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CONCRETE MATERIAL
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Concrete is a porous material

… Chemistry of its interstitial solution 
is fixed by minerals

pH of concrete pore solution is 
around 13

Aqueous diffusion

Species 
transfer

Water adsorption
Ions adsorption
Formation of new 
products
Dissolution

Microstructure 
modification
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P. D. Tennis and H. M. Jennings, Cem. Concr. Res., 
vol. 30, pp. 855–863, 2000.



CEMENT PHASES
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Phase Mineral Formula

Portlandite Ca(OH)2

C-S-H Jennite Ca1.67(SiO2)(OH)3.33(H2O)
Tobermorite Ca0.83(SiO2)(OH)1.67(0.5H2O)

phase AFm Monosulfoaluminate Ca4Al2(SO4)(OH)12.6H2O
Monocarboaluminate Ca4Al2(CO3)(OH)12.5H2O
Hemicarboaluminate Ca4Al2(CO3)0.5(OH)13(5.5H2O)

phase AFt Ettringite Ca6Al2(SO4)3(OH)12.26H2O

phase Hydrogrossular Hydrogarnet Ca3Al2(OH)12

KatoiteSi Ca3Al2(SiO4)(OH)8

Siliceous hydrogarnet Ca3Al2(SiO4)0.8(OH)8.8

Mineral phases are fixing pH value as well as chemical 
reactivity of cement
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V. Baroghel-Bouny, “PhD, 1994.

J. Stark and K. Bollmann, Nord. Concr. 
Res., vol. 23, pp. 4–28, 2000.



PASSIVITY OF STEEL EMBEDDED IN 
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Evidenced of passivity in 
cementitious material

PASSIVITY OF REINFORCEMENTS

Aerated– RH 90% 
– 3 years

Stable corrosion product layer in term of 
composition (magnetite) and thickness (few µm)L. Chomat, V. L’Hostis, E. Amblard, L. Bellot-Gurlet, Corrosion

Engineering, Science and Technology, 49 (6) pp. 467-472 (2014).

Corrosion rate < 1 µm/an 
for all conditions
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Evidenced of passivity even 
after few tens of years

PASSIVITY OF REINFORCEMENTS

Bresil House (Paris International University)
50 years old

Corrosion product layer 
thickness 10-50 µm (mill scale)

V. L’Hostis, D. Neff, L. Bellot-
Gurlet, P. Dillmmann,
Materials and Corrosion, Vol.
60, n°2, pp. 93-98, 2009
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CHLORIDE CHEMICAL INTERACTION 
WITH CONCRETE
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CHLORIDE INTERACTION WITH CEMENT
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Friedel salt (chloroamuminate): Ca4Al2Cl1.95(OH)12.05.4H2O 
comes from 4Ca2+ + 2AlO-

2 + 1.95Cl- + 4.05OH- + 8H2O

Kuzel salt: Ca4Al2(SO4)0.5Cl(OH)12.6H2O
comes from 4Ca2++2AlO2

-+Cl-+0.5SO4
2-+4OH-+10H2O

Chloride ions can also adsorbed on C-S-H minerals

Chloride content 
= Equilibrium 
between solid 
phase and 
aqueous 
concentration 
 Total, fixed 
and free chloride



CHLORIDE-INDUCED-CORROSION
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Corrosion mechanism
Anodic and cathodic 

reactions are delocalized

• Local cells where [Cl-]/[OH-] > threshold (value controversial in the literature ≈ 0,6)
• Formation of ferrous-chloride (FeCl2) and green rust as precursor corrosion 

products
• Dissolution of reinforcement bars
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Atmosphere

Concrete 
cover Passive film

Reinforcement steel



CHLORIDE-INDUCED-CORROSION
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Rouille verteDissolution de l’armature
Green rust is oxidized in 

aerated media

Green rust formation

Consequences on rebar
Steel section losses
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Steel dissolution Green rust

2 hours



CHLORIDE-INDUCED-CORROSION
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Visible sign : 
Cracks associated with rust spots
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O. Poupard, V. L’Hostis, S. Catinaud, I. Petre-Lazar, Cement and 
Concrete Research, Vol. 36, pp. 504-520 (2006). 

Mechanical consequence : Loss of 
loading capacity of the structure

Beams without corrosion
Beams with 11% steel section loss

Q.T. Nguyen, A. Millard, S. Caré, V. L’Hostis, Y. Berthaud, 
Journal de Physique IV, Vol. 136, pp. 109-122, 2006.



THERMAL LOADINGS EFFECTS ON 
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THERMAL LOADING EFFECT

Assumptions for the T-H-M model from [B. Bary et al.]

