#### DE LA RECHERCHE À L'INDUSTRIE

# Ceaden

# In-core Instrumentation for MTR Experiments

#### Jean-François VILLARD

French alternative energies and atomic energy commission Nuclear Energy Division – Reactor Studies Department Cadarache – F-13108 St Paul Lez Durance, France

Joint ICTP/IAEA Workshop "Research Reactors for Development of Materials and Fuels for Innovative Nuclear Energy Systems" 6-10 November 2017, ICTP - Trieste, Italy



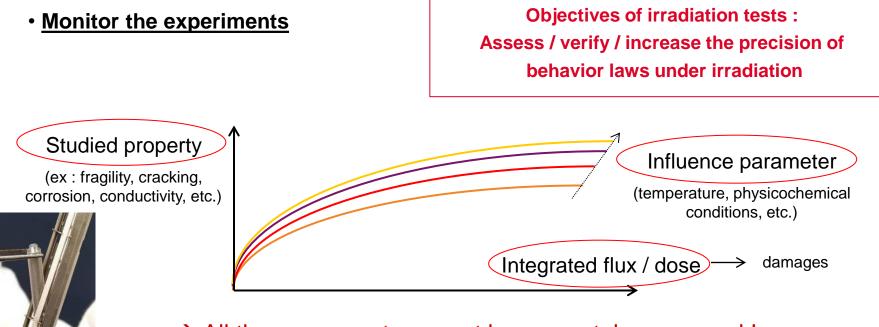




# Summary

- 1. General requirements
- 2. Conditions of measurement
- 3. Examples of in-core instrumentation :
  - 3.1. Neutron and gamma flux
  - 3.2. Temperature

3.3. Innovative technologies : micro-acoustics & fiber optics


4. Review of MTR instrumentation around the World

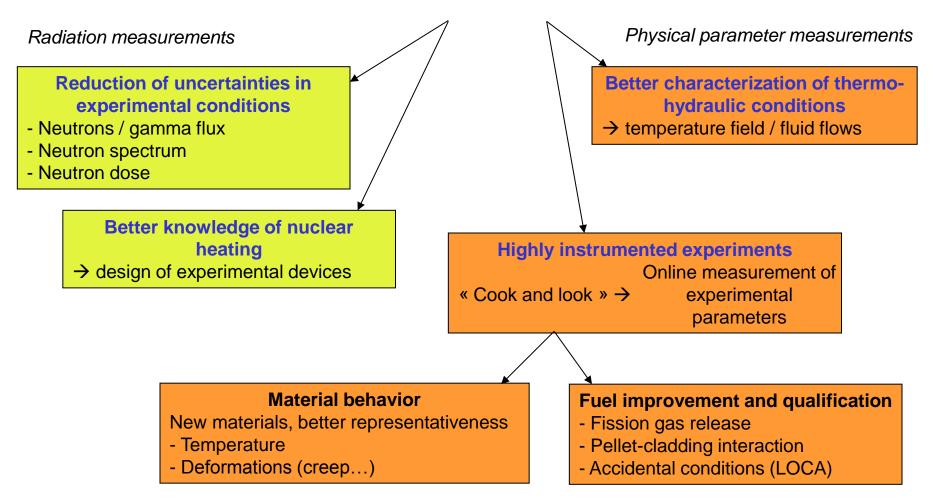
# **1. General requirements**



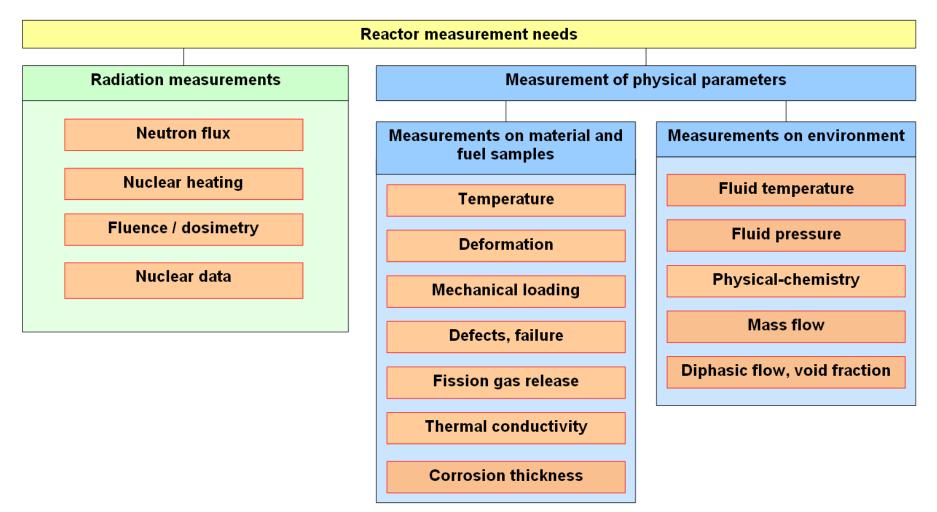
### Illustration of measurement needs for material testing

In-core measurements are essential to:




 $\rightarrow$  All these parameters must be accurately measured !

#### Watch safety parameters


= check that some specified parameters stay in their acceptable range

(e.g. : temperature, pressure, etc.)

### Main stakes for in-core instrumentation



### Main reactor measurement needs and R&D programs







# Ways to develop and qualify in-core instrumentation are changing

#### Tomorrow:

Extended field of validation Advanced signal analysis

#### Today:

Physician approach

Development and qualification of instrumentation modeling Improvement in related nuclear data

#### Yesterday:

Engineering approach Mainly empirical characterization Limited field of validation 2. Conditions of measurement
a. Physicochemical environment
b. Effects of radiations
c. Operational issues



### **Physicochemical environment of in-core instrumentation**

#### High temperature:

- → LWR conditions : 300-400°C continuous (up to 1200-1800°C in transients)
- → SFR conditions : 400-500°C continuous
- → HTR-VHTR conditions, materials for fusion : 800-1200°C continuous

### Various media:

- $\rightarrow$  Pressurized water (+ bore and lithium)
- $\rightarrow$  Liquid metals (NaK, Na...)
- $\rightarrow$  High-temperature gas

