulation,”
in DATE, 2018.

[19] J. Virtanen, P. Sjövall, M. Viitanen, T. D. Hämäläinen, and
J. Vanne, “Distributed systemc simulation on manycore servers,”
in NORCAS, 2016.

[20] N. Ventroux and T. Sassolas, “A new parallel SystemC kernel
leveraging manycore architectures,” in DATE, 2016.

[21] https://criu.org/Main_Page.
[22] M. Jung, F. Schnicke, M. Damm, T. Kuhn, and N. Wehn,

“Speculative Temporal Decoupling Using fork(),” in DATE, 2019.
[23] R. Deriche, “Using Canny’s criteria to derive a recursively

implemented optimal edge detector,” International Journal of
Computer Vision, 1987.

[24] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” in arXiv, 2017.