The gaseous phase is supposed to be only composed of vapor (dry air neglected & 
only 1 mass conservation equation) Mass balance equation is:

Heat equation:

Behavior law

Partially saturated material: mechanical effect of gas pressure neglected
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THERMAL LOADING EFFECT
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HEATING PROGRAMM

0.0

50.0

100.0

150.0

200.0

250.0

300.0

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0

TIME (Hrs)

°C

HEATING RATE 0,1 °C / min

200 °C

75 °C

150 °C
THERMAL CYCLE ON 
CONCRETE BEFORE 
EXCESSIVE DRYING
(REVERSIBILITY OF T-M 
BEHAVIOUR)

CONTROL

Te
m

pe
ra

tu
re

(°
C

)

MAQBETH mock-up (cylinder heated by internal resistance)

Heating until 200°C lead to 
concrete drying and 

cracking 

28th November 2017, Fukushima Research Conference – CORR 2017



THERMAL LOADING EFFECT
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Finite elements modelling

Bary B, et al., Engineering Structures, 36 (2012) 302–315

28th November 2017, Fukushima Research Conference – CORR 2017

10

38,5

31,7

59,2

0

50

100

150

200

0 50 100 150

t 

T (°C) 200

150 200

t (hours)10

38,5

31,7

59,2

0

50

100

150

200

0 50 100 150

t 

T (°C) 200

150 200

t (hours)10

38,5

31,7

59,2

0

50

100

150

200

0 50 100 150

t 

T (°C) 200

150 200

t (hours)

Temperature
loading at 
internal face

Main cracks 
appears in the 

cold face



APPLICATION TO FUKUSHIMA DAIICHI
CONDITIONS
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FUKUSHIMA DAIICHI CONDITIONS

Reinforced concrete structures of Fukushima 
Daiichi NPP have been submitted temporarily to 
specific environmental conditions such as chloride 
ingress (from seawater) and thermal loading (up 
to 200°C).

Scenario 1 : effect of chloride ingress (without temperature 

consideration)

Scenario 2 : taking into account the thermal loading on 

concrete behaviour
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SCENARIO 1 : CHLORIDE INGRESS

Coupled chemistry-transport 
software (Hytec) 
CEM V type concrete 
(Portlandite, Jennite, 
Ettringite and Monosulfate)
15% porosity
Effective diffusion 
coefficient: 5 10-13 m2/s
From t=0 to t = 15 days : 
NaCl solution at 0.55 
mole/L; pH =7
From t=15 to t= 745 days : 
pure water pH=7
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Reinforcement bars located few centimeters inside concrete should not 
developed chloride-induced-corrosion. 
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Chloride penetrates into concrete up to several millimeters during the 15 days in contact with 
seawater. As soon as pure water replaces seawater, chloride species are leached out from 
the material. 
After 2 years, almost all chloride species disappeared from concrete cover. 



Temperature profiles Vertical stress

Simplified illustrative TM simulation
Wall 1 m thickness, 10 m high
Homogeneous concrete (no reinforcements), supposed to behave elastically
Initial temperature of 200°C, subjected to the exposure of water at 20°C on both surfaces
Young modulus = 35 GPa, Poisson ratio = 0.2
Heat capacity = 900 kJ/kg/K, thermal conductivity = 2 W/m2/K

SCENARIO 2 : THERMAL LOADING
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Maximum tensile stress up to about 40 Mpa Cracking!
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CORROSION IN CRACKED CONCRETE
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CORROSION IN CRACKED CONCRETE

1/ and 2/ Chloride penetrates through the crack (initiation period). 
2/ Corrosion rate reduced (induction period) : corrosion products fill the crack. Corrosion 
products continue to develop along the steel/concrete interface  new corrosion cracks. 
3/ If corrosion crack appear, the propagation phase begins. Increase in the corrosion rate. 
Corrosion cracks interconnect between them progressively and increase in width also. 
In the structure, some zones will be in the induction phase while others can be in the 
propagation phase.
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R. François and G. Arliguie, “Durability of loaded reinforced
concrete in chloride environment,” ACI Spec. Publ., vol. 
145, pp. 573–596, 1994.



CORROSION IN CRACKED CONCRETE
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P. Bamforth, Management of concrete structures for long-term 
serviceability. Proceedings of the Int. Seminar. Sheffield, UK, 1997.

<<

Micro-cell corrosion : anodic and cathodic reactions = in the adjacent sub-areas on the 
cracked zone (oxygen is supplied through the crack).
Macro-cell corrosion : anodic dissolution = in the cracked area / cathodic reaction at the 
passive reinforcement being in non-cracked concrete (oxygen penetrates through un-
cracked zone of concrete)



CORROSION IN CRACKED CONCRETE

NOVEMBER 23, 2017 |  PAGE 2528th November 2017, Fukushima Research Conference – CORR 2017

Field and laboratory 
experiments show that the 
quality of steel/concrete 
interface is the main parameter 
that has to be considered, 
more than chloride threshold 
and crack width as it is 
commonly specified in codes. 

Schematic illustration of various "defects" that 
may or not be present locally at the steel-
concrete interface. The red dotted lines indicate 
preferential routes of entry for chlorides; the blue 
dots represent adsorbed water (for large pores 
only), according to Angst et al., 2017. [ANG 17a]



CONCLUDING REMARKS

23 NOVEMBRE 2017

|  PAGE 26

CEA | 10 AVRIL 2012



CONCLUDING REMARKS

Passivity of steel embedded in concrete is demonstrated even after 
tens of years

Chloride from seawater used for cooling structures did not lead to 
active corrosion initiation

Thermal loadings due to nuclear accident and cooling by cold water 
should have lead to concrete cracking

Corrosion process that has to be considered is corrosion in cracked 
concrete

In this condition, the main parameter that has to be taken into 
account is the quality of steel/concrete interface in massive structure 
(top bar effect)
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AQUEOUS CHLORIDE PROFILES
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CORROSION IN CRACKED CONCRETE
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Pre-cracks + Interface defects
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