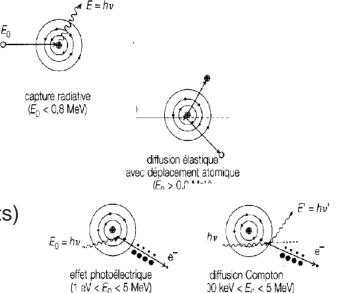
| Туре                    | с    | Cr      | Fe    | Mn   | Мо        | Ni      | Si   | Zr    | Others            |
|-------------------------|------|---------|-------|------|-----------|---------|------|-------|-------------------|
| Stainless steels        |      |         |       |      |           |         |      |       |                   |
| AISI 304 L              | 0,03 | 18 à 20 | reste | 2    |           | 8à12    | 1    |       |                   |
| AISI 316 L              | 0,03 | 16 à 18 | reste | 2    | 2à3       | 10 à 14 | 1    |       |                   |
| Nickel alloys (Inconel) |      |         |       |      |           |         |      |       |                   |
| Alloy 600               | 0,05 | 14 à 17 | 6-10  | 1    |           | > 72    | 0,5  |       | Co < 0,1          |
| Alloy 718               | 0,08 | 17 à 21 | reste | 0,35 | 2,8 à 3,3 | 50 à 55 | 0,35 |       |                   |
| Zirconium alloys        |      |         |       |      |           |         |      |       |                   |
| Zircaloy 4              |      | 0,1     | 0,2   |      |           |         |      | reste | Sn = 15           |
| Zr-Nb                   |      |         |       |      |           |         |      | reste | Nb = 1 - 0 = 0,12 |

Typical alloys used for in-core components

PAGE 9



# 2. Conditions of measurement b. Effects of radiations


### Main effects of nuclear radiations on sensors

→ transmutations : composition changes

- $\rightarrow$  damages :
  - alteration of electric insulators
  - wires breaking
  - change in mechanical properties
- → noise current (Compton and photoelectric effects)
- $\rightarrow$  heating

### $\rightarrow$ Precautions :

- choice of materials
  - form (metals, oxides, ceramics...)
  - elements  $\rightarrow$  nuclear properties
- remove sensor from high-radiation areas when possible
- in-situ calibration





## Effects of transmutation on in-core sensors

the material X disappears under irradiation :  $N(t) = N_0 e^{-\sigma \phi t}$ 

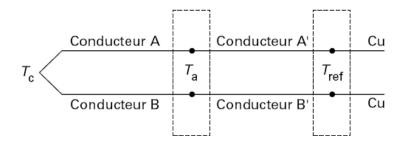
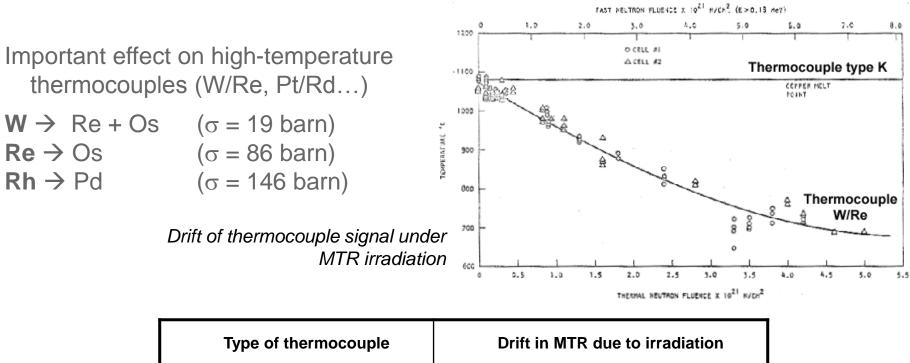



 Illustration :
 effect on thermocouples

 Change in wire composition

 → change in thermoelectric response

 = drift of the signal


| Materials of standard<br>thermo-elements                  | Si   | AI   | Cr   | Мо  | Ni  | Pt | Mg   | w    | Re | Rh  | lr  |
|-----------------------------------------------------------|------|------|------|-----|-----|----|------|------|----|-----|-----|
| $\sigma$ (barn) neutron cross-section of the main isotope | 0,08 | 0,23 | 0,73 | 2,5 | 4,2 | 10 | 13,5 | 19,2 | 86 | 150 | 460 |



# 2. Conditions of measurement b. Effects of radiations

### Effects of transmutation on in-core sensors

Illustration : effect on thermocouples



| Type of thermocouple        | Drift in MTR due to irradiation                               |  |  |  |
|-----------------------------|---------------------------------------------------------------|--|--|--|
| K (Ni-Cr / Ni-Al)           | Not significant                                               |  |  |  |
| <b>C</b> (W-Re5% / W-Re26%) | -1°C / 2.10 <sup>19</sup> n/cm <sup>2</sup> (-0,9 °C / day)   |  |  |  |
| <b>S</b> (Pt-Rh10% / Pt)    | -1°C / 1,4.10 <sup>19</sup> n/cm <sup>2</sup> (-1,2 °C / day) |  |  |  |

PAGE 12



## **Operational issues**

**High reliability** (impossible maintenance on irradiated sensors)

**High accuracy** (higher scientific requirements. Example : in-core deformations must be measured with ~ µm accuracy)

**Miniaturization** (very narrow experimental devices : a few millimeters available for instrumentation)

Large distance between sensor and electronics (tens of meters)



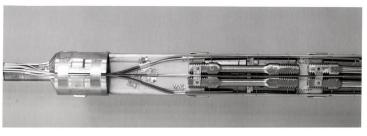
2. Conditions of measurement c. Operational issues

# **Operational issues**

### Fragile instrumentation in difficult conditions of implementation



Damaged cables




### **Summary of in-core measurement conditions**

- High accuracy required to meet scientific and technical needs
- High constraints related to reactor conditions:
  - constraints due to <u>irradiation (high neutron and gamma flux</u>: material damages, composition changes, parasitic signal, etc.),
  - constraints due to <u>physicochemical conditions</u> in experiments (high temperature, pressurized water, liquid metals, etc.),
  - constraints due to <u>integration (miniaturized sensors because of small size devices</u>, long distance between sensors and electronics, etc.),
  - constraints due to <u>operation</u> (high reliability requirements because of difficult or impossible maintenance or replacement of irradiated instrumentation).

Innovation is necessary !





### 3. Examples of in-core instrumentation

**3.1. Neutron and gamma flux** 



# **Neutron and gamma measurements**

#### **Objectives :**

- To measure and reduce the uncertainties on:
- Thermal and fast neutron flux
- Gamma flux and nuclear heating



#### State-of-the-art :

#### **Neutron flux:**

- Activation foil dosimeters and wires (post-irradiation analysis) + Unfolding techniques
- Fission chambers for thermal and fast neutron
- Self Powered Neutron Detectors

#### Gamma flux:

- Ionization chamber
- Self Powered Gamma Detector (with Bi emitter)

#### **Nuclear heating:**

Calorimeter (Gamma Thermometer and Differential Calorimeter)

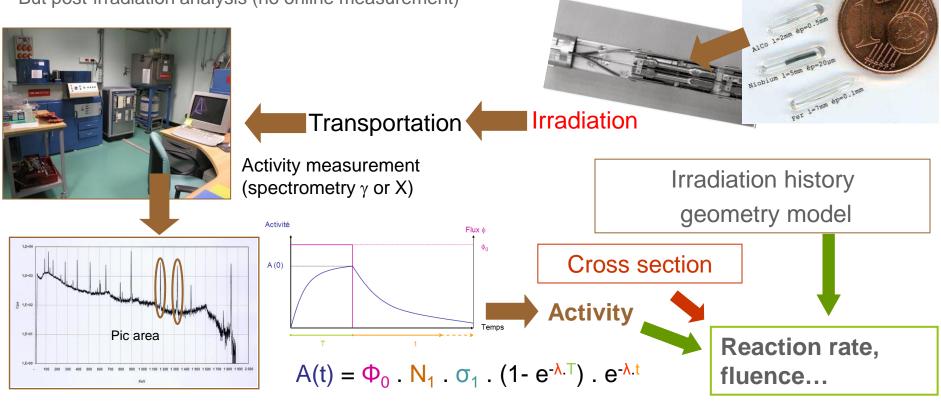
#### **Developments :**

- Simulation tools for FC and SPND signal
- Dosimetry for epithermal flux





# **Activation dosimetry**


#### = measurement of the radioactive activity of an irradiated material sample (dosimeter)

- Reference measurement for neutron flux and fluence
- High accuracy
- Selection of the neutron energy domain (thermal, epithermal, fast...)

But post-irradiation analysis (no online measurement)

Dosimeters

1=5mm 6p=0.5m





# **Activation dosimetry**

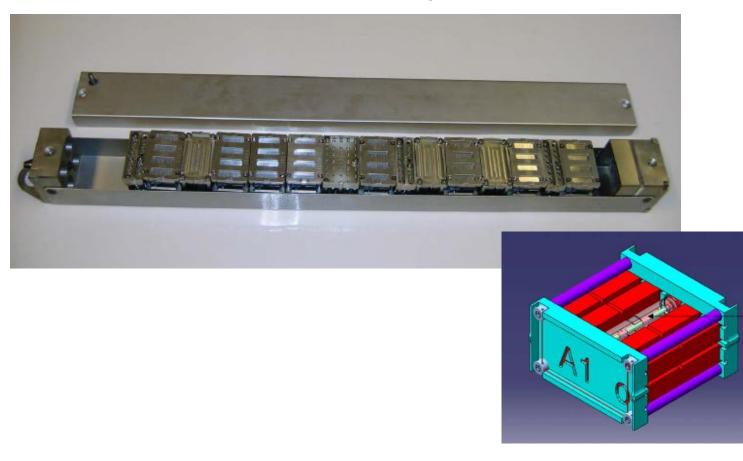
### Short-life materials for dosimeters

| Dosimeter                             | Au197      | 59Co        | 55Mn           | 115In         | 103Rh        | 115In       |
|---------------------------------------|------------|-------------|----------------|---------------|--------------|-------------|
| Reaction                              | n,γ        | n,γ         | n,γ            | n,γ           | n,n'         | n,n'        |
| Daughter                              | 198Au      | 60 Co       | 56Mn           | 116m In       | 103 m Rh     | 115m In     |
| т                                     | 2,6944days | 5,271 years | 2,57878 hours; | 54,20 minutes | 56.1 minutes | 4.486 hours |
| Spectrum energy<br>area covered (MeV) | th+ épi    | th + épi    | th + épi       | th + épi      | E > 0,7      | E > 1,3     |

| Dosimeter                             | 58Ni       | 64Zn         | 54Fe       | 24Mg          | 27AI         | 51V         |
|---------------------------------------|------------|--------------|------------|---------------|--------------|-------------|
| Reaction                              | n,p        | n,p          | n,p        | n,p           | n,a          | n,α         |
| Daughter                              | 58C0       | 64Cu         | 54Mn       | 24Na          | 24Na         | 48Sc        |
| Т                                     | 70.82 days | 12,701 hours | 312,13days | 14,9574 hours | 14,9574hours | 43.67 hours |
| Spectrum energy<br>area covered (MeV) | E > 2,7    | E > 2,8      | E > 3      | E > 6,1       | E > 7,3      | E > 11      |



# **Activation dosimetry**

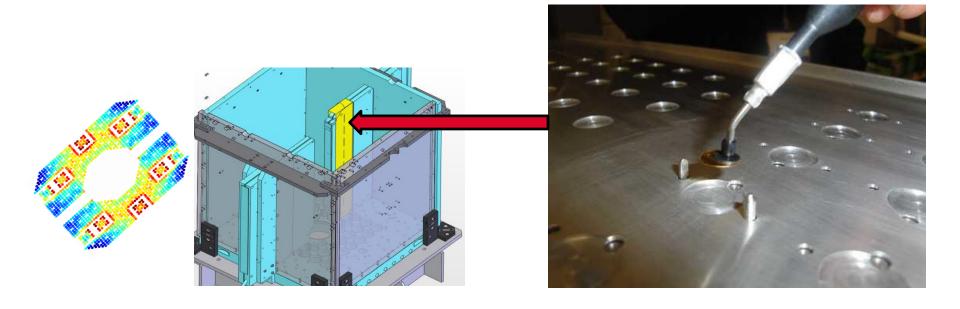

Long-life materials for dosimeters

| Isotope<br>(Number)             | shape                         | Container           | Réaction               | Effective Threshold<br>(MeV) | Measured<br>radio-isotope | Decay<br>period |
|---------------------------------|-------------------------------|---------------------|------------------------|------------------------------|---------------------------|-----------------|
| Cobalt<br>(3)                   | Al-0,5%Co<br>Wire Ø 1,0<br>mm |                     | 59 <sub>Co(n,γ)</sub>  | Thermal<br>+Epithermal       | 60 <sub>Co</sub>          | 5,27 y          |
| Cobalt (3)                      | id.(b)                        |                     | <b>59</b> Co(n,γ)      | Epithermal                   | id.                       | 5.27 y          |
| 237 <sub>Neptunium</sub><br>(1) | NpO <sub>2</sub> +<br>MgO     | Cd filter<br>Ti box | 237 <sub>Np(n,f)</sub> | 0,6 MeV                      | 137 <sub>Cs</sub>         | 30 y            |
| 238 <sub>Uranium</sub><br>(1)   | Powder<br>U3O8                | Cd filter<br>Ti box | 238U(n,f)              | 1,5 MeV                      | 137 <sub>Cs</sub>         | <b>30 y</b>     |
| Ni<br>(3)                       | Wire<br>Ø 1,3 mm              |                     | 58 <sub>Ni(n,p)</sub>  | 2,8 MeV                      | 58 <sub>Co</sub>          | 70,8 d          |
| Fe<br>(3)                       | Wire<br>Ø 1,0 mm              |                     | 54Fe(n,p)              | 3,1MeV                       | 54 <sub>Mn</sub>          | 313 d           |
| Cu<br>(3)                       | Wire<br>Ø 0,8 mm              |                     | 63Cu(n,α)              | 6,8 MeV                      | 60Co                      | 5,27 y          |



# **Activation dosimetry**

Illustration of dosimeter implementation : neutron fluence monitoring for material testing experiments




Dosimeter location



# **Activation dosimetry**

### Illustration of dosimeter implementation : flux mapping





# **Activation dosimetry**

#### Illustration of measurement facility : MADERE Platform at CEA Cadarache



Performs reactor dosimetry measurements for research reactors and for the Surveillance Program of French PWRs

- $\rightarrow$  Measurement of  $\gamma$  and X activity of solid samples
- → Range : 0.1 Bq to 10<sup>8</sup> Bq / dosimeter
- $\rightarrow$  Uncertainties : 1% à 5% (k=1)

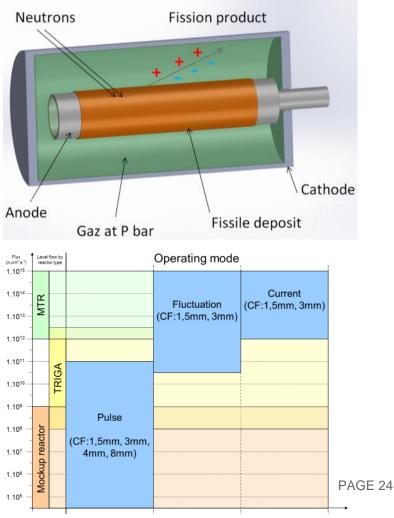


# **Fission chambers**

Measurement of the current generated by fission reactions in a fissile material deposited on an electrode Neutrons Fission product

#### An effective detector for measuring neutron flux

- High linearity signal (10 decades)
- Real-time online measurement


#### A modular detector

- Choice of fissile isotope and mass deposit
- Adaptation of technological parameters:
   geometry, nature and pressure of gas...

### A multi-information signal

- Three operating modes depending on flux range
- Neutron / gamma effective discrimination





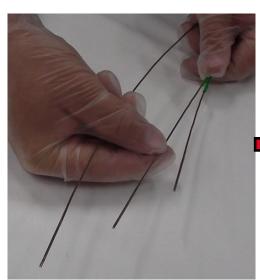


# **Fission chambers**

#### Fission chamber manufacturing workshop at CEA Cadarache

- → Manufacturing specific fission chambers with various possible fissile deposits (mass/composition) : U, Pu, Th, Np, Am, Cm... and specific designs
- $\rightarrow$  Imagery and controls (RX)






**Application of fission chambers :** 

### Neutron profile measurements between fuel plates in OPAL reactor (2013)

- **3** x Ø1.5mm Fission Chambers
- Dedicated Experimental Rig: 2mm thick aluminium plate attached to a 16 meter long pole
   Correct and repeatable positioning
  - Correct and repeatable positioning
    Precise manoeuvring within the core
- OPAL Reactor operated at stabilized power 100 kW

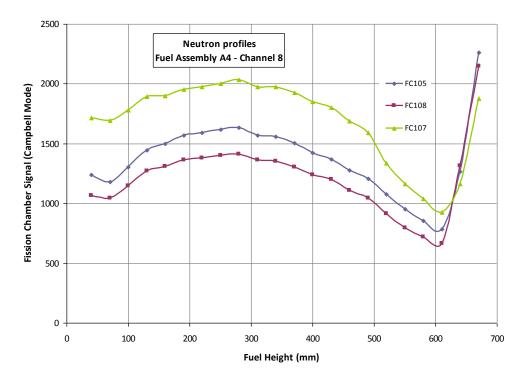




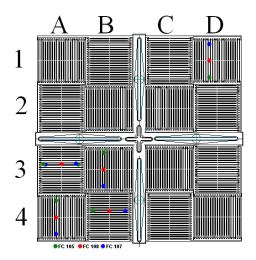
Ø1,5 mm Fission Chambers for three simultaneous neutron profiles



**Experimental rig** 




Insertion between fuel plates




#### Application of fission chambers : Neutron profile measurements between fuel plates in OPAL reactor (2013)

- 400 measurement points
- Thorough investigation of 5 / 16 fuel assemblies:
  - One complete quadrant
  - One fresh fuel assembly in another quadrant
- Good agreement with expected neutron flux shapes



#### **Measurement Locations**



# 3. Examples of in-core instrumentation

**3.2. Temperature** 



### **Temperature measurements**

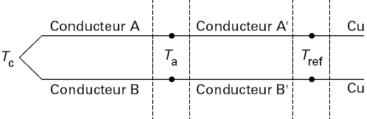
#### **Objectives :**

Online measurement of materials or fuels temperature Typical range : 200-400°C (PWR materials) up to 1200°C (fuel) 1000-1600°C for transient / study of incidental conditions

#### State-of-the-art :

- MIMS thermocouples : type K, N, C
- Expansion thermometers (LVDT)
- Melt wires, paint spots and SiC monitors (post-irradiation analysis)

### **Developments :**


- High-temperature doped Mo/Nb alloy thermocouples
- In-situ calibration of thermocouples :
  - Noise thermometry
  - High-temperature fixed-point μ-cell
- Ultrasonic sensors
- Infrared pyrometer
- Distributed temperature measurements with Optical Fibers



### Thermocouples

#### **Principle** : Seebeck effect

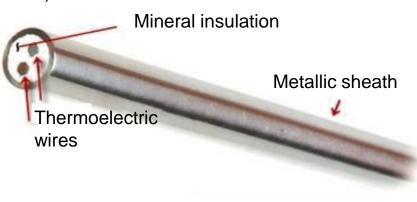
An electromotive force is generated in an open circuit made of 2 different conducting materials, when their junctions are at different temperatures



#### Characteristics of in-core thermocouples :

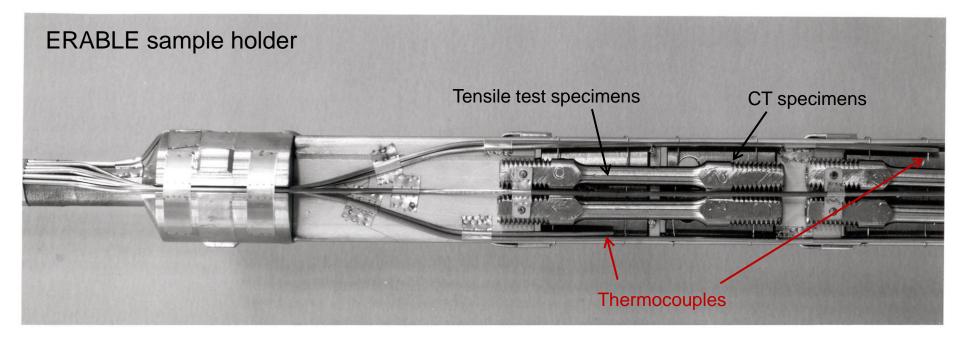
#### **Couples :**

type K or type N (up to 1100 °C depending on wire diameter) type C (fuel centerline temperature, for short irradiation time)


Sheath : Stainless steel (304L, 316L, 347)

Insulator : Al<sub>2</sub>O<sub>3</sub>, MgO, HfO<sub>2</sub>

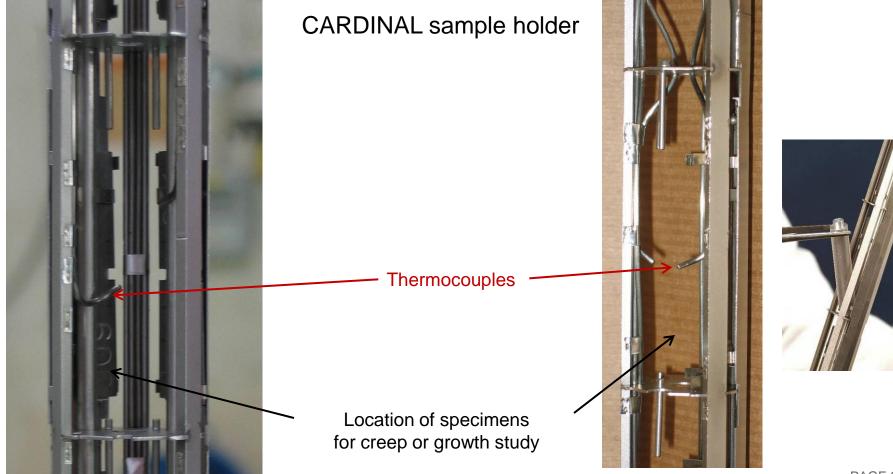
Standard sheath diam. : 1 mm Standard wire diam. : ~ 0,2 mm


Hot junction insulated from sheath

Length : tens of meters



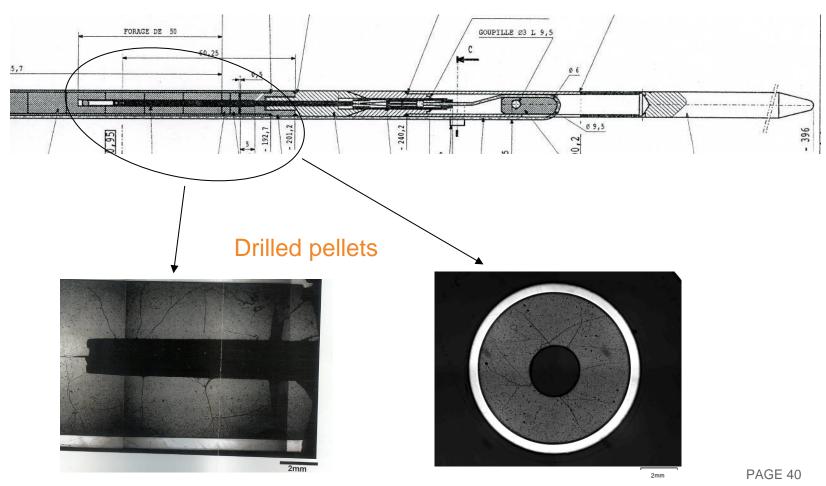



# Thermocouples Examples of implantation in MTR experiments

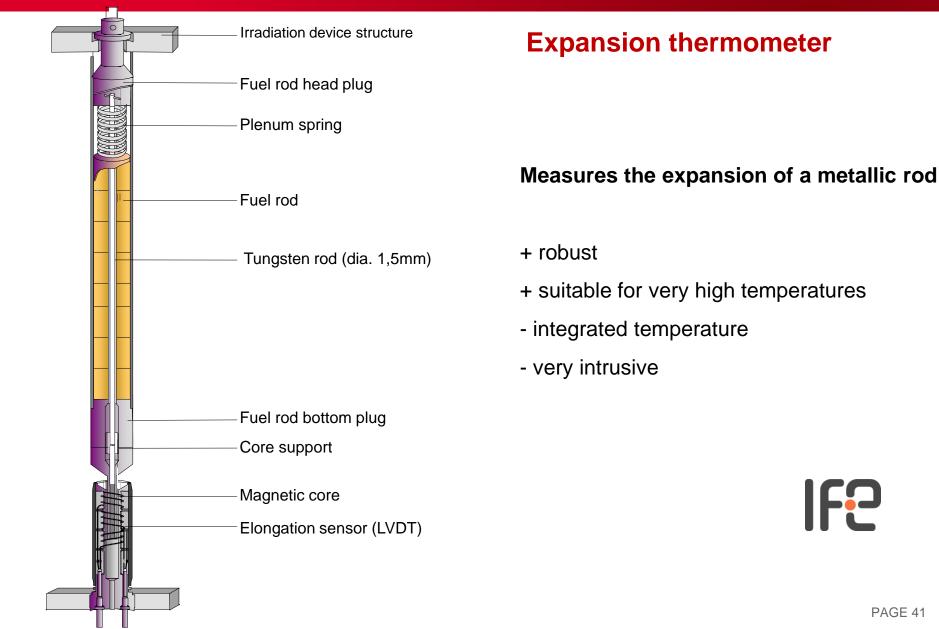




3. Examples of in-core instrumentation 3.2. Temperature


# Thermocouples Examples of implantation in MTR experiments





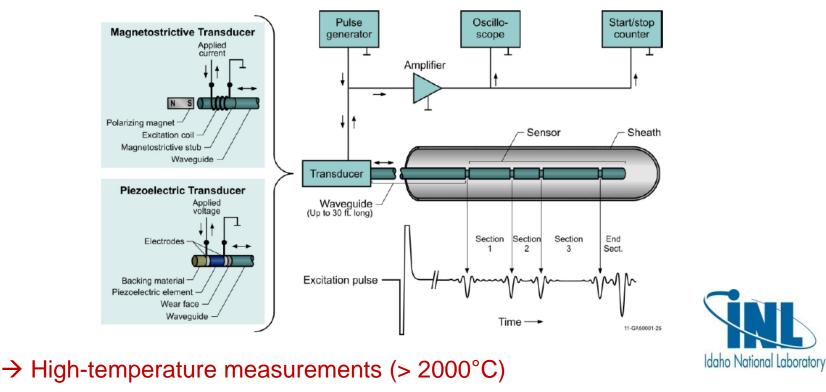

## Thermocouples

# **Examples of implantation in MTR experiments** for fuel centreline temperature measurements



# **3. Examples of in-core instrumentation** 3.2. Temperature






# **Ultrasonic sensors**

Measures the acoustic wave velocity in a metallic rod or wire

Notches  $\rightarrow$  wave reflection (echoes)

 $\rightarrow$  Detection of acoustic wave velocity changes between notches



→ Distributed measurements



# **Melt wires**

Based on the detection of wire melting

| Material Composition, % | Melting Temperature, <sup>o</sup> C |
|-------------------------|-------------------------------------|
| 100 Pb                  | 327.5                               |
| 94 Zn-6 Al              | 381.0                               |
| 85 Te-15 Sn             | 401.0                               |
| 100 Zn                  | 419.6                               |
| 80 Sb-20 Zn             | 507.8-514.3                         |

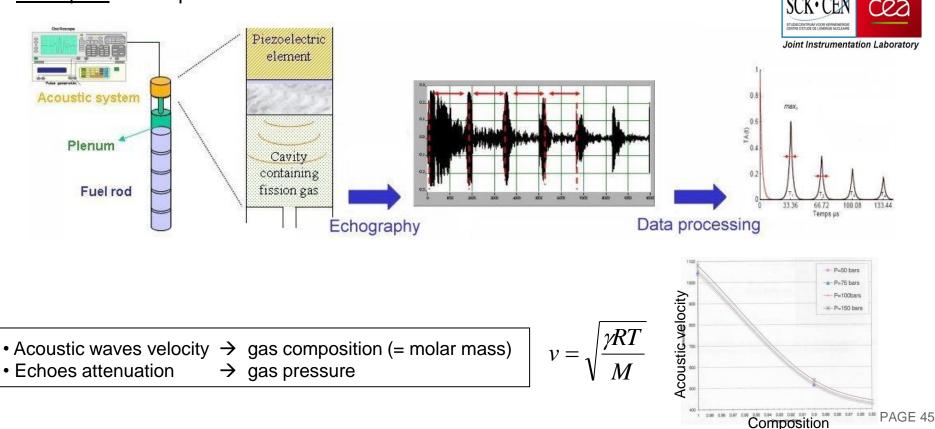


 $\rightarrow$  Easy implementation (no cable)

- But post-irradiation measurement
  - only indicates that melting temperature has been reached



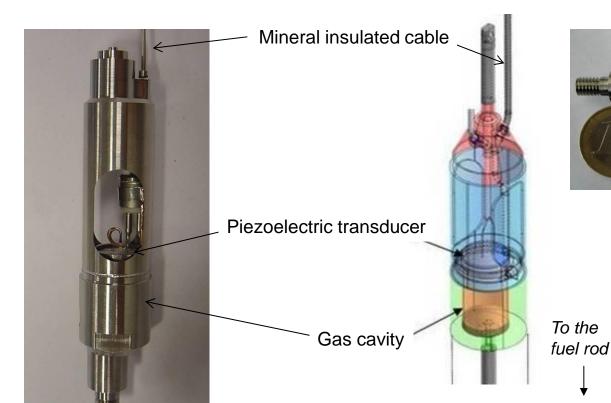
### 3. Examples of in-core instrumentation


3.3. Innovative technologies : micro-acoustics & fiber optics



#### Acoustic measurement of fission gas release

<u>Objective</u>: Online measurement of fission gas release in a pressurized fuel rod with discrimination between fission gas release –mainly Xe and Kr and He discharge This distinction is not possible using only pressure and temperature measurements.








### Acoustic measurement of fission gas release

 $\rightarrow$  An original sensor was designed for MTR irradiation



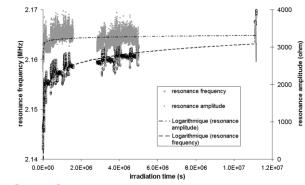




The sensor is designed to be implemented on a pre-irradiated fuel-rod

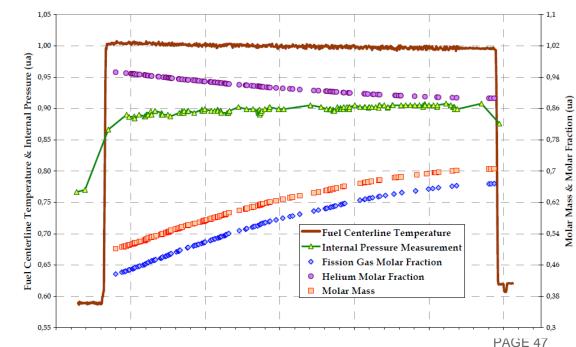
## S a






# 3. Examples of in-core instrumentation 3.3. Innovative technologies : micro-acoustics

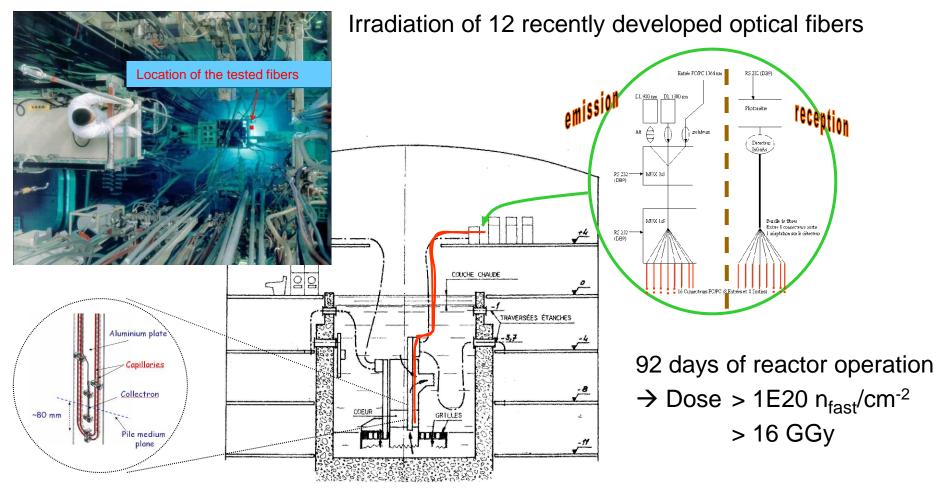
#### Acoustic measurement of fission gas release


#### $\rightarrow$ Successive tests performed :

- Tests of piezoelectric transducers in BR1 reactor
- Sensor qualification test in OSIRIS reactor

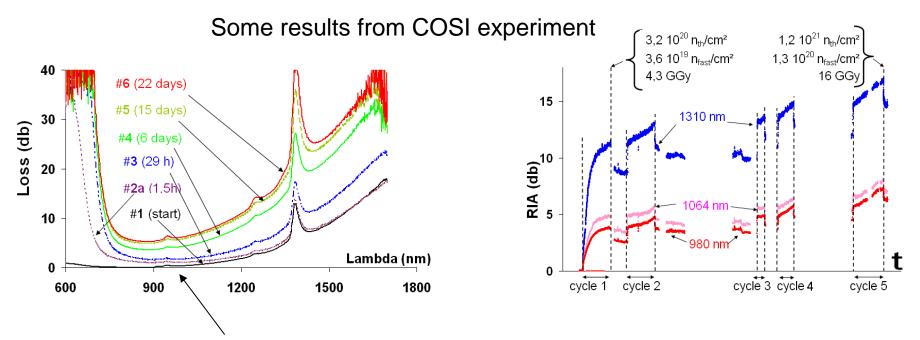


#### → Successful implementation in REMORA-3 experiment in OSIRIS :


- Sensor installed on a 5 cycle pre-irradiated PWR MOX fuel rod
- World first experiment with online measurement of fission gas release in a pressurized fuel rod






#### **Recent results : new fibers can survive in-core**

Example : COSI experiment (OSIRIS reactor, France - 2006)

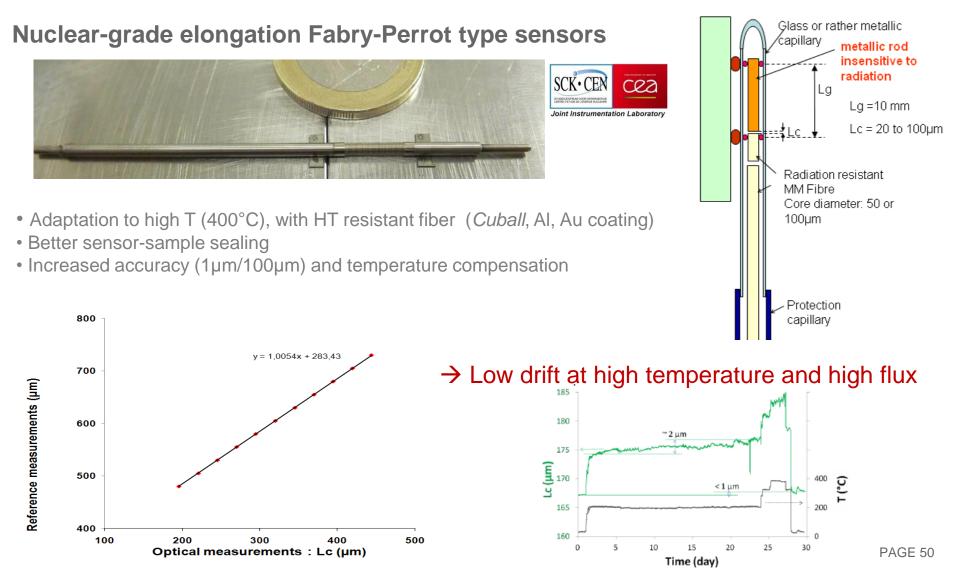


# 3. Examples of in-core instrumentation 3.3. Innovative technologies : fiber optics

#### **Recent results : new fibers can survive in-core**



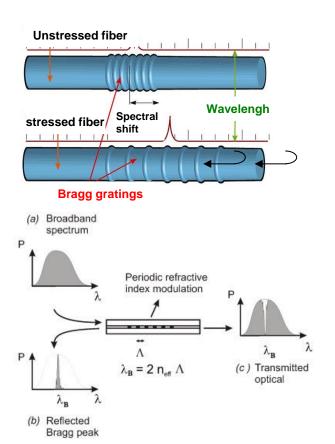
• Favorable spectral region in the 800-1200 nm range


• RIA measured losses < 10 dB  $\rightarrow$  suitable multimode and single mode fibers exist for in-core applications

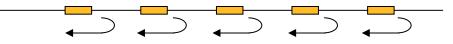
Better choose measurement systems that do not rely on light intensity → interferometry (Fabry-Perot, Bragg gratings...)

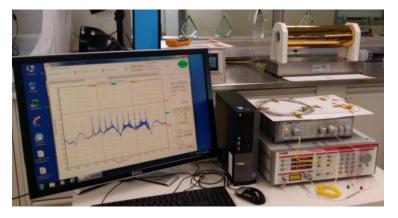


# 3. Examples of in-core instrumentation 3.3. Innovative technologies : fiber optics


## **Example of fiber-based in-core sensor : optical extensometer**







#### **In-core optical measurements**

- Fabry-Perot sensor is now in a phase of industrial transfer
- Other developments : Bragg Grating sensors



= distributed measurements of temperature / deformation





- $\rightarrow$  On-going tests at the MITR
- $\rightarrow$  Scheduled tests at the ATR and BR2

#### Instrumentation Technologies at SCK · CEN, CEA, JAEA, KAERI, IFE/HRP, INL and NRG

|                                                                                  | Technology                                                                                            |                                                   |                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research Organization/Country                                                    | Sensors                                                                                               | Parameter Detection                               | Status                                                                                                                                                                                                                |
| Studiecentrum voor Kernenergie • Centre d'Étude de                               | SPNDs                                                                                                 | Thermal flux                                      | Operational                                                                                                                                                                                                           |
|                                                                                  | Fission chambers                                                                                      | Thermal and fast flux                             | Operational (fast detectors qualified in 2009 in the framework of Joint Lab with CEA)                                                                                                                                 |
|                                                                                  | Fiber optics                                                                                          | Length                                            | Under development (Joint Lab with CEA)                                                                                                                                                                                |
|                                                                                  | Linear variable differential transformers<br>(LVDTs) with unstressed bellows and<br>stressed bellows. | Length/creep-induced elongation                   | Participating in qualification testing with VTT (LVDTS provided by IFE/HRP)                                                                                                                                           |
|                                                                                  | Flux wires, foils, and melt wires                                                                     | Fluence (neutron) and temperature                 | Operational                                                                                                                                                                                                           |
| Commissariat à l'Energie Atomique et aux Energies Alterna-<br>tives (CEA)/France | Fission chambers (down to 1.5 mm diameter)                                                            | Thermal and fast flux                             | Operational (fast detectors qualified in 2009 in the framework of Joint Lab with SCK•CEN)                                                                                                                             |
|                                                                                  | SPNDs                                                                                                 | Thermal flux                                      | Operational                                                                                                                                                                                                           |
|                                                                                  | SPGDs                                                                                                 | Gamma flux                                        | Operational                                                                                                                                                                                                           |
|                                                                                  | Activating foils                                                                                      | ntegral flux Operational                          |                                                                                                                                                                                                                       |
|                                                                                  | Gamma calorimeter                                                                                     | Nuclear heating                                   | Operational                                                                                                                                                                                                           |
|                                                                                  | Thermocouples and melt wires                                                                          | Temperature                                       | Type K, N, and C thermocouples—<br>Operational; can be placed in previously<br>irradiated fuel rods. Mo/Nb alloys ther-<br>mocouples under development with<br>French vendor (Thermocoax) (long-<br>duration testing) |
|                                                                                  | Noise thermometry Temperature Under development                                                       | Under development                                 |                                                                                                                                                                                                                       |
|                                                                                  | Counter-pressure sensor                                                                               | Fission gas release (pressure in fuel rod)        | Operational (placed on previously irradi-<br>ated fuel rod)                                                                                                                                                           |
|                                                                                  | Acoustics                                                                                             | Fission gas composition and pressure              | Operational (placed on previously irradi-<br>ated fuel rod)<br>Operational (also testing enhanced IFE/<br>HRP LVDTs) under development (test-<br>ing enhanced IFE/HRP DGs)                                            |
|                                                                                  | LVDTs                                                                                                 | Length/creep-induced elongation<br>Diameter gauge |                                                                                                                                                                                                                       |
|                                                                                  | Fiber optics                                                                                          | Length                                            | Under development (Joint Lab with SCK•CEN)                                                                                                                                                                            |

PAGE 53



|                                                                            | Technology                                             |                                                                   |                                                                                                                                                 |
|----------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Research Organization/Country                                              | Sensors                                                | Parameter Detection                                               | Status                                                                                                                                          |
| Japan Atomic Energy Agency (JAEA)/Japan                                    | Fission chambers (1.8 mm diameter)                     | Thermal flux (with <sup>235</sup> U deposits)                     | Operational                                                                                                                                     |
|                                                                            | SPNDs                                                  | Thermal flux (Rh, Co, and Pt-40%Rh emitters)                      | Operational                                                                                                                                     |
|                                                                            | Flux wires                                             | Integral fast (Fe) and thermal (Al-Co, V-Co, and Ti-Co) flux      | Operational                                                                                                                                     |
|                                                                            | Thermocouples (Type K, N, and C) and melt wires        | Temperature                                                       | Operational (subject to high tempera-<br>ture or transmutation-induced signal<br>degradation; can place in previously<br>irradiated fuel rods.  |
|                                                                            | LVDT (stressed with bellows and unstressed)            | Pressure, length/creep-induced elongation                         | Operational (using Japanese-made LVDTs and bellows)                                                                                             |
|                                                                            | DCPD method with CT specimens and<br>bellows loading   | Crack growth                                                      | Operational                                                                                                                                     |
| Korea Atomic Energy Research Institute (KAERI)/Korea                       | Thermocouples (Type K and C) and melt wires            | Temperature                                                       | Operational                                                                                                                                     |
|                                                                            | Flux wires                                             | Integral fast flux                                                | Operational                                                                                                                                     |
|                                                                            | LVDTs                                                  | Pressure, UO <sub>2</sub> elongation/creep-<br>induced elongation | Operational for pressure and fuel elon-<br>gation detection/under evaluation for<br>creep testing (using IFE/HRP LVDTs)                         |
|                                                                            | SPNDs (V-, Rh-emitter)                                 | Thermal flux                                                      | Operational (using commercially-<br>made SPNDs)                                                                                                 |
| Institute for Energy Technology/Halden Reactor Project<br>(IFE/HRP)/Norway | LVDT (stressed with bellows and unstressed)            | Pressure, length/creep-induced elongation, diameter               | Operational (enhancements explored with CEA and INL)                                                                                            |
|                                                                            | Eddy-current probe                                     | Oxide thickness deposited on fuel rods                            | Under development                                                                                                                               |
|                                                                            | Thermocouples (Type K, N, and C) and melt wires        | Temperature and thermal conductivity degradation                  | Operational (subject to high tempera-<br>ture or transmutation-induced signal<br>degradation). Can place in previously<br>irradiated fuel rods. |
|                                                                            | SPNDs                                                  | Thermal flux, power, fuel heat-up rate                            | Operational (using commercially-made and IFE/HRP-made sensors)                                                                                  |
|                                                                            | Gamma thermometer                                      | Heat generated by gamma heating                                   | Operational (using IFE/HRP-made sensors)                                                                                                        |
|                                                                            | DCPD method with CT specimens and bel-<br>lows loading | Crack growth                                                      | Operational                                                                                                                                     |

|                                                                                        | Technology                                                         |                                                 |                                                                                                              |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Research Organization/Country                                                          | Sensors                                                            | Parameter Detection                             | Status                                                                                                       |
| Institute for Energy Technology/Halden Reactor Project<br>(IFE/HRP)/Norway (continued) | Electrochemical corrosion potential probes                         | Water chemistry                                 | Operational                                                                                                  |
|                                                                                        | Flux wires                                                         | Integral fast (Fe, Ni) and thermal (Al-Co) flux | Operational                                                                                                  |
|                                                                                        | Melt wires (peak)                                                  | Temperature                                     | Operational                                                                                                  |
| Idaho National Laboratory (INL)/U.S.                                                   | Melt wires (peak), SiC<br>temperature monitors (range)             | Temperature                                     | Operational                                                                                                  |
|                                                                                        | Thermocouples (Type N, K, C, and doped Mo/Nb-alloy HTIR-TC)        | Temperature                                     | Operational (HTIR-TCs developed and offered by INL)                                                          |
|                                                                                        | Hot wire probe                                                     | Thermal conductivity                            | Final laboratory evaluations underway; scheduled for irradiation testing in 2011.                            |
|                                                                                        | Ultrasonic transducers                                             | Length/geometry                                 | Under laboratory evaluation                                                                                  |
|                                                                                        | Ultrasonic thermometers                                            | Temperature                                     | Under laboratory evaluation                                                                                  |
|                                                                                        | Flux wires and foils                                               | Fluence (neutron)                               | Operational                                                                                                  |
|                                                                                        | Gas chromatography<br>Pressure sensors<br>Gamma detectors/sampling | Fission gas (amount, composition)               | Operational                                                                                                  |
|                                                                                        | LVDT (stressed with bellows and unstressed)                        | Length/creep-induced elongation                 | Under laboratory evaluation (using IFE/HRP LVDTs); irradiation scheduled for 2011.                           |
|                                                                                        | SPNDs (Rh, Gd, and Hf emitters)                                    | Thermal flux                                    | Under evaluation at ATR Critical (ATRC) facility                                                             |
|                                                                                        | Miniature and subminiature fission chambers                        | Fast and thermal flux                           | Under evaluation at ATR Critical (ATRC) facility                                                             |
| Nuclear Research & Consultancy Group (NRG)/                                            | Flux wires (Nb, Ti, Fe, NiCo)                                      | Fluence (neutron)                               | Operational                                                                                                  |
| Netherlands*                                                                           | SPNDs                                                              | Thermal flux, power, fuel heat-up rate          | Operational (using commercially-made SPNDs)                                                                  |
|                                                                                        | Thermocouples (Type K and N)                                       | Temperature                                     | Operational                                                                                                  |
|                                                                                        | LVDT                                                               | Pressure                                        | Operational (using IFE/HRP LVDTs)                                                                            |
|                                                                                        | Silicon chip transducer                                            | Pressure                                        | Operational (using kulite semiconductor prod-<br>ucts outside high neutron and gamma radiation<br>locations) |

French alternative energies and atomic energy commission Cadarache | F-13108 Saint-Paul-lez-Durance | France T. +33 (0)4 42 25 79 62 | F. +33 (0)4 42 25 78 76 Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019 Nuclear Energy Division Reactor Studies Department Experimental Physics Section Instrumentation Sensors and Dosimetry Laborator